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Abstract

In this paper, we introduce generic limits of triply periodic minimal
surfaces and consider the genus three case. We will prove that generic
limits of such minimal surfaces consist of a one-parameter family of
Karcher’s saddle towers and Rodŕıguez’ standard examples.
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1 Introduction

It is known that properly immersed triply periodic minimal surfaces in R3

have been used for the description of lipids or synthetic surfactants in physics,
chemistry, and so on. Moreover, there are transitions from these membranes
to lamellar phases, which are periodic parallel planes by environment condi-
tions. In the previous paper [1], we showed that Rodŕıguez’ standard exam-
ples [16] appear as limits of the real five-dimensional family of triply periodic
minimal surfaces given by Meeks [9]. Limits of the standard examples include
the Riemann minimal examples look like singly periodic parallel planes sim-
ilar to lamellar phases. This suggests that limits of triply periodic minimal
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surfaces might be mathematical description of the transition. This paper
continues this work.

Let f : M → R3/Λ be a compact oriented minimal surface in a flat three-
torus. By the isothermal coordinates, M can be reconsidered as a Riemann
surface, and we call f a conformal minimal immersion. The following the-
orem gives an explicit description for a conformal minimal immersion. (See
for instance [9].)

Theorem 1.1 (Weierstrass representation formula). Let f : M → R3/Λ be a
conformal minimal immersion. Then, up to translations, f can be represented
by the following path-integrals:

f(p) = ℜ
∫ p

p0

t(ω1, ω2, ω3) mod Λ, (1.1)

where p0 is a fixed point on M and the ωi’s are holomorphic differentials on
M satisfying the following three conditions.

ω2
1 + ω2

2 + ω2
3 = 0, (1.2)

ω1, ω2, ω3 have no common zeros, (1.3){
ℜ
∫
C

t(ω1, ω2, ω3)

∣∣∣∣ C ∈ H1(M, Z)
}

is a sublattice of Λ. (1.4)

Conversely, the real part of path-integrals of holomorphic differentials satis-
fying the above three conditions defines a conformal minimal immersion.

Remark 1.1. We can write out ω1, ω2, ω3 in Theorem 1.1 as (ω1, ω2, ω3) =
(1− g2, i(1 + g2), 2g)ω for some holomorphic one-form ω and meromorphic
function g which is the Gauss map composed with stereographic projection
onto C ∪ {∞}.

A minimal surface in R3 is said to be periodic if it is connected and invari-
ant under a group Γ of isometries of R3 that acts properly discontinuously
and freely (see [11]). Γ can be chosen to be a rank three lattice Λ in R3

(the triply periodic case), a rank two lattice Λ ⊂ R2 × {0} generated by
two linearly independent translations (the doubly periodic case), or a cyclic
group Λ generated by a screw motion symmetry, that is, a rotation around
the x3-axis composed with a non-trivial translation by a vector on the x3-axis
(the singly periodic case). The geometry of a periodic minimal surface in R3

can usually be described in terms of the geometry of its quotient surface M
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in the flat three-manifold R3/Λ. Hence a triply periodic minimal surface is
a minimal surface in a flat three-torus T3, a doubly periodic minimal surface
is a minimal surface in T2 × R where T2 is a flat two-torus, and a singly
periodic minimal surface is a minimal surface in S1 × R2.

We will focus on the genus three case because of the following motivation
in terms of the Morse index of a minimal surface. The Morse index of a
compact oriented minimal surface in a flat three-torus is defined as the sum
of the dimensions of the eigenspaces corresponding to negative eigenvalues of
the Jacobi operator of the area. A minimal surface is said to be stable if it has
Morse index zero. It is well-known that a compact oriented stable minimal
surface in a flat three-torus must be a totally geodesic subtorus in the torus.
Thus a compact oriented minimal surface in a flat three-torus which is not
totally geodesic must have Morse index at least one, that is, the Morse index
one case is the least one. In 2006, Ros [17] proved that a compact oriented
minimal surface in a flat three-torus with Morse index one has genus three.
So the genus three case might be important for natural phenomena. In fact,
many one-parameter families of compact oriented minimal surfaces of genus
three in flat three-tori have been studied in physics and chemistry. (See for
example [8], [18].)

