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Abstract

We shall give characterizations #8ff-harmonica-Bloch functions in terms of
the spherical integral and the mean oscillation with respect to the invariant measure
involving a certain weight. We also give characterizationgwéfharmonic BMO
functions.
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1 Introduction

The characterizations of several spaces of holomorphic functions on the unit oall
C™ were given by many authors. Choa and Choe [1] and @4i7] gave characteri-
zations of BMOA in terms of Carleson measures. In [14], Stoll characterizegtie
Hardy space by

/B(l — [P P EVF(2)PAA(z) < oo, 11

whereV and \ are the invariant gradient and invariant measureBorespectively.
Ouyang, Yang and Zhao [11] and Nowak [10] also characterized the Bergman space
and the Bloch space by several finite integrals similar with (1.1) involving the Green
function. The hyperbolic Hardy space was characterized by Kwon [9].

The characterization of th&1-harmonica-Bloch space in this paper was motivated
by the following result due to Pavlavi[12]: Let0 < p < oo anda > 0. An M-
harmonic functionf on B satisfies the condition

(/S W(r()lpda(o)”p =0((1=7r*)"%) asr—1, (1.2)



if and only if

</S |f(7’C)pdo(C))1/p =0((1—-r%)"%) asr— 1. (1.3)

Since thea-Bloch space consists of functions with the strong property rather than
(1.2), it does not admit to characterize this space by (1.3). However, we shall give
a characterization of this space by using thth spherical integral of compositions
with Mobius transformations. We shall also characterizeMéarmonic BMO space
by using thep-th spherical integral of compositions withdWius transformations and
by the BMO property with respect to “the invariant measure”’BinAs corollaries we
shall obtain analogous characterizations with (1.1) for the littloch space and the
BMO space.

To state our results we prepare notations. We denotB Hye unit ball ofC"™ and
by S its boundary. The normalized Lebesgue measurB and the normalized surface
measure orf are denoted by ando respectively. LetiA(z) = (1 — |z>)"Ttdy(z).
Note that this measure is invariant under the graug(B) of holomorphic automor-
phisms ofB. Fora € B, lety, denote the Nbius transformation oB, i.e.,

_a—Pyz—/1—a|*(z — Py2)
#alz) = 1—{(z,a) ’

whereP,z = 2% 4 if ¢ # 0, andPyz = 0, which satisfies, (0) = a andp, ! = ¢,.

|al
We write E(a,r) = {z € B : |pa(2)| <}

The Laplace-Beltrami operatdx on B associated with the Bergman metric is de-
fined by

~ 4 n 52
n —+ 1( ‘Z| )ijzl(éld le])aZjaEi7

which satisfies thal\(f o ¢) = (Af) o4 for f € C*(B) andy € Aut(B). A real

valuedC? function f on B satisfyingA f = 0 is said to beM-harmonic onB. LetV
be the invariant gradient oR. Then for a real valued'! function f on B, we have

= 4 S of , .0
1 = A 1aF) 3 6oy =) 5 ()59

and|V(f o v))| = [(Vf) o 9| for v € Aut(B).
Let o € R. The M-harmonica-Bloch space, writteft{5,,, is defined as the class
of all M-harmonic functiong on B that satisfy

I fll7s., = sup(1 — |2]2)¥|VF(2)] < oc.
z€B

The M-harmonica-Bloch spaces are characterized as follows.

Theorem 1. The following statements hold.



() If a < —1, thenHB,, consists only of constant functions.

(i) Letl <p < oo andset

1 —al?)® if —n < ap <0,
1—l|a?)*(1 —r)= @ "P ifap < —n,

(
(

(1~ la2)e (log
(1 —|a]?)*(1 —r)® if &> 0.

pa@(aﬂﬂ =

~1

1 .
) if ap=—nora=0,
—r

Then the following properties for afv-harmonic functionf on B are equiva-

lent:
(@) f € HBa,;
1/p
(b) Hop(f) = sup papla,r (/ |fowa(r() — (a)|pd0(§)> < 00;
O<T<

1 1/p
Iop(f) = sup papla,r)| —vV—=— z)—f(a)|PdA(z
) sl = 210, b (56 Lo, FO-T@F ) <

(d) There exist®) < ro < 1 such that

1/p
Ja,p(f)—sup(l—lalz)“</E ( )If(Z)—f(a)”dA(Z)> < oo,

a€EB

Moreover, the quantitie$f || 5., Ha,p(f), Lap(f) andJ, ,(f) are comparable
to each other with a constant depending only on the dimensipha andr.

