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Abstract

In this thesis various aspects of electrostatic oscillations in the nonneutral electron

plasma are described, including diocotron oscillations and electron plasma waves.

The theoretical dispersion relation for the linear oscillations of diocotron and elec-
tron plasma waves in a cold spheroidal nonneutral plasma is imperfect to describe actual
waves in the experimental plasma, because it does not take the boundary condition nor
temperature effect into account. It is expected that a spheroidal plasma obeys the Dubin
dispersion when the image charge is unimportant. On the other hand, when the plasma
becomes longer, the dispersion relation for the cylindrical plasma column is supposed to
be applicable. However, there is no experiment for diocotron oscillations of a confined

spheroidal nonneutral electron plasma in these intermediate states.

For the reason above, the dispersion relation for the fundamental diocotron oscil-
lation of a spheroidal plasma with a cylindrical boundary was experimentally investigated
in these intermediate states. The obtained dispersion relation approaches the one for the
cylindrical plasma column as the aspect ratio becomes larger, while it approaches the Du-
bin dispersion relation as the aspect ratio decreases. This emperically obtained dispersion
relation is useful to characterize a spheroidal plasma in this intermediate state, i.e, it is

available for the plasma diagnostic without distructive measurement.



So far the temperature dependence of the axisymmetric electrostatic oscillation
(the second mode) has been studied up to 0.25 eV for a spheroidal plasma with small
electron numbers and the observed frequency shifts have been explained only through
computer simulations. A higher density spheroidal nonneutral plasma composed of many
particles is becoming more requisite, because they are necessary for production of anti-
hydrogen. In such a case, the frequency shift may become larger and a simple method to
estimate the shift will be favorable. Therefore, it is important to investigate properties of

such a high density plasma.

The frequency shifts in the presence of the cylindrical conducting wall were exper-
imentally observed at room temperature at first. Then, the temperature dependence of the
electron plasma oscillations (the second and third mode) were examined for the tempera-
ture up to 1.2 eV in plasmas of higher densities with larger total particle numbers. It was
shown that the observed frequency shifts can be estimated from the dispersion relation in
which the temperature dependence of the dielectric tensor and the frequency shift by the
wall effect are included. The dispersion relation modified in this manner makes it easy to
estimate the frequency at a given finite temperature. These results revealed the impotance

of wall effect when a large spheroidal plasma is confined.

Longitudinal electron plasma oscillations (Langmuir oscillations) in a nonneutral
electron plasma column must obey a dispersion relation which is different from that of an
unbounded plasma. The present theory states that three wave interaction of Langmuir
waves is prohibited in unbounded plasma. But, little attention has been paid to large

amplitude Langmuir waves in a confined nonneutral plasma with a finite length.

Through the experiment described here, it was found that a large amplitude Lang-
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muir oscillation excited in the confined plasma can transit to the lower modes. When the
amplitude of the excited mode is small, the oscillation is governed by Trivelpiece-Gould
dispersion relation. However, when the amplitude is large, both sidebands and nonlinear
frequency shifts occure. As a result, three wave interaction becomes possible in the non-
neutral plasma column. This is the first observation of the three wave nonlinear interaction

among Langmuir waves.
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Chapter 1

Intrduction

A nonneutral plasma is a collection of charged particles, which does not have a
charge neutrality as a whole system. One component plasmas (OCP) is a kind of nonneutral
plasmas. The words such as nonneutral electron plasma, nonneutral ion plasma, positron

plasma and so on are used to describe OCP.

Some works on nonneutral plasmas done before 1970s were mainly concerned with
electron beams in microwave generation devices. The main research on nonneutral plasmas
arose in 1970s. The theoretical works by R. C. Davidson [1, 2, 3, 4] and the experimental
works by J. H. Malmberg [5, 6] facilitated the development of research in this field. Many
fundamental investigations, such as equilibrium and stability properties [10, 11], diffusion
properties [12, 13, 14], a collisional relaxation of anisotropic temperature [15], a transition to
thermal equilibrium [16], plasma waves [5, 6, 17], diocotron instabilities [18, 19], electron
cyclotron waves [20, 21, 22, 23], have been performed by many workers. The field has
extended to ion plasmas [24, 25], positron plasmas [26, 27, 28, 29, 30, 31, 32, 33] and
antiproton plasmas [34]. The nonneutral electron plasma column is also studied as an

1



excellent example of 2D inviscid fluid [35, 36, 37, 38, 39, 40]. Nonneutral plasmas are studied
as strongly coupled plasmas, too. There are several theoretical works on strongly coupled
nonneural plasmas [9, 41] and many experimental studies in the laboratories; strongly
coupled two dimensional electron plasma on the liquid helium [42], strongly coupled ion

plasmas in the Penning trap [43, 44, 45, 46] and strongly coupled dusty plasmas.

The Malmberg trap has been a powerful tool to investigate fundamental properties
of the nonneutral plasma column. It is also served as a good container of antimatter, so are
the Penning trap and the Paul trap. Although Malmberg trap can confine a large number
of particles, its confinement property has problems. The confinement time becomes shorter
as the confinement length becomes longer [11]. Furthermore, the confined plasma is not in
the ideal rigid rotor equilibrium. These are the fatal defects when we try to confine a large
number of (antimatter) particles. The Penning trap [47] and the Paul trap [48] can be used
to confine the spheroidal plasma. Their confinements are almost ideal unless the particle
number is large. Therefore, it is desirable to improve the confinement apparatus so that
it can contain a large number of particles in the rigid rotor equilibrium. The multi-ring

electrode trap described in this thesis is one of approaches to develop such an apparatus.

The basic confinement properties of the multi-ring electrode trap were extensively
studied by investigating the effect of the electrostatic potential configuration on the con-
finement time. I could obtain the result that the electrostatic potential ¢ o< p? — 222 gives
the better confinement time in the multi-ring electrode trap. This is the same electrostatic
potential with that of the Penning trap. However, the multi-ring electrode trap can confine
much more particles than the Penning trap, which is comparable to the Malmberg trap.

This fact causes another problem. The image charges of the plasma itself or the boundary



cannot be ignored. Thus the potential ¢ mentioned above is not enough for the rigid rotor

equilibrium when a lot of particles are confined.

Here, the boundary and temperature effects on the linear dispersion relations of
the lowest order diocotron oscillation and lower modes of electron plasma waves are inves-
tigated. This kind of experiment has not been done before, since spheroidal plasmas have
been confined by Penning trap with less particles (i.e, the wall effect is unimportant). This
measurement is important because measured frequencies of these oscillatioins cannot be
explained by the theoretical dispersioin relatioin for the cold spheroidal plasma with an in-
finite boundary. The obtained dispersion relation for the lowest order diocotron oscillation
is useful for the diagnosis of the confined plasma. It was found that the measured frequen-
cies of electron plasma waves are explained by considering the frequency shifts caused by

the wall and temperature effect.

It is interesting to know not only the properties of linear oscillations but also those
of nonlinear oscillations in the multi ring electrode trap. To understand the behaviour of
nonlinear oscillations in the nonneutral plasma will give us a good insight into the confine-
ment of the plasmas. Although linear Langmuir waves in the cylindrical plasma are well
known as Trivelpiece-Gould mode, little experiment has been done for nonlinear Langmuir
waves in a confined cylindrical nonneutral plasma so far. Therefore, the experiment pre-
sented in this thesis is important in that this is the first report on the nonlinear Langmuir
waves in the confined cylindrical nonneutral plasma. It was found that three wave inter-
action between Langmuir waves is possible in the cylindrical plasma, which is prohibited

against unbounded plasmas.

The results obtained at University of Toronto were also very interesting showing



that the ponderomotive force of 1ps laser pulse suppresses the expansion of the high tem-
perature plasma which triggers the onset of the radiative thermal conduction inside the
solid S@0; target. Threshold intensities for the onset of the radiative thermal conduction
were measured for the first time and it was found that it depends on the pulse duration of
the laser. I am sure that my stay in Toronto was quite fruitful experience for me in that I
could extend my knowledge in physics and learn the international research activity.

The following chapters are constructed as follows. In the next chapter, the theo-
retical treatment of nonneutral plasmas are briefly reviewed. The multi-ring electrode trap
and the basic experimental procedures are described in chapter 3. The linear dispersion
relations of diocotron and electron plasma oscillations in the multi-ring electrode trap is
discussed in chapter 4 and 5, respectively. The novel features of the nonlinear electron
plasma oscillations are treated in chapter 6. The chapter 7 summarizes this thesis. Every
result obtained at University of Toronto during my stay as an exchange student is presented

in appendix A.



Chapter 2

Theory of nonneutral plasmas

Since there are too many theoretical works on nonneutral plasmas to review, I
restrict the contents of this chapter to those which are very fundamental and concerned

with experiments described later.

2.1 Equilibrium property

2.1.1 Infinitely long nonneutral plasma column

As a fundamental example, the axially symmetric, infinitely long cold nonneutral
electron plasma, which has the radius ¢ and a constant density n inside, is considered in
the cylindrical coordinate (r,,z). Thus all physical quantity has no azimuthal and axial
dependence in the equilibrium. In this case, the plasma density n(r) and the radial electric

field E(r) is easily expressed as follows.

n, 0<r<a —;”—eer, 0<r<a
n(r) = . B(r)= (2.1)
0, a<r —;n—ewz§7 a<r

Ut



conbined centrifugal and
vu electric forces

magnetic forces

' > X

Figure 2.1: The radial force balance in the infinitely long nonneutral electron plasma col-

umn.

