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1 Introduction

We work in the Euclidean spa@®®, wheren > 3. By Gq, we denote the Green func-
tion for a domairt?, that is, for eachy € 2, the functionGq(-, y) is the distributional
solution to—Af = §, in Q and f = 0 at all Dirichlet regular boundary points 6f

(in addition, it is bounded near irregular points). We wiiggz) for the distance from

x € Q to the Euclidean boundai? of €. By the symbolA4, we denote an absolute
positive constant whose value is unimportant and may change from line to line. If nec-
essary, we usd, A1, --- to specify them. For two positive functiorns and f», we

write f; = f, if there exists a constant > 1 such thatd='f; < fo < Af;. The
constant4 will be called the constant of comparison.

The first purpose of the present paper is to show 3G inequalities in a cone by de-
riving a sharp global estimate for the Green function. Bogdan [7] and Hansen [11]
proved in a bounded Lipschitz domafa that if we fix zo € Q and letg(z) =
min{l, Go(z,zo)}, then

9(x)g(y)
g(b)?

Golz,y) ~ |z —y[>™™ forz,y € Qandb € By(z,y), (1.1)



whereBy(z, y) is, roughly speaking, the set of poiritén Q2 that lie between: andy

and satisfyoq (b) = max{dq(z),da(y), |z — y|}. See [7, p.328] or Section 3 for the
precise definition. Estimates of such a kind will play important roles when we treat the
Green function. In fact, the following 3G inequality can be shown from (1.1). There
exists a constar such that

Ga(z,y)Galy, z)

Goley — SAlz—y "y =2 foreyzeQ (12)

Before the estimate (1.1), the 3G inequality was proved by Cranston, Fabes and Zhao
[8] to study the conditional gauge theory for the Sidinger operator. Recently,
Aikawa and Lundh [4] extended (1.2) to a bounded uniformly John domain, and gave
some counterexample to (1.2). See also [12]. The constants appearing in (1.1) and
(1.2) depend on the diameter of a domain, and it seems that there is no results such
as (1.1) and (1.2) in “unbounded” domains with no explicit expressions of the Green
functions. We shall find and establish a sharp global estimate for the Green function
and 3G inequalities in particular unbounded domains, cones. We note that unbounded
domains do not have (1.1) in general. For instance, considering the half Qpace
{(z1,+ ,2p) : ¥, > 0} andxg = (0,---,0,1), we see thatiq(rzg, zo) ~ ri="
andg(rzo)g(zo)g(b,) " 2|rze — x0|?> ™" ~ g(razo)r?~" ~ r3727 for r > 0 sufficiently

large andh,. € B(rzo,xo). Therefore it is interesting to find a sharp global estimate for
the Green function in a cone. Indeed, we will establish (1.1) using the Martin kernel
at infinity instead ofy. Our results will be stated in Section 3. As one of applications

of a 3G inequality, we shall give equivalent conditions for measurts satisfy the
generalized Cranston-McConnell inequality:

[ Galep)uly)dr(y) < Au(z)

for all z € Q and all positive superharmonic functionsn Q2. We will see that if this
inequality holds only for the Martin kernel at infinity, then one holds for all positive
superharmonic functions.

The second purpose is to show the existence of infinitely many continuous solutions
to the following nonlinear Sckidinger problem in a con@:

Au — pu = f(-,u) in (in the sense of distributions),
u>0 inQ, (1.3)
u=0 ond, ,

wherep and f are respectively a signed measurefvand a Borel measurable func-
tion in Q x (0, +o00) with suitable properties stated in Section 5, @€ is the set of

all Dirichlet regular points ob2. Zhang and Zhao [18] studied (1.3) with= 0 in

a bounded Lipschitz domain containing the origin and showed, using the 3G inequal-
ity (1.2), the existence of singular solutions with the growth?>—" near the origin.

The existence of bounded solutions in an unbounded domain with a compact Lipschitz
boundary was investigated in [19]. Bacharadgli and Zribi [6] studied (1.3) with

1 = 0 in the half space and showed the existence of solutions with the grgwtlear



infinity. Their discussion was based on the explicit expression of the Green function.
Thus our purpose is to extend their result to cones by applying our sharp estimates for
the Green function. In particular, we shall show the existence of solutions with the
same growth as the Martin kernel at infinity. Note that a solution to (1.3) with the same
“decay” at infinity as one to the linear equatidv — pv = 0 was studied in [15].

The following notations will be used in this paper. B(z,r) andS(x,r), we
denote the open ball and the sphere of centand radius-, respectively. When is
the origin, we writeB(r) = B(z,r) andS(r) = S(x,r) for simplicity. A cone we
consider is an unbounded domain of the form

F:{xER”\{O}:QEw},
wherew is some relatively open subset8f1). In particular, we will consider uniform
cones. See Section 2.
The plan of this paper is as follows. In Section 2, we shall collect definitions of

a uniform cone and the Martin kernel, and give elementary and useful properties. We
also state our key tools: the Carleson estimate and the boundary Harnack principle. In
Section 3, we shall establish a sharp global estimate for the Green function in a uniform
cone, and show new and classical 3G inequalities. Also, other inequalities that used in
subsequent sections will be proved. In Section 4, we shall give a characterization of
measures that enjoy the generalized Cranston-McConnell inequality, as an application
of the new 3G inequality. We also introduce a certain class of measures which is bigger
than the classical Kato class, and give some properties. In Section 5, we investigate
(2.3) in a uniform cone.