Corollary 1. Letl < p < oo and f be anM-harmonic function orB. If there exist
0 <rg<landp < < oo suchthat

/ [f(2) = f(@)[PdA(z) = O((1 — |a]*)?) as]a|] — 1,
E(a,ro)

thenf is constant.

Forre Band0 <r < 1, let

1 T (1 = 2\n—1
g(r,z) = n / (1—1%) dt,
|

2n {2n—1

and letg(z) = ¢(1, z) for simplicity. The Green function foh is defined byG (z, w) =
9(pw(2)) for z,w € B.

As another corollary we obtain the analogous characterization with (1.1) for little
«a-Bloch spaces.

Corollary 2. Let—1 < a < 0,1 < p < —n/a and f be anM-harmonic function on
B. Then the following are equivalent:



(i) feHBa;
(i) sup(1— \GIQ)""’/ G(z,a)|Vf(2)]’|f(2) = f(a)[P2dA(z) < oc.
a€B B

Let BMOH,, denote the class of alM-harmonic functionsf on B that are repre-
sented as the Poisson-Sidgtegral of functions of bounded mean oscillation $n
That is, each elemerftin BMOH,, is the form

-l .
= —_— d
SR Arerrs GRS
with a corresponding functiogi* integrable onS satisfying

1/p

17 ||BMO,,<J>—O?EQ(U(Q(M) Lo Qi pao(@) <o
S

wheref;, = m fQ(E,T) f*do, the average of* overQ(¢,r). HereQ(¢,r) =
{CeS:|1-(¢&)| < r}, the non-isotropic ball of centérand radius-.

The interesting points of the following characterizatioBdfiOH,, are that a solu-
tion of Dirichlet problem forA with boundary data of bounded mean osillation also has
bounded mean oscillation with respect to the invariant measmre, and that con-
versely M-harmonic functions o of bounded mean oscillation with respecttoan
be represented as the Poisson-®zatggral of a function of bounded mean oscillation

ons.

Theorem 2. Let1 < p < oo and f be anM-harmonic function onB. Then the
followings are equivalent:

() f < BMOH,;
1/p
(i) If]ls, = sup ( / |fwa<r<>—f<a>|pdo<<>) < ool
nrst\Js

1

1/p
s /. (a)r)lf(Z)f(a)I”dA(Z)) < oo,

(i) [flssio,00 = sup (
o<r<i
a€EB

Moreover, the quantitied f*||smo, (o), |1 flls, and | f|Bmo,(r) are comparable to
each other with a constant depending only on the dimensiand p.

Remarkl. If f is the Poisson-Szégintegral of an integrable function ofi, then
Theorem 1 holds fot < p < co. Furthermore, iff is the Poisson-Szégntegral and
holomorphic onB, then Theorem 1 holds f@r < p < co. We note, in this case, that
the equivalence of (i) and (ii) was proved by Ouyang, Yang and Zhao [11].

Corollary 3. Letl < p < oo and f be anM-harmonic function onB. Then the
following are equivalent:



() f € BMOH,;

(i) sup /B G(z.0)|[V1(2)PIf(2) — F@)P"2dA(z) < ox.

acB

Throughout the paper we use the symbbto denote absolute positive constant
whose value is unimportant and may change from line to line. If we emphasize the
dependencies, b, - - -, then we writeC'(a, b, - - - ).

2 Proofs of Theorem 1 and Corollaries 1 and 2

For a real valued’! function f on B, let

XJ) = 56 -5 56 (=L )

Then we observe that fare B,

22
MM‘?W, 2.1)

and that if f is M-harmonic onB, thenX; f is so. See [15, Proposition 10.4 and
Lemma 10.5].

