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1. Introduction

With the recent interest in finding Weierstrass-type representations for surfaces
other than minimal surfaces in Euclidean 3-space, the case of (spacelike) constant
mean curvature (CMC) 1 surfaces in de-Sitter 3-space S2,1 has been undergoing
investigation. (Throughout this paper, we treat only spacelike surfaces with sin-
gularities.) Having more methods available for producing surfaces of this type is
useful, and is the goal of this paper.

In the recent work by Fujimori, Rossman, Umehara, Yamada and Yang [FRUYY],
the method by Rossman, Umehara and Yamada in [RUY] was adapted to the case
of maximal surfaces in Minkowski 3-space R2,1 and their cousin CMC 1 surfaces in
de Sitter 3-space, for the purpose of producing some specific examples of surfaces
with particular geometric properties of interest. Here we reformulate that result in
[FRUYY] to apply to other surfaces as well, using a non-degeneracy condition like
that used in [RUY], see Theorem 3.2.

Although in Euclidean 3-space R3 every direction is geometrically the same, this
is not the case in R2,1. For this reason, when we formulate the non-degeneracy
condition in Section 3, we use only two timelike planes in general position, rather
than the three planes in general position that were used in [RUY].

In section 4 we give new examples of genus 1 maxfaces in R2,1 with two or three
ends and apply Theorem 3.2 to produce corresponding genus 1 CMC 1 surfaces in
S2,1. With the final two examples, we are able to provide an answer to Problem 2
raised in [FRUYY]. In fact, one of those two examples has all ends embedded.

Acknowledgments: We would like to thank Wayne Rossman for fruitful discus-
sions about the subject.

2. CMC surfaces in de Sitter spaces

Let R3,1 be Minkowski 4-space with the metric of signature (−,+,+,+). We
define de Sitter space of constant sectional curvature 1 by

S2,1 = {(t, x, y, z) ∈ R3,1 | − t2 + x2 + y2 + z2 = 1} .

We will use the following standard 2 × 2-matrix model of S2,1 (see for example
[FRUYY]):

S2,1 = {Xe3X
∗|X ∈ SL(2,C)} = SL(2,C)/SU(1, 1),

where

e3 =

(
1 0
0 −1

)
.

In this model the metric on S2,1 is determined by

⟨Y, Y ⟩ = −det(Y ),
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for Y ∈ TpS2,1.
Let Σ be a Riemann surface. For c ∈ R×, let Fc : Σ → SL(2,C) be a solution of

dFc · F−1
c = c

(
G −G2

1 −G

)
ω ,(2.1)

where G : Σ → C is a holomorphic function and ω ∈ Ω1(Σ) is a holomorphic 1-form
independent of c. Then using the Weierstass-type representation for S2,1 (see for
example [FRUYY]) we have that

fc := Fce3F
∗
c ,

is a CMC 1 surface in S2,1.

Remark 2.1. We have that ω = Q
dG , where cQ is the Hopf differential of fc.

3. The [RUY] method in de Sitter space

Let D be a simply-connected region in Σ with local coordinate z, bounded by a
finite number of smooth arcs. Let G and ω be Weierstrass data on D producing a
(possibly branched) maxface [UY2]

f0 = Re

∫ z

z0

(−2G, 1 +G2, i− iG2)ω

in R2,1 (with metric of signature (−,+,+)) bounded by planar geodesic curvature
lines lying in either of two given timelike planes P1 and P2, and suppose that P1 and
P2 are not parallel to each other. We allow that these geodesics might be defined
only in the interiors of the corresponding smooth arcs in ∂D, creating the possibility
of ends of f0 at the endpoints of the smooth arcs. The Hopf differential Q = ωdG
is real when restricted to ∂D. Suppose that repeated inclusion of reflected copies of
f0 across P1 and P2 (and their images under reflections) extends f0 to a (possibly

branched) maxface f̂0 of finite topology and no boundary.
Label the smooth boundary arcs of D as S1,1, S1,2, ..., S1,k1 , S2,1, S2,2, ..., S2,k2 ,

where each Si,j has image under f0 in the plane Pi, for i = 1, 2. For technical reasons
(in the proof of Theorem 3.2), we also make the following further assumption: at
least one endpoint of one smooth arc of ∂D is mapped by f0 to a finite point in
∂f0 ⊂ R2,1, i.e., is not an end of f0.