2 Preliminaries

2.1 Uniform cones

We first state the definition of a uniform cone. A cdnén R" is said to be ainiform
coneif there exists a constant, > 1 such that each pair of poinisandy in ' B(1)
can be connected by a rectifiable cusvin I for which

U(vy) < Aglz —yl,

min{l(v(x, 2)), (v(z,y))} < Agdr(z) forall z € ~, (1)

wherel(~(z, z)) denotes the length of the subaygr, z) of v from z to z, andor(z)
stands for the distance fromto OI". We note that a uniform cone is a uniform domain
in the sense of [10].

Lemma 2.1. If T is a uniform cone, then each pair of pointsand y in T" can be
connected by a rectifiable curwein I' satisfying(2.1) with the same constant,.

Proof. Let z,y € T and letr > max{|z|,|y|}. Thenz/r,y/r € T'N B(1). By
assumption, there is a curyan I" connectinge/r to y/r such that (2.1) holds for/r



andy/r in place ofz andy. Let~, = {rz : z € v}. Then, is a curve irl’ connecting
x to y. It also follows that(v,) = r¢(vy) < Ao|z — y| and that forw € ~,,

min{€(y, (2, w)), ((yr(w, y)) } = roin{€(y(z/r, w/r)), 6y (w/r,y/r))}
< TA()ér‘(’w/T) = Ao(SF(’w).

Thus the lemma is proved. O

2.2 Quasi-hyperbolic metric and Harnack inequality

We state the Harnack inequality involving the quasi-hyperbolic metric in a uniform
cone. The quasi-hyperbolic metric dris defined by

kr(z,y) = igf/ Zjig

where the infimum is taken over all rectifiable curgeim I connectinge to y, andds
stands for the line element on Note from [10] that a uniform cone is characterized
in terms of the quasi-hyperbolic metric:

kr(z,y) < Alog [('gpz;;' + 1) ('?F;;)" + 1)} +A forzyel. (2.2

We also note from [3, Lemma 7.2] thatdfe T, then
kl—‘\{z}(‘r7y) S 37431“(%9) +m for T,y € r \ B(Z7 27151—‘(2))‘

A finite sequence of ball§B(x;,27'dr(x;))}}L, in T is called a Harnack chain of
length M joining = andy if 1 = z, zp = y, andxj11 € B(z;,276r(z;)) for
j=1,---, M — 1. We observe that the shortest length of the Harnack chain joining
andy is comparable tér(x, y) + 1. Therefore there exists a constaht> 1 depending
only onT" such that

>
—~

)
(y)

wheneverh is a positive harmonic function ifi. As a consequence, we can obtain the
following lemma.

exp(—A(kr(z,y) + 1)) <

<exp(A(kr(z,y)+1)) forz,yel, (2.3)

>

Lemma 2.2. LetI" be a uniform cone, and lét be a positive harmonic function in.
If x,y € T satisfy|z — y| < A3 min{dr(z),dr(y)} for someAds > 0, then

h(z) ~ h(y) and Gr(z,y) =~ |z —y[* ",

where the constants of comparisons depend onljoandI".



2.3 Carleson estimate and Boundary Harnack principle

We next state the Carleson estimate and the boundary Harnack principle. We say that
a property holds quasi-everywhere if it holds apart from a polar set. The following
lemma is found in [2, Theorem 1 and Remark 2].

Lemma 2.3. LetT" be a uniform cone. Then there exist positive constangd A; <
1 depending only o’ with the following properties: Lef € OI' and0 < r < 7.
If hy andhy are positive bounded harmonic functionslim B(¢, r) vanishing quasi-
everywhere o' N B(¢, ), then

hl({E) - hl (IE/)

~ forz,a’ e 'NB(E, Ayr),
T~ (@) orz,z’ e 'NB(E, Ayr)

where the constant of comparison depends only'oiMoreover, ifz is an arbitrary
pointinT' N S(&, Ayr) such thatir(z) > Ayr for someAds > 0, then

hi(z) < Ahi(z) forxz e TN B(E, Ayr),
where the constar depends only onl; andT'.

Remark2.4. In arguments below, a constast in Lemma 2.3 will be implicitly taken
as271Aj ' A;. The existence of a pointe T'N S(&, Ayr) with op(2) > 271 Ay  Ayr
can be shown as follows. Let € I'N S(¢,27 A r) andy € T'N S(€,24;,7). By
Lemma 2.1, there exists a curyan I" connectingr to y with the properties in (2.1).
Then a point € v N S(&, A;r) satisfiesir (z) > 271 Ay Ay r.

2.4 Martin kernels

We finally state the definition of the Martin kernels. ebe a unbounded domain in
R™. Recall that7(, is the Green function faf2. We fix zg € 2 (the reference point).
Let{ € 0Q U {0}, and let{y;} be a sequence ift converging taS. Then we see
that some subsequence{d¥ (-, y;)/Ga(zo,y;)}; converges to a positive harmonic
function inQ. All limit functions obtained in this way are callédartin kernels atg.
When we consider a corig the reference point, is taken inl* N .S(1).

Lemma 2.5. If " is a uniform cone, then for eaghe oT" U {0}, there exists a unique
(minimal) Martin kernelKr(-, &) at £. Moreover, there exist a non-negative constant
a and a positive bounded continuous functibonI' N .S(1) such that

Kr(z,0) = |z|>7""%0(z/|z|) and Kr(z,o0) = |z|*0(z/|x|). (2.4)

Proof. The first assertion fo€ € JrI' is found in [2, Theorem 3]. By the Kelvin
transform, we also observe that there is a unique (minimal) Martin kerrel. athe
representation (2.4) can be obtained in a similar way as in [13, p. 472]. O

It is noteworthy that ifl" is a uniform cone, then far > 0,

Gr(z,y) = > "Gr(z/r,y/r) and Kr(z,o00) =7r*Kp(z/r,o00). (2.5)



We also see from (2.2) and (2.3) that there exist positive consthatsd 5 > 1 such
that
6(z) > Adp(z)? forzeT'nS(1). (2.6)

Note that ifC' N S(1) has aC':1-boundary, then we can take= 1.