Here, w, = (/4wne?/m is the electron plasma frequency. —e and m are the charge and
mass of an electron. Shown in Fig. 2.1, the plasma is radially confined by a uniform axial
magnetic field B. The radial force balance equation becomes

_mb(r)” _ —eB(r) — ZVQ(T)B (2.2)

T
with Vy(r) = w,(r)r. Here, ¢ is the speed of light, V4(r) is the equilibrium azimuthal velocity
of an electron fluid element and w,(r) is the angular rotation frequency. Substituting

eq.(2.1) into eq.(2.2) gives the angular rotation frequency

1 202
(1) = wF = S0, {1 + (1 %)1/2}. (2.3)
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h-n!nB

Figure 2.2: The equilibrium rotation frequency w,/Q. vs density n/ng. There are higher
and lower rotations for a certain density and there is the Brillowin density limit for a

certain B.

. = eB/mc is the electron cyclotron frequency. It can be seen from this expression
that w,(r) is independent of radius in the cold nonneutral plasma column, which means
that the plasma rotates as a rigid body. Furthermore, there is a maximum density ng =
B?/8mmc* at a given B, which is called Brillouin density limit. Therefore, the infinitely
long nonneutral electron plasma column has a rigid rotor equilibrium with a higher or lower
rotation frequency when the plasma density is lower than ng. The equilibrium rotation

frequency is plotted against density in Fig.2.2.



2.1.2 Spheroidal nonneutral plasma

It is seen in the previous subsection that the rigid rotor equilibrium is obtained
for the infinitely long cold nonneutral electron plasma with constant density. Although
a confined nonneutral plasma in the laboratory has a finite axial length, the rigid rotor
equilibrium can be obtained for the special case. That is the cold spheroidal nonneutral
plasma which has a constant density n confined with the external electrostatic potential
" (p, z) expressed by

¢ (pz) = =V(p* = 22%)/(2L* + b°). (2.4)
This potential ¢*"(p,z) is created by the Penning trap which has the axial and radial
dimensions L and b, respectively. Let us assume that the spheroidal plasma with axial
length 2z, and radius ry,, which is revolving about the z axis, is confined in the Penning

trap as shown in Fig.2.3. The self field potential ¢°(p, z) inside the plasma is denoted by

¢S(pv Z) = _W::p (’)/7’2 + 622), (25)
with
L ap (L1 (e
Y(a) = 1—(1/a)? {1 —(1/a)?}3 g i (1/ay (2.6)
L sfer | fap [l (eP
ﬂ( )_ 1—(1/@)2 + {1_(1/a)2}3/21 g _ 1—(1/@)2 (2.7)

for o = z,/ry, > 1, i.e., prolate shape. This « is called the aspect ratio of the spheroidal
plasma. When ¢“(p,z) + ¢°(p, z) does not depend on z, i.e. depends only on p, the
spheroidal plasma has the rigid rotor equilibrium. Here, the constant density is the functioin

of a and denoted by

- 2V
n(e) = me(2L2 4+ %) B(a)

(2.8)

Although the function («) is modified, the similar expression holds in the case of a < 1.
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Figure 2.3: The spheroidal nonneutral plasma in the Penning trap which creates the external

potential ¢°*. The aspect ratio of the plasma is o = zp/ry.



2.1.3 Thermal equilibrium

Though the cold plasmas are treated in the previous sections, real plasmas have
their finite temperature. The thermal equilibrium of the plasma with uniform temperature
T is considered here. The distribution function of the infinitely long nonneutral electron

plasma column in the rigid rotor thermal equilibrium is given by

B ng H—w. Py
f(r, p) = (QkaBT)3/2 exXp {_ knT } (2'9)

where H = (p% + pj + p?)/2m — ed(p) is the total energy on individual particle, P; =
p(ps — mpS./2) the canonical angular momentum and p, the axial momentum. And ¢(p)
is the radial self potential in the equilibrium. Here, kp is the Boltzmann’s constant. An
equilibrium density n(p) is obtained by integrating the distribution function in the mo-
mentum space.

m

(p) = moexp {5 [ntl — ) - (5] (2.10)

It is seen that ng is regarded as the density on the axis (p = 0). It is necessary and sufficient
to satisfy w,Q, —w? —w?/2 > 0 for confining the plasma radially (n(p — oc) = 0). This
condition is satisfied in the region surrounded by the curves w}, w= and the ordinate in

Fig.2.2. The equilibrium density n(p) must satisfy the Poisson’s equation

190 0 {_m

2 2 2_6
gyt = moesn (gl [ —ah - Ta)]} @1y

This nonlinear Poisson’s equation is easily solved as shown in Fig.2.4 [49]. When T is not
so high that Debye length A\p = \/m is small compared with the plasma size, n(p)
is almost constant inside the plasma.

The similar discussion can be repeated for the spheroidal nonneutral plasma by
replacing ¢(p), n(p) and %a%pa% in above equations with ¢(r, z) = ¢ (r, 2)+¢°(r, 2), n(p, z)

10



1.2 L

n(r)fn,

radius (mm)

Figure 2.4: The thermal equilibrium density profile of the infinitely long nonneutral plasma

column. When Ap < ry, n(p) is almost constant inside the plasma.
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and %a%pa% + %, respectively. In this system, the total electron number, N = [, n(r, z)dv,

the total canonical angular momentum, P = [i,(—=<Lr?)n(r, z)dv and the electrostatic

energy, = [y,(—%)n(r, z)dv are conserved.

2.2 Linear diocotron oscillations

2.2.1 Infinitely long nonneutral plasma column

The purpose of this subsection is to derive the dispersion relation of diocotron os-
cillations in the infinitely long, cold nonneutral electron plasma column [4]. The continuity
equation

0 d
an(x,t) toe n(x,t)V(x,t) =0, (2.12)

the force balance equation

n(x,t)(g + V(x,1) - i)P(X,t) + 2. ®(x,1)

ot 0x 0x
1
=n(x,t)e(E(x,t) + - V(x,1) x B(x,1)), (2.13)
c
and the Poisson’s equation
V2(x,t) = dmen(x,t) (2.14)

are the start point. Here, n(x,t) is a density, V(x,?) a mean velocity, P(x,?) a mean
momentum, ®(x,t) a pressure tensor. Since the cold plasma is considered, the pressure
gradient term is neglected. Also, ¢(x,t), E(x,t) and B(x,?) denote electric potential,
electric and magnetic field, respectively. It is assumed that these quantities are expressed

as the sum of equilibrium value and perturbed value as follows.

n(x,t) = n(p) + on(x,t)

12



V(x,1) = Vi(p)és + Viey + 6V(x,1) (2.15)

o(x,t) = ¢(p) + d0(x,1)

B(x,t) = Bé, + éB(x,1)

Furthermore, it is assumed that the perturbation depends on time as exp(iwt) and that
the § and z dependence is Fourier decomposed as
op(p 0,2, 1) = > > 8 (p k) exp{i(10 + k.z — wi)}. (2.16)

l=—c0 k=—0

Thus the eqs. (2.12) ~ (2.14) can be rewritten as

1 5V}
—i(w =k V. — Lo, )én' + —ag(pnévp’) il Ys + th.néV! = 0, (2.17)
pOp
i — BV — L8V — (=0 4 20, )6 = — < Dy (2.18)
z¥z T p c T [ map 9 .
) . 1o,, . el
—i(w =k V. = o, )OVy + [-Q + == (p"w,) |6V, = ———6¢", (2.19)
pIp mp
—i(w— kV, — 1w, )8V = — ik, 84, (2.20)
m
2
lgpgéqﬁl - 1—25q§l — k284" = —dmedn'. (2.21)
pOp" Op p

Substituting eqs. (2.17) ~ (2.20) into the Poisson’s equation (2.21) results in the equation

10 w? 9

—7 1— P 9 54

pop [P( (W—szZ—le)Q—(w;l—_wT—V) ap ¢}

2 %2) 1

]C2 1 w; 5 l

- 2 - (w . ]CZ‘/Z o IL(JT)2 ¢

1668 (=0 + 2w, W2

N ( ) ; =z —m) (2.22)

p (w—EV. —lw)(w—FkV. —lw)*— (0 —w)

Here, it is considered that the plasma with uniform density n(0 < p < p;) is surrounded
by the cylindrical conducting wall at p = b as shown in Fig.2.5. The following relation is

13



Figure 2.5: The plasma with uniform density n(0 < p < py) is surrounded by the conducting

wall at p =5

used to derive eq.(2.22).

0

g,"\P) = ndlp = p) (2.23)

The eigenvalue equation (2.22) can be solved separately in region I (0 < p < py) and I1

(pp < p <b). In each region eq.(2.22) is represented by

ro o _, ©*_, oo
_6_ a_5¢1__25¢’1+T 5¢1:0, 0<p<p,
pap" dp p (2.24)
lg g&bl E(%l k26¢l —0 <p<h
pap"ap 1= 0% = K00 =0 P < p <o
with
2 2
T2 = _j2 |1 — “p 1— “p 2.2
: (w—k Ve — le)Q] / { (w—=Fk V. = lw,)? = (Wf —w;)? (2.25)

14



As the boundary conditions for 6¢', it remains finite at p = 0, but vanishes on the wall

p = b. At the plasma boundary p = ps, 6¢' should be continuous. Then the solution is

§¢h = AJ(Tp), 0<p<p

[i(k.p) Ki(k.b) — Ki(k.p)i(k.b)]
[Il(kzpb)[{l(kzb) — ]X’g(k‘zpb)]l(k‘zb)},

(2.26)
66y = AD(Tpy)

Here, A is a constant, J; the Bessel function of the first kind of order [, [; and K; are
the modified Bessel functions of the first and the second kind of order [. Multiplying the
eigenvalue equation (2.22) by p and integrating across the surface of the plasma column

from p = pp— to p = pp+, we have the equation

J ., w; 9
T Y ST
' |:ap " 0= ’ (w - kz‘/z - Zwr)2 - (U)+ — W, )2 ap ! p=pb
(= + 2w,) w?
(w—=kV, —lw,) (w—FkV, —lw,)? — (wf —w;)?