Let f0(λ) be a smooth family of maxfaces in R2,1 depending on a parameter
λ, where λ is contained in an open subset N of Rk1+k2−2 such that f0(λ0) = f0
for some λ0 ∈ N . Thus, for each λ, f0(λ) is determined by Weierstrass data
G(λ), ω(λ) and domain D(λ) depending smoothly on λ. Assume that for each λ,
we can identify the boundary arcs Si,j(λ) of D(λ) with Si,j and that f0(λ)|Si,j(λ)

is a planar geodesic in a plane Pi,j(λ) parallel to Pi.
Let

di,j = the oriented distance between Pi,j(λ) and Pi,1(λ) .

Thus di,j changes sign when Pi,j(λ) crosses from one side of Pi,1(λ) to the other,
and is zero if and only if Pi,j(λ) = Pi,1(λ).

Definition 3.1. f0(λ) is said to be non-degenerate with respect to the parameter λ
if the period map

Per : N → (d1,2, ..., d1,k1
, d2,2, ..., d2,k2

)

is an open map at λ0, i.e., there exists an open neighborhood of λ0, V ⊂ N , such
that Per(V ) is an open neighborhood of the origin in Rk1+k2−2.

We are now in a position to state the main theoretical tool of the paper. Note
that CMC-1 faces are defined in [F].
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Theorem 3.2. If f0(λ) is a non-degenerate maxface, then there exists a corre-
sponding 1-parameter family of CMC-1 faces fc, c ∈ (−ε, ε) \ {0}, in S2,1 with no
boundary and with the same topology and corresponding reflection symmetries as
f0.

Sketch proof of Theorem 3.2: The proof of Theorem 3.2 is essentially the same
as part of the proof of Theorem B in [FRUYY], and is the SU(1, 1) analogue of
the proof using SU(2) of Theorem 5.10 in [RUY]. In fact some of the technicalities
of that proof are not needed here because Theorem B dealt with a degenerate
period problem, which differs from our case. As noted before the Hopf differential
cQ satisfies a reality condition which amounts to Q ◦ µij = Q, where µi,j denotes
reflection of the surface f0(λ) across Si,j(λ). Furthermore, as in Lemma 4.9 in

[FRUYY], G ◦ µij = σj ⋆ G, where σj are particular 2× 2 matrices and where

a ⋆ h =
a11h+ a12
a21h+ a22

,

for a ∈ SL(2,C) (where ast denote the components of a) and h a holomorphic
function. In fact, without loss of generality, σ1 is the identity matrix and σ2 is
a unitary diagonal matrix. We then have that the solution Fc of Equation (2.1)
satisfies

Fc ◦ µi,j = σiFcρ
−1
i,j ,

where ρi,j is independent of z, but can depend on c and λ, and also on the initial
condition used to determine the solution Fc.

We wish to transform the ρi,j so that they lie in SU(1, 1), because this is the

condition that causes the surface fc to have the same topology as f̂0. We do this
as follows: we change Fc to F̂c = Fcb for some b ∈ SL(2,R), independent of z

(but allowed to depend on c and λ). Then the matrices ρi,j change to b−1ρi,jb.

We adjust b and λ until b−1ρi,jb ∈ SU(1, 1) for all i, j, for any c sufficiently close
to 0, by using the non-degeneracy condition and Lemma 4.4 in [FRUYY], and
arguments regarding the λ dependence of the ρi,j like in [RUY]. This produces a

one parameter family of CMC-1 surfaces F̂ce3F̂
∗
c in S2,1 with the same topology as

f0 for c sufficiently close to 0, completeing the proof of Theorem 3.2.

Remark 3.3. The method in Proposition 5.4 of [UY2] shows the existence of a Chen-
Gackstatter type maxface in R2,1, as a companion surface to the Chen-Gackstatter
surface in R3. However, our result here will not apply to this and other companion
surfaces in R2,1, because that method involves changing the G in the Weierstrass
data to iG, and while the Hopf differential is real along boundary curves in the case
of R3, it becomes pure imaginary in R2,1. Thus our result cannot be applied.

4. Application: Genus-s examples with two or three ends

We now seek examples of maximal surfaces in R2,1 to which we can apply The-
orem 3.2. For any positive odd number s, define a Riemann surface

M̂ := {(z, w) ∈ (C ∪ {∞})2 |ws+1 = (z − λ1)(z
2 − 1)s},(4.1)

of genus s with Weierstrass data

G = λ2z
jwk and ω = zlwmdz,(4.2)

where λ := (λ1, λ2) ∈ (−1, 1) × R and j, k, l,m ∈ Z. This determines a (possibly
branched) maxface

f := Re

∫ z

z0

(−2G, 1 +G2, i− iG2)ω
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on the universal cover of M := M̂\{p1, ..., pr} in R2,1 with metric

ds2 = (1−GḠ)2ωω̄,

where ds2 blows up at the points pj , for j ∈ {1, ..., r}. Consider the sheets of

{(z, w) ∈ M̂ |Imz ≥ 0}. Let D be the sheet of {(z, w) ∈ M̂ |Imz ≥ 0} such that
w((1,∞)) ⊂ R+. Label the boundary curves of D as

S1,1 := {(z, w(z)) ∈ D| z ∈ [1,∞]},
S1,2 := {(z, w(z)) ∈ D| z ∈ [−1, λ1]},
S2,1 := {(z, w(z)) ∈ D| z ∈ [λ1, 1]},
S2,2 := {(z, w(z)) ∈ D| z ∈ [−∞,−1]}.