3 Sharp estimates for the Green function and 3G in-
equalities

Throughout this section, we suppose tliais a uniform cone inR™ with n > 3.
To obtain (1.1) in a bounded Lipschitz domdih Bogdan [7] defined3,(z,y) as
the set of all pointd in 2 such thatB(b, kor) C QN B(x,3r) N B(y,3r) if r :=
max{dq(x),0a(y), |z — y|} < ro, andBy(z,y) = S(zo,r2) if r > rq, Wherexg
andry are some fixed positive constants. We know thgtz, y) plays a good role
essentially wheng, (z) anddg(y) are much smaller thaja: — y|. From this view, we
adopt the following somewhat simpler definition. ket 1. Forz, y € T', we define

B(x,y) = {b € I': max{|z — b|,|b — y|} < k|lz —y| anddr(b) > |$;y| }

Although this definition does not possess the relation betwe@n andmax{dr(z), ér(y)},
we have the following.

Proposition 3.1. Letz,y € I', and let Ay be the constant irf2.1). The following
statements hold.

() If K > 2Ay, thenB(x,y) is non-empty, and(z,y) = B(y, z).
(i) 1fb e B(x,y),thendr(b) > (2k?) L max{dr(x), or(y)} and|b| > (2+2)~! max{|z|, |y|}.
(i) Ifr >0, thenB(rz,ry) ={bel:b/r € B(z,y)}.

Proof. (i) Let z,y € I'. By Lemma 2.1, there exists a curyén I" connectinge to y
such that'(v) < Ag|z — y| andmin{|x — z|,|z — y|} < A¢dr(z) forall z € ~. Letb
be a point iny such thafz — b| = |b — y|. Then

max{|z —b|, |b —y|} < l(y) < Aglz —yl,
or(b) > Ag'tlz — b > (240) |z — yl.

HenceB(z,y) is hon-empty whenevet > 2A4,. The symmetry of3(zx,y) is clear
from the definition.

(i) We first show6p( ) > (262) "t max{dr(z),dr(y)}. By symmetry, it suffices
to provedr(b) > (2k ) 6p(;z:) Suppose to the contrary that therebis B(x,y)
such thatsr (b) < (2x2)~16r(z). Then|z — y| < kér(b) < (26)"Lor(x), and so
|z —b| < K|z —y| <276 (z). Hence

or(b) > op(x) — |z — b| > 27 Lop(x) > (2k2) " Lor(x).



This is a contradiction. We next sha®| > (2x2)~! max{|z|, |y|}. It is enough to
prove|b| > (2x%)~!|z|. Suppose to the contrary that therehis B(z,y) such that
|b] < (26%)7|z|. Thenjz—y| < (2x)~1|z| sincedr (b) < |b|, and sdz—b| < 271|x|.
Hence
bl > |z] — [ —b] > 27 |z| > (2k) 7 |z].

This is a contradiction.

(iii) Since or (rb) = ror(b) and|rz — ry| = r|x — y|, we can obtain (iii) immedi-
ately. O

Our sharp global estimate for the Green functiof'iis as follows.
Theorem 3.2. For z,y € T" andb € B(z,y),

Kr(z,00)Kr(y,0)
Kr(b,00)?

Gr(z,y) ~ |z —y|*7", (3.1)

where the constant of comparison depends only andT".

Proof. We first show (3.1) forr,y € I' N B(1) andb € B(z,y). We may assume by
symmetry thabr(z) < 6r(y). Let Ay = A7 max{5,2r; '}, where0 < 4; < 1and
r1 > 0 are the constants in Lemma 2.3. We consider two cdses:y| < A40r(z)
and|z — y| > A4dr(x).

Case L |z — y| < A4dr(x). Sincelx — b| < klz — y| < x25r(b) by the definition
of B(z,y), it follows from Lemma 2.2 that

KF(b,OO) ~ KF(Q?,OO) ~ Kl"(y,OO) and Gl"(xay) ~ |[‘C - y|27n.

Hence we obtain (3.1) in this case.
Case 2 |z — y| > A4or(x). Note from our choice ofl, that

AT A e —y| < 2A7AT <y
Let¢ € OI be a point such thai-(z) = |« — &|. Then
ly =&l > le—yl— |z =€ > 1= A7 )e —yl > AT AT |z — gl

We takez; € T' N S(E, A e — y|) with 6p(xy) ~ |z — y| (cf. Remark 2.4). By
Lemma 2.3, we have
Gr(z,y) _ Gr(z1,y)

Kr(x,00) - Kr(xhoo)' (3.2)

We takey; as follows. Ifor(y) > A;'lz — y|, then we lety; = y. If or(y) <
Atz — y|, then, lettingy € AT be a point such thair(y) = |y — 1|, we take
y1 € TN S(n, A7z — y|) with 0r(y1) ~ |z — y|. Note in the latter case that

1= > |z —yl— |z —a1| —|ly—nl > (1 =34z —y| > AT Az —y).