= Z[5¢l]p=pb (2'27)

Substitution of eq.(2.26) into eq.(2.27) gives the dispersion relation for the electrostatic

oscillations in the plasma described in Fig.2.5.

« Ji(Tpy)
1 Tpy
g (w—kV, —lw,)? — (Wt —w:)? J(T py)
_ (_Qc ‘I’ 2wr) w?y
N Z(w —kV, —lw) (w—kV, —lw)? — (wf —w;)? (2.28)
with
g = 1 ]l(kzpb)[{l(kzb) — I(l(kzpb)]l(kzb) (2 29)
kzpb ]ll(kzpb)[(l(kzb) — I(ll(kz/)b)]l(kzb) '
When diocotron oscillations (k, = 0) are considered, eq.(2.28) can be simplified.
Z(Pb/b)m +1 ] wp
(po/0)* =1 (w—lwp)? = (wf —wr)?
2(—0e + 2w,
iy p(= 0 + 2) (230



p Ning

Figure 2.6: | = 1,2 and 3 diocotron frequencies normalized by Q. are plotted against density

with py/b = 0.5.
This dispersion relation can be easily solved for the eigen frequency w which is represented
by

w = lw, + (%Q _ wr) n {(%9 - wf>2 + %wg [1 _ (%’)%] }1/2 . (2.31)
The high and low frequency solutions correspond to electron cyclotron oscillations and
diocotron oscillations of mode [, respectively. The diocotron frequencies w/Q, for [ = 1,2
and 3 with p,/b = 0.5 are plotted against density n/npg in Fig.2.6. When the plasma
density is low (w, < §.), which is satisfied in the experiments described later, a series of

diocotron frequencies becomes linear function of the density.

w=wpll—1+ (%)21]. (2.32)

Here, wp = wZ/QQC is referred to diocotron frequency.
Shown in Fig.2.7 are the schematic drawings of the diocotron oscillations of the
nonneutral plasma surrounded by the conducting wall.
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Figure 2.7: Schematic drawings of lower modes diocotron oscillations of the nonneutral

plasma column surrounded by the conducting wall.
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2.2.2 Spheroidal nonneutral plasma

The dispersion relation for electrostatic oscillations in the cold spheroidal nonneu-
tral plasma can be also derived [50, 51]. It is assumed without the loss of generality that
the perturbed potential ¢ has an azimuthal and time dependence of exp i(mf — wt) in the

frame rotating with the plasma. Then 1 satisfies the following Poisson’s equation.

€ —i62 0
Ve Vp=0, with e=| ¢, ¢ 0 (2.33)
0 0 €3

Here, ¢; = 1 —w,?/(w? —Q,%), €2 = Qw2 /w(w? —Q,%), 3 = 1 —w,?/w? and Q, = Q. — 2w,
Therefore, eq.(2.33) becomes simple Laplace’s equation V) = 0 outside the plasma
whereas inside the plasma it becomes {€;(0?/0x? + 0?/0y?) + €30%/02*}3p" = 0. These
equations seem unseparable since the equations have the cylindrical symmetry and " has
the spheroidal symmetry. However, it is separable in the spheroidal coordinates (£1,&2, ¢)

which are determined by
v o= [ =) &))" cost
y = (& —d)(1 = &) sing (2.34)

< = 5152

for the outside of the plasma, where d* = z# — rZ, and the definitions of z, and r, are

the same as before. To make the operator of eq.(2.33) Laplacian inside the plasma, the
spheroidal coordinate (&, &, d) should be used by replacing z — z = z(ey/e3)'/?, & — &,
& — &, and d? — d* = 22(e1/es) — r2. Then the solution ¢, which satisfies the condition

that ¢ vanishes at infinity and remains finite at the origin is given by

W= AQY(&/d) P (&) exp' T
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W' = BP(G/d)P (&) exp T (2.35)

P and Q7" are associated Legendre functions of the first and second kinds. Furthermore,
¥ must satisfy ¥ = ¥°|s and n - ¢- Vip' = n - Vi°|g at the plasma boundary, which leads

to the equations below

BF" = AQ}"

B[(b/d)ez P[™ + ma’e; P = A(b/d)Q}". (2.36)

The presence of the nontrivial solution results in the dispersion relation

2 Pp (k) ky Pl (k1) Q7 (k2)
& 1\~ 2 77 (R &y (R
€3 + ma <a2——> €g — ——————————~"= — (), 2.37
’ a) Pk Y ks PP (k)Qp (ko) (237)
Here, k; = a(a® — 63/61)_1/2 and ky = a(a® — 1)_1/2. The modes of the electrostatic

oscillations in the spheroidal nonneutral plasma are expressed with integers (I,m). The
mode (/,0) is an axially symmetric electron plasma oscillation which will be treated in the

next section and chapter 5.

The mode (I,1) denotes a diocotron oscillation which corresponds to the mode [

diocotron oscillation in the cylindrical plasma column. In fact, eq.(2.37) reduces to

W= {0, + /02 + 42[1 - QY/I1Qla(a? — 1)1/2]71} /2, (2.38)

and eq.(2.35) becomes ¥ oc p' exp[i(10 — wt)] for the mode (I,1). As ¥* does not depend on
z, it is easily understood that the mode (/,[) corresponds to diocotron oscillations of the
spheroidal plasma. Since eq.(2.37) is the dispersion relation in the frame rotating with the
plasma, the diocotron frequency in the laboratory frame is wi,, = w, — w.
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2.3 Linear electron plasma oscillations

2.3.1 Infinitely long nonneutral plasma column

When the nonneutral plasma column without the cylindrical boundary is con-
sidered, the continuity equation (2.12), the force balance equation (2.13), eq.(2.9) and
Poisson’s equation (2.14) lead to the Bohm-Gross dispersion relation w? = w2(1 4 3k2A}).
However, this is not suitable to explain the dispersion relation of electron plasma waves
in the plasma surrounded by the cylindrical conducting wall. Although temperature is
ignored, the Trivelpiece-Gould dispersion is more suitable from this point of view. In this
model it is assumed that the plasma column with constant density n fills the cylindrical
conducting wall of the radius b. The dispersion relation becomes J;(7') = 0, since g; — 0
in eq.(2.28). Introducing py, as the m’th zero of J; and the effective perpendicular wave

number k; = p;,,,/b, the dispersion relation can be rewritten as

2 2 2 2
_ kL “p _k “ —0. (2.39)
B (0= Ve —lop)? — (2 — 202) k2 (w — Ve — lw, )2

This equation is easily solved for w with [ =0 and V, = 0.

K2 Awl(9? - ZwZ)] 1/2} 10

1
L L e R = =
W= 5l wp){ [ Bk 02—

This is the Trivelpiece-Gould dispersion relation for the cold plasma column filling the
cylindrical boundary. Unfortunately, the exact dispersion relation for electron plasma
waves in the nonneutral electron plasma column, which has the gap between the plasma
and the boundary, has not been obtained theoretically. There is not the exact dispersion

relation for the axially confined plasma column either. The eigenvalue equation

10 0
;E(TﬁLa—f) - k‘26||¢ =0 (241)
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Figure 2.8: The difference of the dispersion relations for electron plasma waves with and

without the boundary.

for axially symmetric electrostatic waves with boundary condition gives the dispersion
relation. It was confirmed that linear dispersion relations observed experimentally agreed
with numerical calculations. Taking into account that the axial extent of the plasma is
finite, the actual dispersion relation becomes discrete. Bohm-Gross and Trivelpiece-Gould

dispersion relations are plotted for the same plasma density in Fig.2.8.

2.3.2 Spheroidal nonneutral plasma

The axially symmetric (m=0in eq.(2.37)) electron plasma oscillations in a spheroidal
nonneutral plasma in the limit of the strong magnetic field w, < . is represented by the
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Figure 2.9: w, has two solutions Wi in the dispersion relation.

dispersion relation

by P(k1)Qi(ks)
kv P (k1)Qi(k2)

€3

=0 (2.42)

with ¢, — 1. F; and ); are the first and the second kind of Legendre function of order /.

When [ = 1, it reduces w; = \/46V/m(2L2 + 0?) with eq. (2.8). This means that [ = 1
electron plasma oscillation is regarded as the harmonic oscillation in the ¢**. When [ = 2,

eq. (2.42) has two solutions wy +. These are plotted against o in Fig.2.9.

2.4 Nonlinear electron plasma oscillations

As mentioned in the abstract, nonlinear electron plasma waves are mainly inves-
tigated in the neutral plasma. For examples, parametric coupling between electron-plasma
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and ion-acoustic oscillations [52], excitation of lower hybrid oscillations at upper hybrid
resonance by microwaves [53], nonlinear decay instability and parametric amplification of
cyclotron-harmonic plasma waves [54], spatial collapse of beam-driven plasma waves [55],
sideband instability in a large amplitude electron plasma wave [56], nonlinear frequency
shift of an electron plasma wave [57], etc [58, 59, 60]. However, nonlinear electron plasma
waves in a nonneutral plasma column also has an interesting feature which will be described

in a later chapter. Here, some related theoretical topics are summarized briefly.