V. 2 4 - 2
V1)l Sn—“;IXjf(Z)I <

Proof of Theorem 1i). Leta < —1 andf € HB,. Then, foreacy = 1,--- n, it
follows from (2.1) that

Vi ae
X3 ()] £ O < Clf e (1 )~ — 0 asls] — 1.
Therefore the maximum principle yields th&t f = 0 for everyj = 1,--- ,n, and so
|V f| = 0by (2.1). Hencef is constant. O

To prove Theorem 1 (ii), we recall the following lemmas.

Lemma 1. ([15, Lemma 10.8]Let f be a real valued”* function onB anda € B.
Then for eaclf € S and0 < r < 1,

"V (2alt0))]

LT dt.

[fo@a(r() = fla)l < Vn+1 ;

Lemma 2. ([15, Proposition 8.18] Let 5 € R. Then there is a positive constafit
depending only on the dimensiarsuch that forz € B,

C(1—|2)% i8>0,

1 U
/s|1—<z,c>|"+5d“(<) S if 3=0,
¢ it 3 < 0.



Lemma 3. ([15, Proposition 10.1 and 10.2] et0 < p < oo and f be anM-harmonic
function onB. Then fora € Band0 <r < 1,

F@P < Clnp.r) /E L Epae),

and

V(@) < C(n,p,r) / FPAAG).

E(a,r)
Proof of Theorem 1ii). (a) = (b). Supposef € HB,. Leta € B, ( € S and
0 <r < 1. Since ) )
(L —a*)(A —|2[*)

1= (za)p

1—lpa(2)]* =
we have by Lemma 1

Ifopa(r¢) — fla)| < C det
0 1-—t

T 2\—«
< Clfns, [ 2D

|1 — (ta,¢)|*™
= C”fH'HB 1 - ‘a| / t2 a+1 ——marr U

Hence it follows from Minkowski’s integral inequality that

([1rowntro - f(a)”do(é)) "
-] B8 Y )

1/p
< Ol e, (1~ 1)~ [ (1= )7 (/ 1= 0 OPrao()) .
2.2)

Using Lemma 2, we now calculate the integral
T 1/p
Fla,r):= / (1—¢t%)~t (/ 11— <m,<)|2fwda(<)> dt.
0 S
If —n < ap < —n/2, then
1 1
F(a,r) < C/ (1 — 37011 — ¢2)(n+2en)/pgp — C/ (1 — 3 1H/Pdt < 0.
0 0

If ap=—n/2, then




If —n/2 < ap, then
C if —n/2 < ap <0,
F(a,r)gC’/ (11—t} lat < C’log1 if =0,
0 —-Tr
Cl—r)" ifa>0.

Hence it follows from (2.2) that for € B and0 < r < 1,

</s |f o wa(r¢) — f(a)pdg(c))l/”

Ol s (1~ laf?)= fn<ap<0,
1 .
< S Cllfllns. (1= lal*)~ logl_ if =0,

Cllfllms, (1 = lal?)~(1 —r)~* ifa>0.

If ap = —n, then

F(a,r) < C/ (1—t*)~tdt < Clog
0

)

so that fora € B and0 < r < 1,

1/p
([11o0ulr0) - 1(@Pdo©)) " < Cllus. (1~ aP) o 1
S

If ap < —n, then
Fla,r) < C / (1— 2)o=n/pgy < C(1 — p)otnlp,
0

so that fora € B and0 < r < 1,

1/p
([ 7o eutrd) = f@pao(©) " < Clllas, (1 la?) 21 = s,

Hence, taking the supremum ok r < 1 anda € B, we obtain (b).
(b) = (c). Leta € B and0 < r < 1. Sincep, p(a,r) is positive and non-
increasing for, we have by integration in polar coordinates

t2n71

/E(a’r) 1£(2) = f(a)|PdA(z) = 2n/0 T ay /s If 0 @a(tC) — F(a)|Pdo(C)dt

< Hap(f) pap(a,r) " A(E(a, 1)),

and (c) follows.
(c)= (d). Leta € Band0 < ry < 1. Then we have

1/p
<1a|2>a</E ( )If(Z)f(a)I”dA(Z)) < C(n,py o) Lap (),

7



and (d) follows.
(d) = (a). Leta € B. Then it follows from Lemma 3 withr := r¢ and f :=

f — f(a) that
Vf(@) < C(n,p, ’"0)/ [f(2) = F(@)[PdN(2) < CJap(fP(L — |a)~oP.