We have by Lemma 2.3
Gr(z1,y) _ Gr(zi,m)

Kr(y,oo) - KF(yhoo). (33)




This s true for any pairs @f andy; . Since|lz;—y1| ~ |[z—y| < Amin{ér(x1),dr(y1)},
it follows from Case 1 that fob; € B(z1,y1),

Kr(z1,00)Kr(y1,00)

2N
Kr (b, 00)2 |z — vy . (3.4)

Gr(z1,y1) =

Note thatdr (by) > v~ t|oy — y1| ~ |z — y| and

b—bi| < [b—a|+ |z — 1] +|wr —bi| < (5 +247 )|z —yl+ k|21 —y1| = |2 -yl

and sob — b;| < Amin{or(b), dr(b1)}. Therefore Lemma 2.2 yields that
Kr(by,00) =~ Kr(b,0). (3.5

Combining (3.2), (3.3), (3.4) and (3.5), we obtain (3.1) in this case. Thus (3.1) holds
forz,y € ' B(1) andb € B(z,y).

Finally, to establish (3.1) for alt, y € T"andb € B(z,y), we letr > max{|z|, |y|}.
Thenz/r,y/r € T N B(1) andb/r € B(x/r,y/r) by Proposition 3.1. Therefore we
have from the above observation

_ Kr(z/r,00)Kr(y/r,00) |z y 2"
Gr(e/ryyfr) » = S [T -
Hence (3.1) follows from (2.5). Thus the proof is complete. O

In what follows, we take: = 2A, but we continue to use the symbal If  and
y are separated enough, then the Green function is comparable to the product of the
Martin kernels at the origin and at infinity.

Corollary 3.3. For z,y € T with 2|y| < |z|,
Gr(z,y) = |z[*7" 7" Kp(, 00) Kr(y, 00) = Kp(z,0)Kr(y, 00),
where the constant of comparison depends onl¥/.on
Proof. Letz,y € I" satisfy2|y| < |z|, and leth € B(x,y). Then
(26) Mol < 7o~y < or(b) < bl < [b— ]+ [z| < klz —y| + 2| < 3klz],

and sa¥p(b/|b]) = |b|~1r(b) > (6x2)~ 1. Itfollows from Lemma 2.5 thakr (b, co) ~
|b|* = |x|*. Hence we obtain from Theorem 3.2 and (2.4) that

Gr(z,y) ~ Kr(z,00)Kr(y, 00)|z[* " ** = Kp(z,0)Kr(y, o).
Thus the corollary follows. O

As an important application of Theorem 3.2, we obtain the following 3G inequality.

Theorem 3.4(New 3G inequality) There exists a constant depending only o’
such that forr,y, z € T,

Gp(x7y)Gr(y,z) KF(y7OO)
Gr(z,2) =4 (Kp(x,oo)

&mw+MW“MmM0.(%>

Kr(z,00)



Proof. We may assume by (2.5) and symmetry thag, = € T' N B(1) and|z — y| <
|y — z|. Itis enough to show that

GF(yvz) Kr(y,OO)
Gr(z,2) = RKr(z,00)

3.7)

Letb, . € B(z, z) andb, . € B(y, z). Sincelz — z| < |z —y| + |y — 2| < 2Jy — 2|, it
follows from Theorem 3.2 that

Gr(y, 2) Kr(by,.,00)\* Kp(y, o)
Gr(z,2) = (Kﬂbymoo)) Kr(,00)

We claim that
KF(bw,zv OO)

Kr(by -, o0) < A (3.8)

To show this, we letds = 3x A" andr = As max{|y — z|,dr(2)}. We consider two
casesr > r; andr < r;. Here0 < A; < 1 andr; > 0 are the constants in Lemma
2.3.

Case 1: r > ry. Sincelb, .| < 1+ 2k, it follows from Lemma 2.5 that
Kr(bs,.,00) < A. Also, we haveKr(b, .,00) > A > 0 because obr (b, .) >
(2x2)~1 A5 'r; by Proposition 3.1. Hence (3.8) holds in this case.

Case 2. r < ry. Let(¢ € OI' be a point such thair(z) = |z — ¢|. Then
bre —C| <oz —2|+12—C| < (2r+1)A5 r < Ayr. We takew € TN S(¢, Arr)
with ér(w) = r. Note that

<lw—= ¢+ 1¢ =2+ 12 = by < (A1 + (1 +r) A7 )r
< Amin{or(w), or(by,-)},

[w — by,.

sincedr(b,..) > (2x2)~* A5 'r by Proposition 3.1. Hence Lemmas 2.3 and 2.2 yield
that
Kl"(bx,za OO) < AKF(wa OO) ~ Kf(by,zv OO)

Hence (3.8) holds. Thus the theorem is proved. O

Theorem 3.5. There exists a constant depending only o such that forz,y € T,

GF(Iv y)KF(y’ OO)

< Alx —yl> ™. )
Kr(z,0) < Alz —y| (3.9)

Proof. We may assume by (2.5) thaty € I' N B(1). Letb € B(x,y). Then we have
by Theorem 3.2

Gp(x,y)Kr(y,oo) ~ Kr(y,OO) ? . 2—n
Kr(z,00) N(Kp(b,oo)) o —yl7

To obtain (3.9), it suffices to show(y, o0)/Kr(b,00) < A. This can be proved in
a similar way as in the proof of Theorem 3.4. For the reader’s convenience, we give
a proof. Letr = Asmax{|z — y|,or(y)}, whereAs = 3xA;'. If r > 7, then



or(b) > (2x%)~ 1Az 'r, by Proposition 3.1, and therefofér (y, 0o) < AKT (b, 0).
Suppose in the sequel thak r;. Let¢ € 9T be a point such tha-(b) = |b—¢|, and
takew € I'N S(&, Ayr) with o (w) ~ r. Then

ly =&l < ly =0l +6r(b) <2ly — bl +r(y) < (26 +1)A5'r < Ayr
and

b—w| <[b=¢&[+[€ —w| <[b—yl+dr(y) +|§ - wl
< ((k+ 1A+ Ay)r < Amin{or(b), op(w)}.