The ratio of the energy density W of electrostatic oscillations to the plasma particle
energy density nkgT is used to classify the nonlinear processes in the plasma [61]. It is
assumed that 1/nAp®> < W/nkgT < 1. Furthermore, the critical energy density W, is
introduced. W. corresponds to the wave energy density with which the nonlinear frequency
broadening is equal to the frequency difference of interacting waves. When W < W, the
nonlinear wave-wave interaction results in the decay instability. In this process, interacting
waves satisfy wp = wp wpr and k = k' £ k. Here, wy, is the angular rotation frequency of
the wave which has the wave number k. Although there are other nonlinear processes such
as the nonlinear Landau damping and the modulational instability, we focus our attention
on the decay instability. According to the theoretical treatment for an unbounded neutral
plasma, three wave processes w;, — wyr + wyr leads to the parallelogram on w — & plane as
shown in Fig.2.10. A remarkable feature in this phenomenon is that it has a certain power
threshold for initial pump waves. By using the damping rate I'y, and I'yr of the waves, it
is shown that the threshold for this process is proportional to 4wywyn 'y 'pr [62, 63]. The
process in which a Langmuir wave decays into two Langmuir waves are forbidden in the
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Figure 2.10: A typical decay instability in which an electromagnetic wave decays into an

electron plasma wave and an ion acoustic wave.

unbounded plasma. Because the energy conservation law

Wi = Wt + wpn (243)

is not satisfied, that is, it is impossible to construct a parallelogram only with the dispersion
curve of Langmuir waves. In fact, the dispersion relation of Langmuir waves are dominated
by the boundary condition and the density distribution. In the plasma surrounded by the
cylindrical boundary, the dispersion of Langmuir waves becomes as shown in Fig.2.8, so

that equation (2.43) might be satisfied.
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Chapter 3

Multi-ring electrode trap

In this chapter, the experimental apparatus and the experimental procedure are
described briefly. As mentioned in the Introduction, the multi-ring electrode trap (MRE
trap) can provide the axially long confinement geometry which leads to confinement of a
spheroidal nonneutral electron plasma with large o and volume. Also the fact that the

MRE trap has many electrodes means that the applied potentioal can be controlled easily.

3.1 Apparatus

To trap nonneutral electron plasmas, the multi-ring electrode trap shown in Fig.3.1
is used. The uniform axial magnetic field B for the radial confinement and the electrostatic
potential ¢“*(r, z) for the axial confinement are supplied. Eleven ring electrodes of 3 ¢cm
inner radius are aligned along the axis with the same pitch of 1.2 cm, and tungsten mesh
electrodes are set on each endside of the trap. These ring electrodes (No.2 ~ 12) are
connected through resisters and also used as probes. Outer most mesh electrodes (No.1,13)
are negatively biased to V to form the electrostatic potential ¢**(r,z) for the trapping.
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Figure 3.1: The multi-ring electrode trap composed of 11 wring electrodes and end

meshes.

Each ring electrode numbered by 4, 7 and 10 is azimuthally divided into four sectors
for observing axially asymmetric motion of the plasma such as diocotron and cyclotron
oscillations. These aligned ring electrodes are regarded as a cylindrical wall against plasma
oscillations when axial wave lengths are larger than the pitch of the ring alignment. A
cathode of a spiral tungsten wire is set outside the confinement region and also a set of
collectors are installed on the other side to measure the total electron number N and the
radial profile of axially line-integrated density. At the present experiment described here,
V = —23 Vand B = 280 or 700 G. The vacuum chamber is evacuated to 8 x 107% Torr.
The total axial length available for plasma confinement is 28 cm. The experimental setup
as a whole is shown in Fig.3.2
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3.2 Procedure

The experimental procedure is as follows. At first, the potential applied to No.1
mesh electrode is slightly raised from V' = —23 V so that electrons can flow into the con-
finement region. After 9ms injection of electrons, the potential of the electrode is returned
to V = —23 V and electrons are confined in the confinement region. Trapped electrons are
cooled through collisions with background neutrals. The plasma temperature becomes less
than 0.1 eV within 300ms after injection. The electron cyclotron heating of about 784 MHz
or rf heating of ~ 14 MHz is used for controlling the plasma temperature up to 1.5 eV.
Then at a constant temperature, the fixed power of RF perturbation is applied to excite
the diocotron wave or axially symmetric Langmuir wave with an appropriate electrode.
Oscillations of a plasma are detected with other ring electrodes after the excitation signal
is ceased. The mode of the excited oscillation is identified with the phase difference of os-
cillation signals from each ring electrode. Immediately after the oscillation measurement,
electrodes No.13 are grounded and the trapped electrons flow into the collectors, with
which N and the radial profile are measured. This procedure is shown in Fig.3.3. When a
plasma temperature is measured, a potential of No.13 electrode is damped to V;. Measure-
ment of leaked electron numbers is repeated at various V. A high energy tail of integrated
distribution function is obtained by plotting electron numbers against V;. In this way, the
plasma temperature is obtained by assuming a Maxwell distribution. An example of data
is shown in Fig.3.4. Also shown in Fig.3.5 is an example of the measured line integrated
radial profile. Fach point is measured with one of the segmented collectors, which has a
diameter of 2r.=3.4mm. Since these profiles are line integrated along z axis, they become
bell-shaped profiles. In Fig.3.5, the solid circles, open circles and solid triangles correspond
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Figure 3.5: The measured radial profile of the spheroidal plasma is used to determine o.
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to (a=11, p,=7.5 mm), («=9.6, p,=7.5 mm) and («=7.8, p,=6.5 mm) with 7"~ 0.1 eV.
Open diamonds correspond to (a=11, p,=7.5 mm) with 7" ~ 1.5 eV. For the plasmas in
this examples, Ap is estimated to be less than 0.11 cm at 7' = 0.1 eV and Ap < 0.33 cm
at 1" = 1.5 eV. Therefore, Ap is smaller than p,. Although Ap may not small enough at
high temperature, it can be seen that there is no noticeable change in the profile. Thus,
the practical way to determine plasma parameters like «, p, and z, is to assume that a

plasma has a constant density n(a) given by eq.(2.8). Then the equation

N, ~ 2rrin(a)ap,(a, N) (3.1)

is solved to obtain a with the measured N and N.. Here, V. is the received charge by the
segmented faraday cup on the axis. Once « is obtained, p, and z, are easily derived and it

is confirmed that p, is consistent with the measured radial profile.
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Chapter 4

Diocotron oscillations

The linear diocotron oscillation in the multi-ring electrode trap is discussed in this
chapter. The theoretical dispersion relations of diocotron oscillations are available only for
a cylindrical plasma surrounded by a conducting wall and for a spheroidal plasma without
a boundary. It is difficult to obtain a dispersion relation for a spheroidal plasma with
a cylindrical boundary. However, it is easy to imagine that the dispersion relation for a
spheroidal plasma with a cylindrical boundary should be approximated by the fomer ones.
When a plasma has a large a, it can be regarded as a cylindrical plasma and it should be
approximated by a spheroidal plasma when it has a small « and its image charge effect is
negligible. This is easily confirmed by experiment. Although it is empirical one, we can
establish a dispersion relation and it can be used as a nondestructive diagnostic of the
plasma under a special condition.
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4.1 Experiments and Discussion

A radius of a plasma p, is almost constant for a different « since the cathode and
the magnetic field are fixed. This means that « of a plasma is easily controlled by changing
N with a fixed p,. For the experiment described in this chapter, no heating is applied to
exclude temperature effect as far as possible. The plasma temperature in this experiment
is less than 0.1 eV. Since a density of a plasma is between 2 ~ 8 x 10°cm™ (4 < a < 11)
in this experiment, Ap is less than 0.16 cm. Examples of measured radial profiles nl(r) are
shown in Fig.3.5. Since there is the extra field caused by the image charges induced on the
wall, the plasma may not be perfectly spheroidal. However, the measured radial profiles
show approximately the characteristic quadratic dependence on r. This means that the
deformation of the plasma is not so large as far as « is less than 11, which is the largest
a in this experiment. When N is increased further to obtain larger «, a plasma expand

radially and o becomes smaller. This is regarded as an effect of image charges.

Diocotron oscillations of the lowest azimuthal mode, i.e. m = 1, were excited by
applying small electrostatic perturbations for 2 ms to one of four sectors of No.7 electrode,
where the perturbation frequency was chosen quite close or equal to the natural mode
frequency f;. After the cease of the excitation, f; was measured from signals on another
sector of No.7 electrode. Detected signals are shown in Fig.4.1. Figure 4.2 shows plots of
Ja for different a’s and their least square fitting curve (f; = 0.19 4 0.66a(4 < o < 12))

given by solid line.

We shall compare the observed frequency f; with the frequencies in the two extreme
cases. If a spheroidal plasma is free from boundary, the mode is expressed as ({ = 1,m = 1)
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and its frequency fzs = wys/27 is determined from the dispersion relation [50]

Wp2 %/(1@)
0. ' Qltk)alaz — 12

Wis = W —

(4.1)

where Q! is the associated Legendre function and ky, = o/(a? — 1)/2.
In the other extreme case such that the plasmoid has a considerably large aspect
ratio and it can be regarded as an infinitely long cylindrical column with the radius p,,

then the m = 1 diocotron frequency denoted by fi. = wg./27 is given by [4]
whe = (%)Qwr (1.2)

for the case w, < Q. which is satisfied in this experiment.

The broken line in Fig.4.2 is a curve of fy, given by eq.(4.1) with the measured
values of o and n(a) ( eq.(2.8) ). In this experimental condition, fys is nearly constant
around 2.6 kHz. Substitution of the experimentally obtained p, and n(«) into eq.(4.2) also
leads to a formal value of fy.: f}. which is a frequency when the column has the radius
of p, and the density of n(a). The curve of f;. is shown by the dotted line in Fig.4.2.
It is clearly seen that f; approaches f}. as « increases, while, as o becomes smaller, fy
parts from f;. and gets close to fy; . Plasmoids with small « were formed at small N since
the potential well of the trap was kept the same through the experiment. Therefore, the
results support that the dispersion relation governing the diocotron oscillations is reduced
to eq.(4.1) at very small N where the image charge effects becomes negligible.