To obtain surfaces possessing the reflectional symmetry that Theorem 3.2 requires,
we use the following lemma:

Lemma 4.1. The images of the boundary arcs of D are planar geodesics if and
only if k +m is an integer multiple of s+ 1.

Proof. The result follows by checking when the Hopf differential Q = dGω is real
valued along the boundary of D. □

From now on we will assume that k +m is an integer multiple of s+ 1.

Lemma 4.2. When λ1 = 0 we have that d2,2 = ±d1,2.

Proof. Define two curves in M by

τ1, τ2 : [0, π] → M, τ1(ν) = (eiν + 1
2 , w(e

iν + 1
2 )), in D, and

τ2(ν) = (−eiν − 1
2 , (−1)

s
s+1w(eiν + 1

2 )).

Note that τ2 is well-defined in M because s is odd. Then for θ = πks
s+1 ,

d1,2 = Re

∫
τ1

i(1−G2)ω

d2,2 = − sin θRe

∫
τ2

(1 +G2)ω + cos θRe

∫
τ2

i(1−G2)ω

Thus,

d2,2 = Re

∫
τ2

(ieiθω − ie−iθG2ω)

= Re

∫
τ1

(ieiθ(−1)
ms
s+1+l+1ω − ie−iθ(−1)

(2k+m)s
s+1 +l+1G2ω)

= (−1)
(k+m)s

s+1 +l+1d1,2 ,

since k +m is an integer multiple of s+ 1. □
In light of Lemma 4.2, we set λ1 = 0 and our goal is to find a value of λ2 so that

d1,2 = 0, i.e., so that our surface is well-defined on M and thus has finite topology.
Viewing d1,2 as a function of λ2, one arrives at the following lemma:

Lemma 4.3. If

λ±
2 := ±

√
Im

∫
τ
zlwmdz

Im
∫
τ
z2j+lw2k+mdz

are real and non-zero, where

τ : [0, π] → Σ, ν 7→ (eiν + 1
2 , w(e

iν + 1
2 )),

then the maximal surfaces determined by (4.1) and (4.2) with λ = λ±
0 := (0, λ±

2 )
are well-defined on M .
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Therefore let us assume that λ0 := (0, λ0
2) determines a maximal surface that

is well defined on M . We want the surface to be a maxface, i.e., we want to
allow the surface to admit singularities but have no branch points and to have
complete ends. Away from points of M where z is not a local coordinate, i.e., when
z ∈ {0, 1,−1,∞}, we have that df is non-zero, and thus, the surface is not branched.
Furthermore, the surface is a maxface away from z ∈ {0, 1,−1,∞}, which follows
from Fact 1.1 in [FRUYY], considered on local simply connected open subsets of
M .

To ensure that the surface does not have branch points when z ∈ {0, 1,−1,∞},
we will require that the metric

ds2 = (1−GḠ)2ωω̄ = (1− λ2
2|zjwk|2)2|zlwm|2|dz|2

is either non-singular or blows up at these points:
At z = 0, assuming that j(s+1)+ k ̸= 0, the metric is non-singular or blows up

if and only if

l(s+ 1) +m+ s ≤ 0 when j(s+ 1) + k > 0 ,

(2j + l + 1)(s+ 1) + 2k +m− 1 ≤ 0 when j(s+ 1) + k < 0.

Equality on the left hand side in either case means that f has a finite point at
z = 0. Otherwise, f admits a complete end at z = 0.

At z = ±1, assuming k ̸= 0, the metric is non-singular or blows up if and only if

m+ 1 ≤ 0 when k > 0 ,

2k +m+ 1 ≤ 0 when k < 0.

If we have equality on the left hand side in either case then f has finite points at
z = ±1. Otherwise, z = ±1 are both complete ends of the surface.

At z = ∞, assuming (2k + j)s + j + k ̸= 0, the metric is non-singular or blows
up if and only if

(l + 2m+ 1)s+ l +m+ 2 ≥ 0 when (2k + j)s+ j + k < 0 ,

(4k + 2j + l + 2m+ 1)s+ 2j + 2k + l +m+ 2 ≥ 0 when (2k + j)s+ j + k > 0.