Hence we obtain from Lemmas 2.3 and 2.2
Kr(y,o0) < AKr(w,0) = Kr(b, 00).
Thus the theorem is proved. O
Remark3.6. From the proof of Theorem 3.5, it follows in general that
max{Kr(z,0), Kpr(y,00)} < AKp(b,00) forz,y € I'andb € B(z,y). (3.10)

The following 3G inequality has been studied widely in many bounded domains,
but it may be unknown in cones.

Corollary 3.7 (Classical 3G inequality) There exists a constant depending only on
I" such that forz,y,z € T,

Gp(x,y)GF(y7Z) 2— 2—
< _ n _ ny.
Grwa) S Allz —y[" " +ly —27")

Proof. This follows immediately from Theorems 3.4 and 3.5. O

The following two lemmas will be used in the subsequent sections, so we prove
them here.

Lemma 3.8. There exists a constant depending only o such that forz,y € T,
KF(:E> OO)KF(y7 OO) S A max{\x|, |y|}n_2+2aGF(x7 y)7
wherea > 0 is the constant in Lemma 2.5.

Proof. Letb € B(z,y) andR = max{|z|, |y|}. Since|b| < |b—z|+|z| < klx —y| +
|z| < (2k + 1)R, we have by Lemma 2.5

‘x _ y|27n o AR27n

Kr(b,c0)? = R2>

Thus the lemma follows from Theorem 3.2. O

Lemma 3.9. Letr > 0 and R > 0. Then there exists a constattdepending only on
r, R andT such that forz,y € I' N B(R) with |z —y| > 7,

Gr(z,y) < AKr(z,00)Kr(y, 00).

10



Proof. Let o« > 0 andf be as in Lemma 2.5, and It > 1 be as in (2.6). Then we
have

Kr(b,00) = [b|*0(b/|b]) > A|b|*~Pér(b)?  forb € B(x,y). (3.11)

Since|b| < (25 + 1)R anddr(b) > Yz — y| > k~1r, it follows from Theorem 3.2
that
GF(‘T7 y) < A(’I’, R7 F)Kr(xa OO)KF(yv OO),

whereA(r, R,T') is a positive constant depending onlyxgr? andT'. Thus the lemma
is proved. O

Remark3.10 If a > 1 = 3, thenKr (b, 00) > Amax{|z|,|yl, |z — y|}*~ |z — y| by
(3.11) and Proposition 3.1, and therefore we have

Kr(z,00)Kr(y, o0)

GF(I,ZJ) S A
max{|z|, [y, |z -y} D]z —y|

forz,y €T,

where the constant depends only off. If & < 1 = 3, then|b| < (2k+1) max{|z|, |y|},
and soKr(b, o) > Amax{|z|, |y|}* |z — y|. Therefore we have

KF("I’" OO)KF(y7 OO)
max{|z], [y}~ D]z —y|

Gr(z,y) <A forz,y €T,

where the constamt depends only offr.

4 Generalized Cranston-McConnell inequality and ex-
tended Kato class

In [9], Cranston and McConnell proved that{¥ is a domain inR? with the finite
volume vol[£?), then there exists a constatitsuch that

sup 75 /. Gateu)hts)dy < Avol(@),

where the supremum is taken overalE Q2 and all positive harmonic functiorisin

Q. In general, if2 has infinite volume, then the left hand side of the above inequality
diverges. We consider the following generalization. In the rest of this section, we
suppose thar is a uniform cone iIR™ with n > 3. By U, ("), we denote the class

of all positive superharmonic functionsih We say that a measureonI" enjoys the
generalized Cranston-McConnell inequality if

1
Wlos == sup  —— / Gr(z, yu()dv(y) < +oo.  (4.1)
€D, uely (T) u(z) Jr

See [1, 5, 14, 16, 17] for investigations and related topics to the generalized Cranston-
McConnell inequality, and see reference therein. We give necessary and sufficient
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conditions forv to satisfy the generalized Cranston-McConnell inequality. To simplify
the notation, we write

GF(xv y)KF(y’ OO)

Hr(z,y) = Kr(z,00)

forx,y €T,

and set
Il = sup / Hr (2, y)dv(y).
zel JT

The following theorem means thatenjoys the generalized Cranston-McConnell in-
equality if (4.1) holds only fou = Kr(+, 00).

Theorem 4.1. Letv be a measure oh. The following statements are equivalent:
() Ivllem < +oc;

(i) |Ivllg < 4oc;

o Gr(z,y)Gr(y, 2)
@ vl = s / Gl vty < +oc.

Moreover,||v|lcam = ||v]lg = ||v]le, where the constants of comparisons depend only
onl.

Proof. If (i) holds, then we obtain (ii) by taking = Kr(-,c0) in (4.1). If (ii) holds,
then we have by Theorem 3.4

/ Gr(z,y)Gr(y, 2)
T GF(I,Z)

du(y) < A / (Hr(2,y) + Hr(, )} dv(y).

Hence (iii) follows. We finally show that (iii) implies (i). By assumption, we have
[ Gre.)Gr(y. 2avly) < [WlaGrla,z) forz €.
T

Let Gru be a Green potential i’ of a measureu. It then follows from Fubini’s
theorem that

| GrlaaGrntiv(y) < vleGra(o)

Since every positive superharmonic function can be approximated by an increasing
sequence of Green potentials, the monotone convergence theorem yields (i). Thus the
theorem is proved. O

The following is an immediate consequence of Theorems 3.5 and 4.1.