The dispersion relation for m=1 diocotron oscillations may be written in the form

[25]

2

Gla) = {(wa —wr)? = (Qe — 2w, ) (Wi — wy)} - (4.3)

WP(O‘)Q
Here, G/(«) is a geometrical factor depending on the shape of plasmoid. In the case of a
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Figure 4.3: Geometric factors determined by the measurement and by the dispersion rela-

tions for a spheroidal and a cylindrical plasma.

spheroidal plasma being free from boundary, eq.(4.1) is rewritten to the form eq.(4.3) using

_ _ B 1(k2)
G(a) - Gs(a) - 2/{1 Q%(kg)oz(ozz - 1)1/2} ’ (44)

and for an infinitely long column with radius p, located in the boundary wall of inner
radius b

Gla)=Go=1- (). (4.5)
The theoretical form of G/(«) for a spheroidal plasma with boundary has not been found yet.
However, G(a) can be evaluated numerically by substituting the experimentally obtained
fa (the least square fitting) and « in eq.(4.3) . Now, let this empirical factor be G, («).
These three factors are drawn as a function of a in Fig.4.3. In this experiment, p, ~
0.64 cm for 4 < o < 12 and then G. ( dotted line ) is constant as 0.95. The solid line
of G, () approaches the broken line of G(«) as o ( or N ) decreases and, on the other
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hand, G,,(«) comes near to the dotted line with increase in . This behaviour of G,,(«)
means as follows; the dispersion relation of m = 1 mode for a spheroidal plasma set inside
a conducting wall is approximately expressed by eq.(4.2) given for a cylindrical column
when « is large enough, and the relation becomes close to eq.(4.1) when N is so small
that the image charge effect is negligible. Using the empirical G,,(«@) in eq.(4.3) , we can
have the dispersion relation in an intermediate state between these extreme cases, but its

application is not general and limited only to this experimental condition.

4.2 Summary

Diocotron m = 1 frequencies of spheroidal nonneutral electron plasmas, which
were enclosed with a conducting wall and neither approximated as a cylindrical column nor
as a spheroidal plasma with free boundary, were measured for a fairly wide range of « using
the multi-ring electrodes trap. An example of the observed change in geometrical factor
with o was also presented to see a variation of dispersion relation with «. If the relation
of geometrical factor with « is generally found either theoretically or experimentally, the
measurement of diocotron oscillations will offer a means of diagnosis of spheroidal plasmas,

similarly to nondestructive measurements reported so far [17, 44, 45, 33].
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Chapter 5

Electron plasma oscillations

The wall and temperrature effect on electron plasma oscillations of a spheroidal
nonneutral electron plasma in the multi-ring electrode trap is discussed in this chapter.
Although the temperature effect of the [ = 2 mode when 7' < 0.15 eV was measured
and compared with computer simulations, the results showed that the mode frequencies
extrapolated to 1" = 0 deviated from those predicted by the Dubin’s cold theory. It is
thought that image charge effect caused these deviations. If image charge effect is included
in a cold plasma, the temperature dependence of mode frequencies can be estimated by the
change in the dielectric constant of the plasma. The measured mode frequencies of [ = 2

and 3 up to T' ~ 1.5 eV will be compared with values estimated by this method.

5.1 Experiments and Discussion

An example of the measured line integrated radial profile was shown in Fig.3.5.
As described in section 3.2, eq.(3.1) is used to determine « and it is appropriate in the
experimental condition. The rf heating was used to control a plasma temperature.
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The cold theory predicts that the [ = 2 mode has two mode frequencies wy® (
wyT > wy;” ) and that w,™ is comparable to Q.. In the experimental condition, . ~
1.2 x 10" rad/s, w, ~ 1.3 x 10® rad/s and w, ~ 8.0 x 10° rad/s. Then, the mode frequency
in the range w, < wy < €, is wy~ to which eq.(2.42) is applicable. Hereafter only w,™ is
examined so that the superscript (-) is omitted. This mode repeats radial expansion and
contraction accompanied with axial contraction and expansion, keeping a constant density.
Once parameters N, p,, a are determined experimentally, the practical w, is presumed
to lie near the value estimated by eq.(2.42) . The applied rf perturbation frequency is
tuned around it watching the amplitude of excited oscillations. After the perturbation,
the natural [ = 2 mode is again identified by observing phase relations among signals from
different electrodes. The oscillatory signal of [ = 2 mode from E4 is in phase to that from
E10 but out of phase to that from E7, which is shown in Fig.5.1. Also signals from the

four segments of E7 are all in phase because the mode is axisymmetric.

Mode [ = 3 has two branches ws* with the range of w, < w3~ < w, < wst < O,
This experiment investigates wi mode having no radial node. This mode can be excited
by applying rf perturbation to an electrode. Hereafter the superscript(4) is omitted. In
this case, two signals from E5 and E9 become out of phase and no oscillation signal can be

detected by E7 because a node is on the midplane z = 0. The detected signals are shown

in Fig.5.2.

A power spectrum of excited natural modes is shown in Fig.5.3. For demonstration,
rf perturbations of three frequencies fi, f, and f5 (f1 < fo < f3) are simultaneously applied
to different electrodes. Three peaks in Fig.5.3 correspond to the excited modes [ = 1,2
and 3, respectively.
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Figure 5.2: The signals detected by electrodes FE4, E7 and E10 of the axially symmetric
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Figure 5.3: The azxtally symmetric electrostatic modes of | = 1,2and3 are excited simulta-

neously.

5.1.1 Wall effects

The dispersion relation deduced for a cold spheroidal plasma does not include the
effect of the conducting wall which surrounds the plasma. The nonneutral plasma induces
image charges on the wall and they generate an additional electric field which acts on
the plasma. Therefore, observed mode frequencies wi** may deviate from those found by
eq.(2.42) wi*. In order to clarify such a boundary effect, it is important to determine the
amount of the variation of observed frequency wf®* with the increase of N by adjusting «
to be constant. Although the equilibrium condition is slightly modified by the wall effect,
it is considered that the density remains nearly constant, according to eq.(2.8). Since the
plasma expands and approaches the conducting electrodes as N increases, it is expected

that the wall effect causes more frequency shifts for a larger N.
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Figure 5.4: N dependances of the ratio w3’ [wi™ are measured for two cases a. ~ 5 and 7.

Figure 5.4 shows experimentally obtained N dependances of the ratio w3’ /w5 for
two cases as a ~ b and 7, where T ~ 0.03 eV and the applied voltage is V = —23 V. Here,
« is determined by the observed parameters N and N, as mentioned earlier. The ratio
wsb* fwsil becomes larger as N increases, i.e., the frequency shifts upwards with N. Errors
included in the measured values lead to a 0.2% error in w5, resulting in the error bars in
Fig.5.4. The obtained results suggest that the boundary effect gives rise to a frequency shift.
This situation will not alter essentially when the plasma is cold, because the fitting curves
extrapolated to 7' = 0 in Fig.5.5, which shows another shift due to finite temperature, do
not coincide with ws*. Similar frequency shift in the [ = 2 case was observed and compared

with particle simulation results [17]. The present experiment reconfirms this phenomenon

and clarifies results by increasing only the total charge N at constant a.

As the exact dispersion relation, including the wall effect, has not yet been de-
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wall

termined theoretically, the observed frequency shift at 7" < 0.03 eV is denoted by 6w}

through

wgbs = wgal + 5w12”“”. (5.1)

The plasma boundary in this experiment is diffusive due to collisions with residual gases.
The change in the mode frequency caused by such a diffusive boundary is also included
in the term éw. The frequency shift which is additionally caused by raising the plasma

cal

temperature will be considered with the term w§®.

5.1.2 Temperature effects

When the temperature of a spheroidal plasma becomes finite, its peripheral bound-
ary is no longer sharp in density and becomes blunt even in the collisionless case. [49, 64]
Also, its dielectric tensor itself becomes to depend on temperature.

Figure 5.5 shows observed temperature dependances of the mode frequencies of
I =2 and 3 at three different o’s for 7' > 0.15 eV and p, ~ 0.7 cm. The temperature is
increased by applying the rf heating and « is the value for the case without the heating.
Filled circles are measured at o ~ 7.9, N ~ 0.39 x 10% electrons, open triangles at o ~
9.6, N ~ 1.0 x 10® electrons and filled squares at a ~ 11.1, N ~ 1.5 x 10® electrons. The
angular frequencies w3* and w$’* increase with 7', becoming higher for smaller o at a same
T > 0.2 eV. Similar temperature dependence in the case of [ = 2 has been observed [17] and
its approximate estimation was given by making use of one component compressive fluid
model in the limit of high magnetic field. [17, 46] Here, a different method for estimating
mode frequencies will be attempted and the estimated frequency shifts will be compared

with the obtained results.
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Figure 5.5: The observed T dependance of the mode frequencies of | = 2 (a) and 3 (b) at

three different o’s for T'> 0.15 eV and p, ~ 0.7 cm.
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(b) 1=3

(c)

Figure 5.6: The nodes of oscillations inside and outside of the spheroidal nonneutral plasma

for 1 =2 and 3.

45



The observed modes w, and w3 are axisymmetric and they have no node of os-
cillations in the radial direction. Figure 5.6 shows the nodes of these modes inside and
outside of the plasma. The nodal surfaces are not planes but the axial wave length may be
approximated as A,; ~ 4z,/(/ — 1) inside the plasma and also in the neighbouring vacuum
region. Therefore, the corresponding wave number is k,; ~ #(l — 1)/2z,. The bluntness
of the plasma boundary due to finite temperature has been analysed and/or numerically
examined [49, 64] and the results showed that it is a few times the Debye length. Since the
largest Debye length Ap in the experimental conditions is 0.33 cm at 7' = 1.5 eV, the depth
of the bluntness is much shorter than the axial wave lengths of low order modes such as
[ = 2 and 3. The change in the net axial wave length A,; is less than 9% at temperatures
up to 1.5 eV. In this experiment, therefore, A\p < z, and A,; (I = 2,3) is not substan-
tially changed by finite temperature. The temperature dependence of k, is ignored in the
following discussions.