Recall that a compact oriented minimal surface of genus three in a flat
three-torus is hyperelliptic, that is, it can be represented as a two-sheeted
branched covering of the sphere. (See p. 49 in [13] or Corollary 3.2 in [9].)
In this case, the Riemann surface M in Theorem 1.1 can be given by w2 =∏8

i=1(z−ai) for distinct eight complex numbers a1, . . . , a8 or w
2 =

∏7
i=1(z−

bi) for distinct seven complex numbers b1, . . . , b7. (See p. 102 in [2] or p. 254
in [3].) We consider the former case since we can apply the similar arguments
to the latter case. We define generic limits of triply periodic minimal surfaces
as limits of f in Theorem 1.1 for the following three cases: (i) the case a2 →
a1, (ii) the case (a2, a4) → (a1, a3), (iii) the case (a2, a4, a6) → (a1, a3, a5).
(See § 2 for the details.) Our main result is as follows.

Main Theorem. For a compact oriented embedded minimal surface of genus
three in a flat three-torus, generic limits of the minimal surface consists of
a one-parameter family of Karcher’s saddle towers and Rodŕıguez’ standard
examples.

The paper is organized as follows. In § 2, we discuss generic limits of
triply periodic minimal surfaces and give their properties. In § 3, we prove
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our main result, and finally in § 4, we introduce some singly periodic examples
derived from generic limits of triply periodic minimal surfaces.

2 Generic limits

In this section, we will refer to the details of generic limits of triply periodic
minimal surfaces for the genus three case. The arguments essentially appear
in Section three of [1].

For eight distinct complex numbers a1, . . . , a8, let M be the hyperelliptic
Riemann surface of genus three defined by w2 =

∏8
i=1(z − ai). We can write

out a basis of holomorphic differentials on M by {dz/w, zdz/w, z2dz/w}.
(See p. 255 in [3].) Let f : M → R3/Λ be a conformal minimal immersion
of M into a flat three-torus, and we can choose g = z and ω = dz/w in
Theorem 1.1. (See Theorem 3.1 in [9]. See also Corollary of Theorem 2 in
[13].)

We now consider each behavior of f for the following three cases: (i) the
case a2 → a1, (ii) the case (a2, a4) → (a1, a3), (iii) the case (a2, a4, a6) →
(a1, a3, a5). We only treat the case (i) since the similar arguments work for
the other two cases.

We first construct M as a two-sheeted branched covering of the sphere
by the Gauss map M ∋ (z, w) 7→ z ∈ C ∪ {∞} ∼= S2. The branch locus of
the Gauss map consists of the following eight points on S2:

a1, a2, a3, a4, a5, a6, a7, a8.

We prepare two copies of C ∪ {∞} ∼= S2 and take two closed curves passing
through the eight points, respectively. So we can divide S2 into two domains
and label “+′′ and “−′′. (See Figure 2.1.) Slit thick curves as in the upper
pictures in Figure 2.1 and glue (i) and (ii) as in the lower pictures in Fig-
ure 2.1. The thin curves in the upper pictures in Figure 2.1 correspond to
the thin curves in the lower pictures in Figure 2.1. By this procedure, we
obtain the hyperelliptic Riemann surface M of genus three.

We now consider the case a2 → a1. Let α be a closed curve enclosing a1
and a2 in the z-plane. Lift α to closed curves in M , name them α̂ and α̂′.
Choosing suitable α, we can divide M into two disjoint sets in M with the
following properties: One set contains (a1, 0) and (a2, 0) whose boundary
consists of α̂ and α̂′, and the other set is the remaining one. (See Figure 2.2.)
Let Mα denote the latter.
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Figure 2.1: The hyperelliptic Riemann surface M of genus three
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Figure 2.2: Closed curves α, α̂, α̂′.
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The Weierstrass integral (1.1) along any closed curve in Mα is contained
in the lattice of the target torus. So the Weierstrass integral depends only
on the endpoint of a path in Mα. We now assume p0 ∈ Mα. Taking t as a
local complex coordinate on Mα, we can write

1− z2

w
dz = φ1(t)dt,

i(1 + z2)

w
dz = φ2(t)dt,

2z

w
dz = φ3(t)dt

for some holomorphic functions φ1(t), φ2(t), φ3(t). Then, the three functions
φ1(t), φ2(t), φ3(t) converge uniformly on Mα as a2 → a1. Hence the limits
can be moved inside the integrals.