If we have equality on the left hand side in either case then f has a finite point at
z = ∞. Otherwise, f has a complete end at z = ∞.

So far we have shown how to construct maxfaces in R2,1 with finite topology
equal to that of M . We would now like to use Theorem 3.2 to obtain CMC 1 faces
in S2,1 from these examples. To do this we create a period problem by viewing
λ = (λ1, λ2) in (4.1) and (4.2) as a parameter in the domain (−1, 1)× R. Then to
check that the period problem is non-degenerate, it suffices to check that the map

(λ1, λ2) 7→ (d1,2, d2,2)

is immersed at the solution point λ0 of the period problem, i.e., the determinant of
the Jacobian at λ0, ( ∂

∂λ1
d1,2

∂
∂λ2

d1,2
∂

∂λ1
d2,2

∂
∂λ2

d2,2

)∣∣∣∣
λ=λ0

,

is non-zero. One can check that

∂
∂λ1

d2,2|λ=λ0
= (−1)l+

(k+m)s
s+1 ∂

∂λ1
d1,2|λ=λ0

, and

∂
∂λ2

d2,2|λ=λ0 = (−1)l+1+
(k+m)s

s+1 ∂
∂λ2

d1,2|λ=λ0 .

Thus, the non-degeneracy condition reduces to both ∂
∂λ1

d1,2|λ=λ0 and ∂
∂λ2

d1,2|λ=λ0

being non-zero. This is the case in all the examples we are about to consider.
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Figure 4.1. Genus 1 example with j = −1, k = 1, l = 0, m = −1,
see [FRUYY].

Figure 4.2. Genus 1 example with two complete ends with j = 0,
k = 1, l = −1, m = −1. (z, w) = (0, 0) corresponds to an embed-
ded end, and (z, w) = (∞,∞) corresponds to a non-embedded end.

Remark 4.4. If introducing parameters λj , like above, in a certain way does not yield
a non-degenerate period problem for a particular example, then there may be other
ways that parameters can be introduced into the data so that a non-degenerate
period problem is obtained.

4.1. Two-ended examples. If we consider the case where

j = −1, k = 1, l = 0, m = −1,

then we obtain the genus s surfaces with two complete ends in R2,1 given in
[FRUYY]. (z, w) = (0, 0) and (z, w) = (∞,∞) correspond to the ends. When
s = 1, these ends are embedded. Figure 4.1 shows the genus 1 case. In [FRUYY],
a period problem that is not non-degenerate is considered for these surfaces. How-
ever, if we introduce parameters (λ1, λ2) as above, the period problem becomes
non-degenerate and we can apply Theorem 3.2.

We also give two new examples of genus s maxfaces with two complete ends in
R2,1 which when parameters are introduced as above have non-degenerate period
problems, see Figures 4.2 and 4.3.



CMC 1 SURFACES IN DE SITTER SPACE 7

Figure 4.3. Genus 1 example with two complete ends with j = 0,
k = 1, l = −2, m = −1. (z, w) = (0, 0) and (z, w) = (∞,∞)
correspond to the ends. When s = 1, the end corresponding to
(z, w) = (∞,∞) is embedded.

Figure 4.4. Two different views of the genus 1 example with three
complete embedded ends with j = 2, k = −1, l = 0, m = −1.
(z, w) = (∞,∞) corresponds to the end on the top of the figure,
and (z, w) = (±1, 0) correspond to the ends on the bottom of the
figure.

4.2. Three-ended example. Problem 2 in [FRUYY] asked whether there are
maxfaces of positive genus in R2,1 and S2,1 with more than two complete ends. We
give an affirmative answer to this question by taking s = 1 and

j = 2, k = −1, l = 0, m = −1.

This determines a genus 1 maxface with three complete embedded ends in R2,1, see
Figure 4.4, and by introducing parameters as above we have a non-degenerate period
problem and can thus obtain a corresponding one-parameter family of surfaces in
S2,1.

We also give another example of genus s = 1 maxface with three complete ends
in R2,1 which when parameters are introduced as above has a non-degenerate period
problems, see Figure 4.5.
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Figure 4.5. Genus 1 example with three complete ends with
j = 3, k = −1, l = 0, m = −1. (z, w) = (±1, 0) correspond to
embedded ends and (z, w) = (∞,∞) corresponds to non-embedded
ends.

Remark 4.5. In this paper we have only given examples of maxfaces of odd genus,
but using the framework of Section 4, we believe it should be possible to construct
examples of maxfaces in R2,1 (and CMC-1 faces in S2,1) with arbitrary genus and
two or three ends.
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