When the plasma temperature is finite, the temperature dependence of the tensor

element €3 in eq.(2.42) should be considered through

2
“p

T 3ki k2
=1-—"1[1 =B -
w

(=5 )b (5.2)

m w2

where kg is Boltzmann constant, k =k, and k is the wave number perpendicular to the
magnetic field. In this experiment, the term of (k1 /Q)? can be neglected to (k,/w)? because

w? < Q2. Therefore, we have

KBT?)_kﬁ

m w?

2
w
63:1—w—zj2(1+

). (5.3)

The temperature dependence of ¢, is also negligible compared with that of e3. This is
because the coefficient of the temperature dependent term becomes O(Q*). Since k, ~
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constant, all components €3 and ¢; are nearly constant inside the plasma. The analytical
connection of the plasma region to the vacuum region becomes possible as in the research
done by Dubin [50]. Thus, the dispersion relation of eq.(2.42) using €3 of eq.(5.3) will
est

provide rough temperature dependence of mode frequencies, and the mode frequencies wj

are expressed by adding the frequency shift due to the wall effects as

witt = wi(n,a, T, k) + dwpl, (5.4)

The values of &a}““a” can be determined to be the difference between wlobs at T =

0.03 eV and wf*. They are dependent on the plasma parameters as noted in the figure
wall

caption of Fig.5.4. Making use of these dw;"*" values, we can plot curves of w** on Fig.5.5.

Although the measured quantities N and N, include errors, these errors negligibly affect

est bs

the calculated values of wi*. Even if errors in T' for wj®® are taken into account, each
curve is in substantial agreement with the corresponding observed plots. This means that
the change of o with constant p, is clearly detected in the multiring electrode trap. Here,
deformation of the plasma shape from a spheroid which may be caused by the wall effects
have not been taken into account because they are thought to be small in actuality, and
the spatial density distribution has been assumed uniform although it is diffusive due to
collisions with the residual gases. However, the agreement of wf** with the observed mode
frequencies suggest that the temperature dependence of a spheroidal plasma is mainly due
to changes of the dielectric tensor and the other factors have little influence. Therefore, it
is possible to use eq.(2.42) with eq.(5.3) and eq.(5.4) to estimate mode frequencies at

lower temperature as long as Ap < z, and A;.
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5.2 Summary

Electrostatic oscillations of spheroidal nonneutral electron plasmas in the multiring
electrodes trap were investigated experimentally, and it was demonstrated that this trap
is valid tool to studies of such an oscillation because the trap can confine a plasma with a
large axial length and pick up the signals of many modes. By increasing NV with a constant
a, the observed upper shift of [ = 2 mode frequency with N at room temperature proved
to be primarily due to the wall effects.

Temperature effects on the changes in mode frequencies of [ = 2 and 3 were
observed in the range 0.03 < T < 1.5 eV for fairly large o up to 11. The frequencies
increased with 1" and the slopes became greater as « decreased in both cases of [ = 2
and 3. It was possible to estimate this increase in the mode frequency with 7' by using
the dispersion relation modified from Dubin’s formula, where the dielectric constant was
replaced with the general dielectric constant including finite temperature. Application of
this method will be limited to low temperature cases so that the Debye length is sufficiently
shorter than the size of the plasma and the dielectric tensor is approximately constant inside
the plasma.

The wall effects on oscillations are characterized by the geometrical shape of the
trap, so it is necessary to elucidate the effects for each type of a trap. In addition, it should
be pointed out that the presence of the wall provides a harmful influence on the equilibrium
in conjunction with plasma confinement. The multiring electrodes trap has the potential to
cancel the influence on the equilibrium by imposing an appropriate potential distribution

on the electrodes.

48



Chapter 6

Decay instability of Langmuir waves

In this chapter, the behaviour of nonlinear electron plasma oscillations (Langmuir
waves) in a confined nonneutral electron plasma column is discussed. As mentioned in
section 2.4, the presence of a boundary totally changes the dispersion relation of Langmuir
waves. It causes novel nonlinear phenomena which are not predicted by the theory of

unbounded neutral plasmas.

6.1 Experiments and Discussions

6.1.1 Linear oscillations

The measured linear dispersion relation of Langmuir waves in a confined nonneutral
electron plasma with a cylindrical boundary is shown in Fig.6.1. In this case, the plasma
density n ~ 6.9 x 10°%m™ (N ~ 4 x 10*) and the plasma temperature 7" ~ 0.2 eV give
the Debye length Ap ~ 0.13cm and the electron plasma frequency w, ~ 148 rad/sec (23.5
MHz). As mentioned in the section 2.4, the Trivelpiece-Gould dispersion relation is suitable
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Figure 6.1: The linear dispersion relation of the axially symmetric electron plasma waves

in the axially confined nonneutral electron plasma column.
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for the present plasma [65]. It is seen that the oscillation frequency w is proportional to
k when k is small as a rough approximation. The solid line in Fig.6.1 is calculated from
the Trivelpiece-Gould dispersion relation with the effective plasma density n.;; ~ 5.0 x
106¢m=3. The deviation from the measurement is mainly due to the density gradient in the
radial direction. Observed Langmuir waves are standing waves and resonance frequencies
become discreate in the long wave length region because the plasma is axially finite [5, 24,
66]. The electrostatic potential of these standing waves has antinodes at the ends of the
plasma and the wave number k; of mode ¢ is approximately given by k, = (/L where L
is the axial length of the plasma [67]. Here, the approximate plasma length of L ~ 24 em
is used. This length is estimated by ¢“*(r, z) and the potential at which confined electrons

begin to flow out from the confinement region.

The mode of oscillations can be identified by measuring the phase differences of
detected signals. In the case of the mode ¢ = 1, oscillations measured at No.2 ~ 6 have the
same phase and those at V0.8 ~ 12 have the antiphase. This means that the mode ¢ =1
has the only node at the center (No.7) electrode. In general, odd number modes have a
node at the center electrode and they are neither excited nor detected with it. On the other
hand, even number modes have an antinode at the center. In the case of { = 2, signals at
No.2 ~ 4 and 10 ~ 12 have the same phase and those at No.5 ~ 9 have antiphase. Thus
it is seen that the mode ¢ = 2 has two nodes. In general, the Langmuir wave of mode ¢

has ¢ nodes inside the plasma.

6.1.2 Nonlinear decay instability

It is seen from observations of linear oscillations that to excite a even mode oscilla-
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waves which causes a sideband instability and makes electron temperature higher.
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tion with the center electrode is the easiest way to excite a single large amplitude Langmuir
wave. A typical behavior of a large amplitude Langmuir wave whose initial power is beyond
the threshold is shown in Fig.6.2 and 6.3. Hereafter, the Langmuir wave of mode ¢ is rep-
resented by L,. In these figures, the large amplitude (-23.6 dBm detected at the electrode
No.4) Ly is excited with the center electrode by applying the RF perturbation of 9.5 MHz
during 4psec. The plasma parameters are the same as those in Fig.6.1. Shown in Fig.6.2
are the time sequence of FFT power spectrums of the signals detected at the electrode
No.4. In Fig.6.3, the power of the main three peaks (¢ = 1,3,4) in Fig.6.2 are plotted as
functions of time. It can be seen from these figures that only the excited L, dominates the
oscillation of the plasma and it decays exponentially until 70usec. Then L, and L3 begin
to grow exponentially from the noise level (< -50 dBm) to the level of initially excited wave
(-35 dBm) until 90usec. On the other hand, L, changes the decay rate suddenly at 90psec
and heavily decays from -30 dBm to -47 dBm until 100usec. As a result, L4 decays and [,
and L3 are created through this process. This is thought to be the decay instability among
Langmuir waves, because no other oscillations such as diocotron oscillations and electron
cyclotron oscillations can be observed during this process and there is no ions which lead

to low frequency ion sound waves.

The decay process described above occurs only when the power of the excited L,
exceeds a certain level. When the initially excited Langmuir wave is below the threshold,
it just decays away exponentially and no other wave is excited. This is because the mode
frequencies of f; = 2.6 MHz, f; = 7.4 MHz and f; = 9.5 MHz do not satisfy the condition
wy = w3 + wy. In the case of figure 6.2, the excited large amplitude Langmuir wave makes
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sidebands of f;,= = f, £ 0.5 MHz to grow and these sidebands satisfy

Wy = s~ +wy and wasT = w3 + wy. (6.1)

In fact, amplitude oscillation of Langmuir waves which causes sideband instability and
makes electron temperature higher is sometimes detected by a ring electrode [57, 59].
The amplitude oscillation detected at No.7 electrode in this example is shown in Fig.6.4.
The frequency of this amplitude oscillation is about 0.5 MHz. Therefore, the sideband
instability associated with the large amplitude Langmuir wave is fundamental to these
decay processes. One remarkable feature in this case is that the excited large amplitude L4
which is above the threshold can not decay into other waves immediately unless they satisfy
the energy conservation relation. Therefore, it can be said that it takes several tens us for
sidebands to grow. In this example, small peaks of { =2 and 5 (f; ~ 4.8 MHz and f5 ~ 11.6
MHz) can be seen during decay processes (75us and 95us). It suggests that the processes
wy = 2wy and 2w, = w3 + w5 occur at the same time. It is also seen that there is a peak
at 19 MHz which is the second harmonic of f;. Unfortunately it was difficult to exclude
this harmonic entirely when a large amplitude f; was excited. It is possible to imagine
a process like 2wy = w3 + wy contribute the process. However, the power of the second
harmonic is not large enough to have a significant effect on the process. In addition to the
energy conservation relation, the decay process must satisfy the momentum conservation
ke = ko 4 kev. In the case of Fig.6.2, ky ~ ks + ky(ky ~ 0.52,k3 ~ 0.39,k; ~ 0.13) is
satisfied. This implies that this process is basically a three wave process, i.e. L4 decays
into L3 and Ly. Theoretically, 5 wave interaction is a higher order process compared with
3 or 4 wave interaction [61]. Thus, it can be ignored.