After that, letting α shrink to a point, we define generic limits of f for
the case a2 → a1 as a limit of f .

For the case a2 → a1, M converges to the following Riemann surface with
node, denoted by M ′:

w2 = (z − a1)
2

8∏
j=3

(z − aj).

Let M1 be the Riemann surface of genus two defined by

v2 = (z − a3)(z − a4)(z − a5)(z − a6)(z − a7)(z − a8).

Then there exists the following reparametrization of M ′:

M1 ∋ (z, v) 7→ (z, (z − a1)v) ∈ M ′.

By using them, the limit, as a2 → a1, of f is

ℜ
∫ p

p0

t(1− z2, i(1 + z2), 2z)
dz

(z − a1)v
(2.1)

on M1 \ {(a1, ±v(a1))}.
For the case (a2, a4) → (a1, a3), M converges to the following Riemann

surface with nodes, denoted by M ′′:

w2 = (z − a1)
2(z − a3)

2

8∏
j=5

(z − aj).
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Let M2 be the torus defined by

v2 = (z − a5)(z − a6)(z − a7)(z − a8).

Then there exists the following reparametrization of M ′′:

M2 ∋ (z, v) 7→ (z, (z − a1)(z − a3)v) ∈ M ′′.

By using them, the limit, as (a2, a4) → (a1, a3), of f is

ℜ
∫ p

p0

t(1− z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)v
(2.2)

on M2 \ {(a1, ±v(a1)), (a3, ±v(a3))}.
For the case (a2, a4, a6) → (a1, a3, a5), M converges to the following

Riemann surface with nodes, denoted by M ′′′:

w2 = (z − a1)
2(z − a3)

2(z − a5)
2(z − a7)(z − a8).

Let M3 be the sphere defined by

v2 = (z − a7)(z − a8).

Then there exists the following reparametrization of M ′′′:

M3 ∋ (z, v) 7→ (z, (z − a1)(z − a3)(z − a5)v) ∈ M ′′′.

By using them, the limit, as (a2, a4, a6) → (a1, a3, a5), of f is

ℜ
∫ p

p0

t(1− z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)(z − a5)v
(2.3)

on M3 \ {(a1, ±v(a1)), (a3, ±v(a3)), (a5, ±v(a5))}.
Next we consider the asymptotic behavior of ends for (2.1), (2.2), (2.3).

We set

Φ =



t(1− z2, i(1 + z2), 2z)
dz

(z − a1)v
(for (2.1))

t(1− z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)v
(for (2.2))

t(1− z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)(z − a5)v
(for (2.3))
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It is straightforward to check that we have the Laurent expansion of Φ at
(a1, v(a1))

1

z
α + β + γ z + · · · ,

where

α =


t(1− a21, i(1 + a21), 2a1)

1
v(a1)

(for (2.1))
t(1− a21, i(1 + a21), 2a1)

1
(a1−a3)v(a1)

(for (2.2))
t(1− a21, i(1 + a21), 2a1)

1
(a1−a3)(a1−a5)v(a1)

(for (2.3))

Let ⟨·, ·⟩ be the complex bilinear inner product. Then we have ⟨α, α⟩ = 0.
Thus α is not real nor pure imaginary, and so ℜ(2πiα) ̸= 0. We call the end
Scherk type end with period ℜ(2πiα). (See, for instance, Theorem 5 in [11].)

Note that there exists the hyperelliptic involution (z, v) 7→ (z, −v) on
each Mj (1 ≤ j ≤ 3). Hence we obtain a pair of parallel Scherk type ends
given by α/z+β+γ z+ · · · and −(α/z+β+γ z+ · · · ) with non-zero periods
±ℜ(2πiα).