Corollary 4.2. If v is a measure ofi' satisfying
sup/ |z — y|>"dv(y) < +oo,
zel JT

thenv enjoys the generalized Cranston-McConnell inequality.
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As another consequence, we obtain the following.
Corollary 4.3. Letr be a measure of such thal|v|| z < 4+o0c. Then for eactR > 0,

/ Kr(y,00)dv(y) < +oo.
I'NnB(R)

Proof. Let R > 1. Then Lemma 3.8 with: = z; and Theorem 4.1 yield that

/ Kr(y, 00)du(y) < A / Gr (o, )dv(y) < Allvonr < +oo,
T'NB(R) r

and thus the corollary follows. O

We now introduce an extended Kato class.

Definition 4.4. We say that a measureonT" belongs to the extended Kato cldSél)
if v fulfills the following properties:

lim (sup/ Hp(amy)du(y)) =0, 4.2)
=0\ zeT JrnB(z,r)

lim sup/ Hr(z,y)dv(y) | =0. 4.3)
R—+00 \ zel JT\B(R)

We also say that a Borel measurable functfan I" belongs to the extended Kato class
K(T) if the measurelv = | f|dy belongs taC(T").

The classical Kato clag§,(T') is the set of all measuresonT satisfying (4.2) and
(4.3) with the Newtonian kernet — y|>~™ instead ofHr(z, y). By Theorem 3.5, we
easily seely(I") c K£(I).

Proposition 4.5. If v is a measure o’ such thaty € K(I), then|jv||g < 4oc.
Moreover, for eactR > 0,

/ Kr(y, 00)?dv(y) < +oo.
I'NB(R)

Proof. By the definition offC(T"), there exist positive numbers and R, such that

sup/ Hr(z,y)dv(y) <1 and sup/ Hr(z,y)dv(y) < 1. (4.4)
z€L JTNB(x,rs) z€l JT\B(Ry)

Sincel' N B(R2) is covered by a finite sequence of balB(z;, )}, with z; €
I' N B(Ry), it follows from Lemma 3.8 and (4.4) that

/ Kr(y,o0)2du(y) < A H (x,y)dv(y) < +ox.
FOB(RQ) j=1 FﬂB(aIJ,TQ)

Therefore we have by Corollary 3.3 and Lemma 3.9

sup/
z€T JTNB(R2)\B(z,r2)

This, together with (4.4), yields thit|| z < +oo. O

Hr (2, y)dv(y) < +oo.
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Lemma 4.6. If v is a measure ol such thatv € K(T'), then for eachy € T,

lim Kr(y,o0)?dv(y) = 0.
r—0 I'NB(zo,r)

Proof. Let0 < r < 1. Then there iz € T" such thatB(zo,r) C B(z,2r). By Lemma
3.8, we have

/ Krp(y,00)*dv(y) < / Kr(y, 00)?dv(y)
I'nB(zo,r) I'nB(z,2r)

< A(z,T) / Hr(z,y)dv(y).

I'nB(z,2r)
Hence the conclusion follows from (4.2). O

Proposition 4.7. If v is a measure ofif such thats € K(I"), then for eachy € T,

lim sup/ Hr(z,y)dv(y) | =0. (4.5)
r—0 \ zer I'NB(zo,r)

Proof. Lete > 0. Sincer € K(I'), there exist positive numberg and R such that

sw [ (gl e and swp [ e pd(y) <=
NB(z,rs) I'\B(R3)

zel’ zel

Letr > 0 andx € I". Then we have by Corollary 3.3 and Lemma 3.9

/ Hr(z, y)dv(y) < 2¢ + / H (z, 5)dv (y)
T'NB(zo,r) I'NB(z0,r)NB(R3)\B(x,r3)

< 2€+A/ Kr(y, 00)?dv(y).
I'NB(zo,r)

Hence (4.5) follows from Lemma 4.6. O

In the sequel, letx > 0 andf be as in Lemma 2.5. We give examples for the
strictness of the inclusiokly (I') ¢ K(T") whendl' N S(1) has aC'':!-boundary. Note
in this case thal(z) ~ dr(z) for z € T’'NS(1) and thatifr > 1, then for§ € TNS(1)
andr > 0,

/ or(y) Tdy = +o0. (4.6)
CNB(&,r)

SinceKo(T') € L (I' N B(2)), we see in each example below thakE L(I') \ Ko(T)
ifl<p<2<uy.

Example 4.8. Suppose that: > 1 andf(z) ~ ér(z), and let
Viy) = (1 + [y))Por(y) "

ThenV € K(T') ifand only if p < 2 < q.
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Proof. Note thatV (y) ~ (1 + |y|)?~4|y[*(®~Y K1 (y, 00)~P. We first show the suf-
ficiency, so we assume that< 2 < ¢. Letr > 0andz € T". If p < 0, then
Hr(z,y)V(y) < Alx — y|*>~". Therefore

/ Hr(z,y)V (y)dy < Ar?,
I'nB(z,r)
and soV satisfies (4.2). We consider the case 0. It follows from Theorem 3.2 and
(3.10) that forb € B(z,y),
Hr(z,y)V (y) < AKr(b,00) |a —y[*~" (1 + [y|)P~ |y~

Sincea > 1, it follows from Proposition 3.1 thakr (b, o) ~ [b|*~16p(b) > Aly|* |-
y|. Therefore we have

/ Hr(z,y)V(y)dy < A/ |z — y|> " "Pdy < Ar?7P,
rnB(z,r) INB(z,r)