The process shown in Fig.6.2 is an example and does not mean that L, always
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decays into Ly and L3z. What kind of processes occur in a plasma depends on parameters
such as a plasma density, initial amplitude and so on. If the plasma density is lower than
that in Fig.6.2, it is observed that L, decays into Ly and L;. When the initial amplitude is
larger than that of Fig.6.2, it is observed that L, decays into many other modes Ly ~ Lj
(mainly into Ly ). Furthermore, L4 is not the only mode which causes these decay processes.
Another example of decay process is shown in Fig.6.5 and 6.6. In this case, large amplitude
Lg is excited at first. It is seen that Lg decays exponentially while L, and Lg grows
exponentially until 50usec. Since, fy = 9.3 MHz, foe =128 MHz, fs =16.3 MHz and

ky ~ 0.52, kg ~ 0.78, kg ~ 1.04, this process satisfies

2606 = Wy + wg and 2k6 - k4 + kg. (62)

This is the four wave process. Although clear sidebands are not observed, their frequencies
are shifted from linear ones. Therefore, nonlinear frequency shifts are responsible for this
process. Then a few sidebands such as wi = 7.6 MHz, wf = 11.0£0.3 MHz, wg =
15.8 M Hz appears and L5 begins to grow abruptly. With these sidebands, the following
interactions become possible. wg + ws™ = w3 + wy + wsT, kg + ks ~ ks + k4 + k5 and
we + wg = w3 + 2ws ™, kg + kg ~ k3 + 2k5. These nonlinear interactions cease at 65usec and
all excited Langmuir waves begin to decay. However, these are higher order interactions
and not likely to occur. It is difficult to figure out these processes with the three wave
or four wave interaction. The similar process is also observed when the larger amplitude
L4 is excited. The fact is that sidebands make the frequency differences of neighbouring
modes almost equal and wave energy is transferred to lower modes. Since every oscillation
modes are standing waves in this nonneutral electron plasma column, they have virtually
zero momentum and total momentum is conserved in these processes. A weak turbulent
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Figure 6.6: It can be seen that the excited Lg decays into Ly and Lg at first. Then Ls is

excited abruptly.

state might be produced by the initial large amplitude Langmuir wave. If the dispersioin
relation is regarded as continuous (at large ¢) and the excitation period is optimized, the
Kolmogorov spectrum might be obtained at large k. Since the present apparatus is not

suitable for the measurement of short wave length, this problem is treated in the future.

As already mentioned, these decay processes have thresholds for the power of the
initially excited wave. It is found that the threshold depends on the plasma temperature.
Shown in Fig.6.7 is the case in which L, is initially excited. The abscissa is T in eV and
the ordinate is the power of the initially excited Langmuir wave. Open circles mean that
an initially excited L, does not decay into other waves and filled circles mean that L,
decays into other waves. The obtained results show that the threshold becomes lower as
the plasma temperature becomes higher. The temperature dependence of the threshold
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fits the exponential function exp(—aT") with o ~ 4 represented by the dotted line. When
T becomes higher, w, and I'; become larger. Thus the obtained result is contrary to the
theory that threshold is proportional to 4wpwpn g lgn. 1t is thought that the proportional
coefficient in this system depends on temperature or that the broadening of frequency spec-
tra due to temperature causes this temperature dependence. However, the clear evidence

for such a spectrum broadening was not found in the present observation.

6.2 Summary

The three wave and four wave decay instability of Langmuir waves were experi-
mentally observed in nonneutral electron plasmas on the condition that the plasma had a
finite axial extent with a cylindrical boundary. One remarkable feature is that the three
wave process of Langmuir waves is possible in the plasma, which is forbidden in the un-
bounded neutral plasma. This is mainly due to the difference of dispersion relations. The
energy conservation relation for a decay instability was satisfied by the presence of side-
bands or nonlinear frequency shifts of mode frequencies. The absence of ion sound waves
makes the measurement of the processes clear; a Langmuir wave can not decay into an ion
sound wave and a Langmuir wave. It was also observed that the threshold power of the
pump wave for the instability decreased exponentially as the plasma temperature became
higher. Similar results should also be observed in a positron plasma and an ion nonneutral

plasma.
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Chapter 7

Conclusion

The main topic of this Doctor thesis are the linear and nonlinear electrostatic
oscillations in the nonneutral electron plasma confined in the multi-ring electrodes (MRE)

trap.

The dispersion relation for the fundamental diocotron oscillation of the spheroidal
nonneutral electron plasma in the MRE trap was determined experimentally. The dis-
persion relation approaches asymptotically to the Dubin dispersion relation as the total
electron number N or the total charge decreases (with small «), while it approches to
the dispersion relation deduced for an infinitely long cylindrical plasma column when N
becomes larger (with large ). Therefore, the intermediate relation between the dispersion
relation for the cylindrical plasma column and the Dubin dispersion relation was revealed
out by the experiment. The empirically obtained dispersioin relation in this experiment
can be used for the diagnosis of the plasma under the special condition. This is quite useful

for antimatter plasmas in which destructive measurement is not favorable.

The wall and temperature effects on the electron plasma oscillations of the spheroidal
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nonneutral electron plasma in the MRE trap were also studied. The frequency shifts caused
by the wall effect were observed for the plasmas composed of 107 ~ 108 electrons at room
temperature. The temperature effect on mode frequencies was also measured up to 1.2 eV
for both [ = 2 and 3 modes. On the other hand, these frequencies are estimated by in-
cluding the lowest order temperature effect of the plasma dielectric tensor in the dispersion
relation and adding the frequency shifts measured at room temperature. The calculated
results fit well with measured frequencies. This means that this simple calculational proce-
dure is useful for evaluating the frequency shifts as far as Debye length is small compared
with a plasma scale. These experiments made it clear that the conducting wall surrounding
a spheroidal nonneutral plasma affects the characteristics of electrostatic oscillations when

the total particle number is large.

The experiment with nonlinear Langmuir waves in the cylindrical nonneutral plasma
was performed. It was found for the first time that a large amplitude Langmuir wave in a
nonneutral electron plasma column decays into other modes of Langmuir waves when its
amplitude exceeds a threshold. This nonlinear interaction is caused by formation of side-
bands and nonlinear frequency shifts. There is a threshold for this nonlinear process and
it becomes lower as the plasma temperature becomes higher. However, this temperature
dependence is contrary to the theory for decay instabilities. Although three wave process
among Langmuir waves is prohibited in the unbounded neutral plasma, this experiment
proved that three wave interaction exists in the cylindrical nonneutral plasma of a finite

length.

It should be noted here that the obtained results in this thesis have generality, i.e,
they are applicable to every nonneutral plasma such as ion nonneutral plasmas, positron
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plasmas, and so on. When a spheroidal nonneutral plasma which has a large number of
particles is confined in a trap, the wall effect and temperature effect should be considered
to evaluate a frequency of its electrostatic oscillations. When a nonlinear Langmuir wave
is excited in a cylindrical or a spheroidal nonneutral plasma, it decays into other modes of
Langmuir waves. This transition should be paid attention when we use the nondestructive
measurement with electrostatic frequencies.

The Nobel prize for Wolfgang Paul and Hans G. Dehmelt in 1989 represents the
Penning trap and Paul trap are the powerful tools for trapping fundamental charged par-
ticles in a vacuum. The long confinement time of the trap makes the precise spectroscopy
of the trapped particles possible. Also the confinement of antiparticles (e*, p) became pos-
sible, that led to the measurement of CPT invariance with the higher precision. However,
to make it progress further, i.e, to make a large number of p — He, p — p and anti-hydrogen
particles for spectroscopy, it is desirable to confine much more e and p at higher density
so that they have larger cross sections. More efforts should be made to produce higher
density nonneutral plasmas. Strongly coupled ion plasmas and dusty plasmas are studied
with kinds of Penning traps, too. Since these traps are such useful tools, it is important to
understand their properties much more. Further study in this field will open the way to the
novel research with a large number of low energy antiparticles. I hope the works reported

in this thesis can contribute in some degree to realize some features of these traps.
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Appendix A

The etch rate acceleration by the
ponderomotive force with the high

intensity short pulse laser

All the results described in this chapter were obtained during my stay in the

Department of Physics, University of Toronto as an exchange student.

The recent development of lasers with chirped pulse amplification (CPA) technique
has extended its field of research drastically [68]. The high intensity ultrafast laser pulse
created with CPA system has been widely used to study laser-plasma interactions for
coherent X-ray generation, higher harmonic generation, inertial confinement fusion, etc
[69]. However, the maximum intensity available with present laser systems is limited by the
damage threshold of transparent materials. Since fused silica (S70,) is important optical
components, its damage threshold has been studied [70, 71, 72]. Also, the controlled
etching of materials like S7 and S0, has been an important issues for it has potential
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applications for industries. Nevertheless, the etch rate of 5105 are investigated only with
low fluences near the damage threshold until now. Since how an ultrafast laser pulse
creates a plasma inside a material, how the laser produced plasma evolves, and how the
laser pulse interact with the plasma are all important to be understood, the ionization
process of Si0, interacting with ultrafast laser pulses was studied by some researchers. The
velocity of the ionization wave was explained by standard electron thermal conduction at
low intensity (< 10'5W/em?) [73, 74] and by radiative thermal conduction at high intensity
(~ 10"W/em?) [75]. Tt is inferred that there is a transition of heat transport mechanisms
in the range of the laser intensity between 10™ to 10'W/em?. These situations motivated

us to investigate the etch rate of S©0, with a high intensity short pulse laser.