Lemma 2.1. For (2.1), (2.2), and (2.3), ends consist of pairs of parallel
Scherk type ends. For each pair of parallel Scherk type ends, up to translation
in R3, one end can be transformed to the other end by a suitable inversion.
In particular, the Gaussian curvature at each end converges to zero.

We conclude this section with the following proposition.

Proposition 2.1. Generic limits of triply periodic embedded minimal sur-
faces of genus three consist of singly periodic or doubly periodic properly em-
bedded minimal surfaces in R3 with pairs of Scherk type ends. For each pair
of Scherk type ends, the Gauss image at one end coincides with the Gauss
image at the other end.

Proof. We use the notation as above. Let fj : Mj \ Ej → R3 (1 ≤ j ≤ 3)
be an element of generic limits of triply periodic embedded minimal surfaces
of genus three defined by (2.1), (2.2), (2.3), where Ej is a set of ends for
each fj. Note that fj might be multivalued in general. Thus, by taking a
suitable covering space M̃j → Mj \ Ej, there exists a single-valued minimal
immersion f̃j : M̃j → R3. By similar arguments to the proof of Theorem 7.1

in [9], M̂j = f̃j(M̃j) = fj(Mj \ Ej) is embedded.
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It is straightforward to check that each M̂j is complete from (2.1), (2.2),

(2.3). By Lemma 2.1, M̂j has only Scherk type ends, and thus it has bounded

Gaussian curvature. Combining the two facts yields M̂j is proper (see [12]),

and in particular, M̂j is orientable.
Recall that each f̃j : M̃j → R3 is derived from a triply periodic minimal

surface f : M → R3/Λ. To obtain f̃j, we collapse some one-cycles on M .
By (1.4), f̃j must be triply periodic or doubly periodic or singly periodic or
non-periodic minimal embedding. Since f̃j has Scherk type ends with non-
zero periods and is proper, it cannot be triply periodic nor be non-periodic
minimal embedding. Therefore f̃j is singly periodic or doubly periodic.

It follows that the minimal embedding f̃j : M̃j → R3 gives rise to a
conformal minimal embedding fj of a Riemann surface Mj into an S1 × R2

or a T2 × R. Also, fj is a conformal minimal immersion of Mj \ Ej into the
S1 × R2 or the T2 × R, and there exists a covering map π : Mj \ Ej → Mj

such that fj = fj ◦ π. Hence fj has finite total curvature, and so Mj is
biholomorphic to a compact Riemann surface Nj with a finite number of
points removed. Moreover, π extends to a covering map π : Mj → Nj.

Let G and G be the Gauss map of fj and fj, respectively. Note that
G and G can be extended to holomorphic maps Mj → S2 and Nj → S2,
respectively. Then we have G = G ◦ π. Note that G can be obtained by
(z, v) 7→ z, and so deg(G) = 2. To show deg(π) = 1, we now assume
deg(G) = 1, and thus G is biholomorphic.

For each k = 1, 3, 5, the equation G(ak, v(ak)) = G(ak, −v(ak)) implies
that fj is a singly periodic or doubly periodic properly minimal embedding
of genus zero with at most three ends. However, for each case, fj has at least
four ends ([10], [15]), and it leads to a contradiction.

Therefore we have deg(π) = 1, and so fj coincides with fj. Again, by
the equation G(ak, v(ak)) = G(ak, −v(ak)), the Gauss image at one end
coincides with the Gauss image at the other end for each pair of ends.

3 Proof of Main Theorem

In this section, we will prove Main Theorem in the introduction. We use the
notation as in the previous section.