HenceV satisfies (4.2). We next show thEt satisfies (4.3). Observe from Remark
3.10 and Lemma 2.5 that

y|>~9
|z —y|™

Hr(z,y)V(y) < A
Let R > 0. Then it follows from the above observation that

sup / He(a, )V ()dy < AP + 1+ I + I + 1)
zel JT\B(R)

3
<A(r*P4+R* 9+ sup |z* ?log—— \x| )
e|>2-1R

where

ly|>~1
\z\<2 1R JT\(B(R)UB(z,r)) 1T — Y[

)

/ ly|?>~4
= sup —
j21>2-1R J{|y|<2-1 |2\ (B(R)UB () |Z — Ul

)

4.7)

/ ly|*~1

= sup —dy,

jo>2-1 R J {2- 12| <|y| <2la P\ (B(R)UB(z,r) 1T = Y
2—q

L= sup / [yl :

o221 R J {2121 <ly |\ (B(R)UB(2,1) 1T = U]

HenceV satisfies (4.3), and thug € K(I"). Conversely, we suppose thidte 1C(T).
Note thatHr(z,y) ~ |z — y[>~" > Adp(x)*> " fory € B(z,2"'ér(x)). Hence we
have

Hr(z,y)V(y) > Adp(2)* " P(1 + |z|)P~7 fory € B(z,2 'or(x)).

15



Letr > 0, and letz € TNS(1) be a point such thdt-(x) < r. SinceB(x, 2 (z)) C
I' N B(z,r), it follows that

/ Hr (e, )V (y)dy > Adp(2)>7.
I'nB(z,r)

Therefore it must be < 2 to satisfy (4.2). LetR > 0. Similarly, if z = pxy with
p > 2R, thenB(z,27r(x)) C '\ B(R), and so

/ Hr(z,y)V (y)dy > Ap® P(1+ p)P~.
I\B(R)

Hence it must bg > 2 to satisfy (4.3). O
Example 4.9. Suppose thal < o < 1 andf(z) ~ dr(z), and let
Vi(y) = (L+ [y~ 4y~ ér(y) 7.
ThenV € K(T') ifand only if p < 2 < q.
Proof. Note thatV (y) ~ (1 + |y|)*?~ 2K (y, c0)"P. We first assume that< 2 < q.
Let0 <r < landz € T. If p <0, thenHr(z,y)V (y) < Alx — y|>~". Therefore
/ Hr(z,y)V (y)dy < Ar?,
'NB(z,r)
and soV satisfies (4.2). We consider the case 0. If y € B(z, ), thenl + |y| ~
1+ |z|, and so
Kr(b,00) ~ [b|*"6p(b) > A(1 + |2))* o —y| forb e B(z,y).

It follows from Theorem 3.2 and (3.10) that
[ HeaV@dy <A@l [ gy <
'NB(z,r) I'nB(z,r)

HenceV satisfies (4.2). We next show tht satisfies (4.3). Observe from Remark
3.10 and Lemma 2.5 that

2a—q
Hr(z,)V(y) < A ]

max{|z|, [y[}2(@= D]z —y|"’

Let R > 0. Then it follows from the above observation that

sup / He(a,y)V(y)dy < A + 1, + T+ I + 1)
zel T'\B(R)

3
<A|rPPH+R¥1 4+ gsup |a:|2*qlogﬂ ,
|z|>2-1R r
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wherely, I3 andl, are as in (4.7), and

ly|>*—9

I = sup dy.

m|z2IR/{y|<21|m|}\<B<R>uB<z,r>> |z[2lem D]z -y

HenceV satisfies (4.3), and thug € K(I"). Conversely, we suppose thidte /C(T").
Observe that

Hr(z,9)V (y) > Adr(2)* " P (L + [2])*P~9|a?U =) fory € B(x, 27 op(x)).
Letr > 0 and letr € I'N.S(1) be a point such tha-(x) < r. ThenB(z, 27 (z)) C
I'n B(x,r), and so

/ Hr(z, y)V (y)dy > Adp ().
I'nB(z,r)

Therefore it must be < 2 to satisfy (4.2). LetR > 0. Similarly, if z = px with
p > 2R, thenB(z,271p(x)) Cc T\ B(R), and so

/ He(e,y)V(y)dy > Ap>°P(1 + p)°r~.
I'\B(R)

Therefore it must beg > 2 to satisfy (4.3). O

5 Nonlinear Schrodinger problem
In this section, we consider the following nonlinear SQtinger problem:

Au — pu = f(-,u) inT (in the sense of distributions),
u>0 inl, (5.1)
u=0 ono,TI,

whered,.I" denotes the set of all Dirichlet regular pointsadf. We assume the follow-
ing condition ony and f. By |u|, we denote the total variational measure of a signed
measureu.

(P1) pis a signed measure dhsuch thaty| € K(T') and|||p|||lz < 271

(P2) fis a Borel measurable functionThx (0, +o0) such thatf(x, -) is continuous
in (0, 4+o00) for eachz € T.

P3) |f(z,t)| < t(x,t) for (z,t) € T x (0,400), wherey is some non-negative
Borel measurable function ifi x (0, +-00) such that for eack € T', ¢(z,-) is
non-decreasing if0, +oo0) andlim;_,o4 ¢ (x,t) = 0.