A.1 The experimental setup

The CPA laser system used in this experiment [76] has a feedbackcontrolled ac-
tive/passive modelocked Nd:glass oscillator which can produce high-contrast picosecond
pulses of microjoule energy at 1.054 ym wave length. These pulses are temporally stretched
to 300 ps with a diffraction grating dispersive line. A selected pulse is optically amplified
and finally recompressed by a grating pair compressor which is complementary to the
stretcher. Changing the distance between the compressor gratings, various pulse durations
(1.2 ~ 32 ps) can be obtained with the maximum energy ~ 800 mJ. A 300 ps pulse is also
available by bypassing these compressor gratings. In the experiment described here, the
energy of the laser ranges from 0.02 ~ 400 mJ. The energy of the final output laser pulse
is measured with a photo diode which was calibrated with an energy meter (morectron) in
advance. In the last stage, the amplified pulse with 25mm diameter is focused with the lens
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Figure A.1: The schematic drawing of the CPA laser system.

(f = 17 cm) attached to the vacuum chamber. The maximum energy corresponds to the
maximum intensity of about 107"W/em? with the focal spot size of about 300 um? in the
case of 1.2 ps pulse. The focused spot sizes of the laser for each pulse duration were imaged
and calibrated with a x10 microscope objective and a CCD camera. The polarization of
the final output can be easily changed between s- and p-polarization by placing a 1/2 plate.
The schematic drawing of the system is shown in Fig.A.1.

5104 targets (1 x 1 inch) with thickness ~ 200 pm (Corning 9695) were used in
a series of experiments. The target is shot in the vacuum of ~ 1 x 107% torr with an
incident angle of ~ 15° or ~ 35° and moved for each shot so that a focused laser pulse can
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interact with a clean surface of a target. Since the fluence of the laser in this experiment
are basically above the damage threshold of S0, for each pulse duration, a depth of an
etched hole can be measured with the stylus profiler (tencor alpha-step 200) whose vertical
resolution is about 10 nm in our case.

The spectrum of the specularly reflected laser light at the incident angle of 35° is
also measured with the spectrometer (American Holographic) whose resolution is 0.1nm in
wave length. For this measurement, a pair of lenses (f = 14 c¢m) are set up to collect the

reflected light effectively and to make it focus on the slit of the spectrometer.

A.2 Experiments and Discussions

As mentioned early in this chapter, the velocity of the ionization wave in S0,
could be well explained by standard electron thermal conduction at low intensity regime
< 5 x 10"W/em?. This was experimentally confirmed with the pump-probe scheme. It
was also found that the velocity of the ionization wave is consistent with radiative thermal

2. In this case, the pump-probe scheme in a

conduction at a high intensity of 10" W /cm
slightly different way was used for the experiment. Thus, there should be a transition from
electron thermal transport to radiative thermal transport as the intensity of short pulse
increases from 10™ to 10'"W/cm?.

Although measuring the depths of the etched holes gives only indirect information
of the position and velocity of the ionization front, the obtained results for 1ps pulse shows
the abrupt increase in the etch rate at high intensity. In Fig.A.2(a), solid circles mean the
etched holes were made by 1ps pulse without the dye cell pulse cleaner and open circles

mean the clean 1ps pulse were used. Although the clean pulse tends to have smaller etch
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rate, it also shows the acceleration of the etch rate comparable to the dirty pulse. Even
if the prepulse or pedestal of the 1ps pulse may enhance the acceleration of the etch rate,
they are not the main reasons for the accelerated etching. The result shown in Fig.A.2(a)
is explained using one dimensional thermal conduction inside a material, which is governed

by the following equation

3 i or. 0 T 8Te} (A1)

2" G = e [’“ ) 5a
with Spitzer-Harm conductivity xsy = 4kp(ksT.)>?/ml?*(Z + 1)e*lnA for the electron
thermal conduction [77]. Here, Z is the charge of the ion and [nA is the Coulomb logarithm.

In this case, the position of the ionization front is given by

8
+SH = 2/9F5/9t2/9. A9
(Sml/z(Z + 1)64712/21?1/\) abs (A.2)

F,;5 is the absorbed laser fluence. It is clear that the etch rates at low fluence < 10'5W/em?

5/9 " Therefore, it reproduces the fact that the electron

are proportional to ~ (F — 2)
thermal conduction is the heat transport mechanism at a low intensity. However, the etch
rate increases suddenly at 10"W/em? and deviates from the fitting curve. At this higher

intensity, radiative thermal conductivity #,,y = 166T>Ag/3 can be used for estimating the

position of the heat front with eq.(A.1), which is expressed by

320
kS 7

2" = 0.76( 9 x 1087 T, (A.3)

Here, o is the Stefan-Boltzman constant. The etch rates can be fitted by the function
~ (F — 1,;)°" with I, ~ 10" W/em™2.

The measured Doppler shift of the specularly reflected laser light clearly suggests
that the ponderomotive force [78] causes the accelerated etching as shown in Fig.A.2 (b).
When the intensity is less than ~ 10'"1W/em ™% and the pressure of the plasma expansion
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dominates that of the laser electric field, the wave length of the reflected light shows the
blue shift. The shift of the wave length becomes larger as the intensity becomes higher.
This means the critical density surface moves out from the target and the velocity of the
surface increases as the intensity increases. The expansion velocity v is easily estimated by
the simple relation AX/A = —2(v/c)cosf with the incident angle §. When the intensity is
larger than ~ 10""W/cm ™2, the ponderomotive force dominates the plasma pressure and
the shift becomes smaller as the intensity increases. This is clearly seen in Fig.A.2 (b).
It means that the expansion of the critical surface is suppressed by the ponderomotive
force and the high temperature plasma stays longer on the surface of the target during the
pulse duration providing the heat which is necessary for the onset of the radiative thermal
conduction. A similar accelerated etching is observed for various pulse duration (3, 9, 30ps)

with different threshold intensities.

However, a distinctive result is obtained for 300ps pulse as shown in Fig.A.3 (a)
and (b). Although the etch rate shows a slight increase at 5x 10*W/em™2 with the red shift
of the reflected laser light, the etch rate basically follows the electron thermal conduction
for the entire range of the intensity. At low intensity, the cold temperature (~ a few tens
electron volts) of the plasma eliminate the red shift caused by the Brillouin scattering [79]
(The Brillouin scattering here means the process in which the incident laser light decays
into the ion acoustic wave and the reflected light. When the plasma temperature is low,
the low frequency of the ion acoustic wave leads to the small frequency shift of the reflected
light). This explains the fact that there is no clear shift of the wave length at low intensity.
At high intensity, the critical surface is pushed into the target by the ponderomotive force,
which makes the plasma temperature higher, and the Brillouin scattering dominates the

70



interaction between the laser pulse and the expanding plasma [80], which results in the red
shift of the reflected light. The fact that the etch rate at high intensity for 300 ps obeys
electron thermal conduction law may be explained as follows. The scale length and density
profile of the freely expanding plasma are given by L, = ¢t and n = ngexp(—x/c,t) [69]
respectively with ¢, = \/m the ion sound velocity and ng the density at the distance
x = 0. Since 300 ps pulse has 300 times longer leading edge compared with 1 ps pulse, the
preformed underdense plasma has 300 times longer scale length if the plasma temperature
is the same for both 300 and 1 ps pulse. Although assuming the same temperature is
inadequate, it is plausible to assume 10 ~ 30 times longer L, for 300 ps pulse. There is
a huge difference in the amount of underdense plasmas which absorb the energy of the
incoming laser when the peak of the laser pulse come into the target surface. Thus, the
much longer scale length of the plasma prevents the effective heat deposition into the target

and the onset of the radiative thermal conduction.

The condition that the ponderomotive force equals to the thermal energy of the

electrons is given by [78]

m < i, > [2kpT, = 3.2 x 107 Ly Ao kT, ~ 1 (A.A4)

with v, = el//mw. Thus, the electron temperature at the onset of the radiative thermal
conduction can be estimated for each pulse duration as shown in Fig.A.4. Unfortunately
no measurement was done to confirm the electron plasma temperature. However, obtained
values are proper ones for this type of plasma. The empirical fitting I;;( x10™W/em?) ~
437’7)_1‘44(]33) is obtained for the threshold intensity of the accelerated etching from Fig.A 4.
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Figure A.3: The etch rate of Si0y at various fluences for 300ps laser pulse. (b) The wave

length shift of the specularly reflected laser light.
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Figure A.4: The threshold intensity for the accelerated etching depends on the laser pulse

duration. The plasma temperature at the threshold is inferred by simple estimation.

A.3 Summary

The interaction of an ultrafast high intensity laser with a solid surface of fused
silica (5703) was investigated. Measuring depth of holes etched by a laser pulse which
has a broad range of intensity (10" ~ 3 x 10'°WW/em?), a transition of thermal conduction
mechanisms were clearly observed. For 1ps pulse, the etch rate follows the power law ~ F°/?
in the low intensity range < 10"W/cm?, which is characteristic to the electron thermal
conduction. However, the deviation from the power law with much higher etch rates
indicates that the radiative thermal conduction dominates in the high intensity range >
10'5W/em?. The similar acceleration of the etching was confirmed for other pulse duration
(3,9, 30ps). By measuring the spectrum of the reflected laser light, it was found that the
ponderomotive force plays an important role for the etch rate acceleration. In the case of
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300ps pulse, however, this effect is suppressed by the longer scale length of the plasma.

The etch rate is basically determined by the electron thermal conduction.
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