We first consider f1 defined by (2.1), and then f1 is a properly embedded
singly or doubly periodic minimal surface with a pair of Scherk type ends
with periods ±ℜ(2πiα). Suppose that f1 is singly periodic. Let {E1, E

′
1} be
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the pair of Scherk type ends and G(E1), G(E ′
1) their Gauss images. In this

case, there exists a plane Π such that its normal vector is parallel to G(E1)
and, by the strong halfspace theorem [4], it intersects the minimal surface
at an interior point. (See Figure 3.1.) However, it contradicts the maximum
principle for minimal surfaces. Thus f1 is doubly periodic, but it contradicts
Meeks-Rosenberg’s result [10]. Hence this case is excluded.

Π

E1

E ′
1

G(E1)

G(E ′
1)

ℜ(2πiα)

Figure 3.1: A singly periodic minimal surface with a pair of Scherk type ends

We next consider f2 defined by (2.2), and in this case, f2 gives a properly
embedded singly periodic or doubly periodic minimal surface of genus one
with two pairs of Scherk type ends. If f2 is singly periodic, then by Proposi-
tion 2.1, there are two essential cases as in Figure 3.2. For both cases, there

(i)

E1

� G(E1)

E2

MG(E2)

E ′
2

M
G(E ′

2)

E ′
1

�
G(E ′

1)

(ii)

E1


G(E1)

E2

M
G(E2)

E ′
2

M
G(E ′

2)

E ′
1



G(E ′

1)

Figure 3.2: Two pairs of Scherk type ends {E1, E
′
1} and {E2, E

′
2}

exists a closed curve which intersects the minimal surface once (see the red
curves in Figure 3.2), and it contradicts the classical result in surface theory.
Suppose that f2 is doubly periodic. If the ends are not parallel, then we can
apply the same arguments as in Figure 3.2, and it contradicts. Hence the
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ends are parallel, and by the result of Pérez-Rodŕıguez-Traizet [14], it must
be Rodŕıguez’ standard example.

We finally consider f3 defined by (2.3), and then f3 is a singly or dou-
bly periodic minimal embedding of genus zero with six Scherk type ends.
Combining Lazard-Holly and Meeks’ result [7] and Pérez-Traizet’s result [15]
yields that f3 must be a singly periodic Scherk surface or Karcher saddle
tower or doubly periodic Scherk surface. It has six ends, and thus it must be
the Karcher saddle tower.

Remark 3.1. There exists a doubly periodic Scherk surface with a handle [5].
It has two pairs of Scherk type ends and its ends are not parallel. However,
for each pair of ends, the Gauss image at one end is distinct from the Gauss
image at the other end. By Proposition 2.1, this surface cannot be contained
in generic limits of triply periodic minimal surfaces of genus three.

4 Appendix (related examples)

We now consider singly periodic minimal surfaces given by (2.3). By the
period condition for singly periodic minimal surfaces, it can be reduced to
two cases essentially. One is given by

a1 = −eiπ/4, a3 = ei(θ+π/4), a5 = ei(−θ+π/4),
a7 = ei(φ+π/4), a8 = ei(−φ+π/4) (4.1)

in (2.3), where θ ∈ (π/2, π) and

φ = arccos

(
2 sin2 θ

1− 2 cos θ
− 1

)
are constants (see the left hand side of Figure 4.1). One can see that none
of this family is embedded, and thus it cannot be included in generic limits
of embedded triply periodic minimal surfaces of genus three. The other is
embedded (see the right hand side of Figure 4.1), more precisely, these singly
periodic minimal surfaces were found by Karcher. See § 2.5.1 in [6].

It is known that the symmetric Karcher saddle tower (§ 2.5.1 in [6] with
r = 0) is a limit of a family of embedded triply periodic minimal surfaces
of genus three, called Schwarz H family. However, a family of embedded
triply periodic minimal surfaces of genus three whose limit is non-symmetric
Karcher saddle tower is yet to be found, leading us to the following open
problem:
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Figure 4.1: Left: Singly periodic minimal surface given by (4.1) with θ =
3π/4. Right: Singly periodic minimal surface given by § 2.5.1 in [6] with
r = 1/2.

Problem. Whether there exists a family of embedded triply periodic min-
imal surfaces of genus three whose limit is non-symmetric Karcher saddle
tower (§ 2.5.1 in [6] with r ̸= 0) or not?
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