E(a,ro)
Therefore we havg € HB,. Thus Theorem 1 is established. O
Proof of Corollary 1. It follows form Lemma 3 that
Frapr<c | o ) = F@PNG) < 00 = o),
E(a,ro

whereC is a constant depending only @n p andry. Hence we have € HB_3/,,,
and sof is constant by Theorem 1 (i). O

Corollary 2 follows from the following.

Lemma 4. ([9, Lemma 3.5]If 1 < p < oo and f is M-harmonic onB, then for
0<r<l,

/Slf(ré)\”dtf(é)*If(O)Ip:p(pfl)/ 9(r,2)|VF)PIf ()P 2dA(z). (2.3)

B

Lettingr — 1— in (2.3), it follows from the monotone convergence that
Jim [ 15GOPdo (=17 O)F = plp—1) /B gV )PP 2AAE). (24)

Proof of Corollary 2. Multiplying the both sides of (2.4) witlf := f o ¢, — f(a)
by (1 — |a|?)*? and taking the supremum overe B, we obtain Corollary 2 from
Theorem 1 and the invariance dlunderAut(B). O

3 Proofs of Theorem 2 and Corollary 3
For simplicity we denote the Poisson-Sidgrnel of B by

_ A
1= (= 0P

We recall the change of variables formula [13, Remark in page 44]

P(z,¢)

/ P20 f(C)do() = / F(-(0)do(©). (3.1)
S S

To prove Theorem 2 we need the following.

Lemma 5. Let1 < p < oo and f be the Poisson-Szégntegral of an integrable
function f* on S. Then the following are equivalent:



() f € BMOH,;

@ [l = sup ( / Pla, Q)If*(¢ <a>|pdo—<<>)1/p < .

Moreover, the quantitiegf*||smo, () and || f|lc are comparable with a constant de-
pending only on the dimensienand p.

Proof. This lemma will be proved in the same way as [2, pp. 224—-225].

(i) = (ii). Splitting S into Q(a/|al, 1 — |a[) andQ(a/|al, 2 (1 — |al)) \ Q(a/lal,
2k=1(1—1a|)) and using the estimat@(a, -) < C2~2¥"(1—|a|)~™ on each partitions,
we obtain

[ P@olr© - fpistc) < € [ Pl () - e Pdo(@

< Cllf* no, (o
(i) = (i). Letting z¢ ,» = (1—r/2)&, we haveP (z¢ ., -) > Cr=" > Co(Q(&,7)) !
onQ(&, ). This yields immediately| f*||symo, (o) < C(n,p)|| fllc- O

Proof of Theorem 2(ii) = (i). Let us assume that (ii) holds. Taking= 0 we see
that f € HP, thep-th Hardy space, so thgtcan be represented as the Poisson-8zeg
integral of a functionf* € L?(o). Thus it suffices to show th3tf* | gm0, ) < oo.
Leta € B be fixed. By (3.1) we have

[ P@alr O - r@Paec) = [ 1570 ¢u(0) = F@lPao(c)
s
We observe that for a.€.€ S,
Jim fo@a(pC) — fla) = f" 0 @alC) = fla).
Indeed, this follows from Kdanyi's result [8] since the inequality
(—loP)i-p) _ 1
|1 - <p<7a’>”1 - <a7<>| 11— |a|

implies that{x,(p¢) : 0 < p < 1} is contained in the K@nyi approach region at
©a(¢). Since the functiorf | f o ¢, (r¢) — f(a)|Pdo(¢) is non-decreasing far < r <
1, we obtain| f|lc < || f||s,. Hencef € BMOH, by Lemma 5.

(iii) = (ii). Let a € B be fixed. By the monotonicity of the spherical integral, it is
enough to show that

11— (@a(pC), ea(O))] = 1= Jea(pC)?)

[ 170 0ur) = F@Pdr(O) < Cll 0,0y Tork<r <1,

where(' is a constant independent@findr. Since

_ (1+,r.)2n
B+ —r)n’

9



it follows from integration in polar coordinates that fbf2 < r < 1,

/S 1 o 0alrC) — F(a)Pdo(C)

S / / |f 0 @a(tC) — f(a)|Pdo(¢)dt

+r

2 (1 _ n+1 t2n 1
S 1—7r ,,,271, 1 / t2 n+1 / |fo§0a tC (a)|pd0'(<)dt
< 1 1 (1 _ r2)n+1

nl—r r2n-l /B(o,l;““) |f o pa(2) — f(a)[PdA(z)

R 1 A — Fa) Pl
= T T N ) o s, )~ S@P O

2

4n

< IR .
< 1 B0, 00

Hence we obtaiti f||s, < (2*"/n)| fllzmo,(x)- Thus (ii) follows.
(i) = (iii). We assume that

2) = /S Pz O f* (O)do(C)

with || f*||smo, (o) < 0. Leta € Band0 < r < 1 be fixed. We put = a/|a|
andp = 1 — |a|. SinceP(z,-)do is a probability measure afi, we have by Jensen’s
inequality, Fubini’s theorem and the mean value property

/E(a,r) £ (2) = fla)[PdA(z /E(a )
/E(m / Pz OIF*(€) = f(a)lPdo(¢)dA(z)

-[([ L PEOD: ))If*(é“)—f(a)lpda(o

— A(E(a,r)) /S Pla, OIf*(C) — f(a)|Pdo(0).

Hence it follows from Lemma 5 thaltf [ smo, (n) < C(n,p) || f*[IBMO, (o), @Nd SO (i)
follows. Thus Theorem 2 is proved. O

pd)\(z)

| PEOU (O - alde()

Proof of Corollary 3. Leta € B and apply (2.4) tof := f o ¢, — f(a). Then, by the
change of variable, we have

sup. /S 1 o 0alrC) — F(a)Pdo(C)
5= 1) [ GEalVIEPIE) - f@P )
B

Hence, taking the supremum oveE B, we obtain Corollary 3. O

10



4 Further remark

In [3], Hahn and Youssfi considered the-harmonic Besov spac&1 B,, that is, the
space of allM-harmonic functions o3 that satisfy

| fllmB, = (/B |@f(z)|pd>\(z)>l/p < 00.

Here, lettingV = (0/0z1,- -+ ,0/0z,) the complex gradient vector field anz, ¢)
the Bergman metric o, i.e,

(A= P 1 QPN
ﬁ(z’o‘( 0 [P)2 ) ’

we denote

Sy o [VIECH VTG
Q=) = |(|:p1 B(z:¢) .

They proved the inclusion relationshipt B, C H?, thep-th Hardy space fo2n <
p < co. See [3, Theorem 4.5]. As a consequence of Theorem 2 and our previous paper
[5], we obtain the following inclusion relationship.

Theorem 3. Let2n < p < co. Then
MB, S BMOH,,

Proof. Leta € B and0 < r < 1. Applying [3, (4.13) in p. 75] tof := f o ., We
have

[ 1 0 0a(r0) = £@PAo(c) < Clnp) [ QLS 000) (NN,
S B

Since@(f 0wq)(z) = (@f)(%(z)) ([3, Proposition 4.1]), it follows thal f||s, <

C| fllms,, and soM B, ¢ BMOH,,. Note from [4] that functions ifM B,, have a
tangential limit at almost every point &. In [5], the author constructed a bounded
M-harmonic function onB which fails to have a tangential limit at every boundary
point of S. Therefore the inclusion is strict. O
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