(P4) ¢(x) = ¥ (z, Kr(z,00)) belongs taC(T").
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Theorem 5.1. LetT" be a uniform cone iR™ with n > 3. Assume that and f
satisfy (P1)—(P4). Then the probleff.1) has infinitely many continuous solutions.
More precisely, there exists a positive constagtsuch that for each\ € (0, \¢], the
problem(5.1) has a continuous solutiom satisfying that

21— 2|l )
3= 2]l

and

Kr(z,00) <wu(z) <

< ———AKp(z,0) forzel, (5.2)
5 )l N

— A\ (5.3)

lim —————
’CLH;O KF(xv OO)

The proof is based on the Schauder’s fixed point argument. In the sequel, we sup-
pose thaf is a uniform cone irR™ with n > 3 and thaty and f satisfy (P1)—(P4).
Let C(T") denote the space of all bounded continuous functiodsendowed with the
uniform norm|| - ||, and let

Co(TU {o0}) = {w e C(TU{oo}) + lim w(x) = o}.
We also write
CiT)={weCl):0<w(x)<1lforzeTl}.

Forw € C(T"), we define

0= [ H gt + g [ Grlen) . w) Ky, <)y

In what follows, we writedv(y) = d|u|(y) + ¢(y)dy to simplify the notation. Note
from (P1) and (P4) that € IC(T").

Lemma 5.2. The class{Fw : w € C1(T')} is equicontinuous ift" U {oo}. Moreover,
{Fw:we Ci(I)} C Cp(I' U {o0}).

Proof. Let zo € T andd > 0. Letxy, 22 € ' N B(zo,27%9). It follows from (P3) and
w < 1 that

|Fw(xzy) — Fw(xs)|

<oswp [ Hr(egdvl)+2sw [ i)
z€l JT\B(6—1) z€l’ JTNB(z0,5)

+/ Gr(z1,y)  Gr(z2,y)
TAB(6~1)\B(z0,0)

Kr(zy,00)  Krp(xg,00)
By (4.3) and Proposition 4.7, the first two quantities of the right hand side are bounded
by e whenevers is sufficiently small. Ifzy € T', thenB(zy,d) C T for sufficiently
small é, and soGr(-,y)/Kr(:, o) is continuous inB(zp,2~ 1) whenevery € T\
B(20,6). If z9 € 9T, thenGr(-,y)/Kr(-,o) can be extended continuously Fon
B(zp,61) whenevery € T'\ B(z,0) andd; € (0,9) is sufficiently small (cf. [2,

Kr(y, 00)dv(y).

18



Theorem 2]). In any cases, it follows from Corollary 4.3 and Lebesgue’s convergence
theorem that, ag; — 22| — 0,

Gr(z1,y)  Gr(za,
Kr(z1,00)  Kr(zo,

/ 0| Kety o)t —o.
(PAB(5~1))\B(20,6) o)

HenceFw is continuous i uniformly for w. We next considety = cc. Let R > 0.
Then

Fu(z)| < / Hr(z, y)dv(y) + sup / Hr (2, y)dv(y).
I'NB(R) zel' JT\B(R)

By (4.3), the second term of the right hand side is bounded WjeneverR is suffi-
ciently large. Note from Corollary 3.3 that

Hr(z,y) < AR* " 2*Kp(y,00)? forz € T'\ B(2R) andy € ' N B(R).

It follows from Proposition 4.5 and Lebesgue’s convergence theorerthdt:)| — 0
uniformly for w € F asz — oo. Thus{Fw : w € Cy(I')} is equicontinuous in
I' U {oo}, and is contained iy (I' U {oco0}). O

Let|||u|l|z < 27t ForA > 0, we define

2(1 = 2|l ) 4
—— A< w(r) L ——

52l =" = 50l
Obviously, W, is a non-empty bounded closed convex sef'ii’ U {cc}). Note that
if A <271, thenW, c C,(T'). We define the operatdr, onW, by

WA:{wEC(FU{OO})i Aforxer}.

Thw(z) =X— Fw(x) forxzeT,
and writeT\ (W) = {Thw : w € Wy }.

Lemma 5.3. There exists a positive constaxyj < 2~ ! such t@t ifo < A < Ao, then
T5(Wy) C Wi. MoreoverT(W,) is relatively compact it (I’ U {co}).

Proof. Let0 < A < 27! and letw € W). SinceFw € C(T'U {o0}) by Lemma 5.2,
we haveT\w € C(I' U {c0}). It suffices to show that there exists a positive constant
Xo < 271 such thatifd < A < )\, then

20 = 2llpllle) (@) < — X forzeT. (5.4)
3=2|[lplllz 3=2|||plll &z
Let0 < 7 < 1 and define
W, (z) = / Hr (2, 9)(y, 7K (y,00))dy forz €T
T

As in the proof of Lemma 5.2, we see thiat € Co(T'U{oo}). Moreover, for each €
T, it follows from (P3) that the function — ¥, (z) is non-decreasing anl (z) — 0
asT — 0. Therefore we have by Dini’s theorem

i (sup () ) 0.

7—0 \zer
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We take0 < 79 < 27! so thatsup,cp Voo (z) < 4751 — 2|||ull|r). Let X =
4713 = 2|||u|l| )0 and letd < A < Ag. Thend(3 — 2|||ull|z) N < 70, and so it
follows from (P3) that forr € T,

ANl 4\ L+ 2|l 22

| < o (7) < .
3=2llpllla ~ 3=2|lpllla ™ 3= 2|l e

Hence we obtain (5.4), and thig (W) C Wy. SinceTx(W,) is uniformly bounded

and is equicontinuous ilf U {oco} by Lemma 5.2, it follows from Ascoli-Arzels

theorem thaf\ (W, ) is relatively compact it (I' U {oc}). Thus the lemma is proved.
O

Tw(z) = Al = [Fuw(z)

Lemma5.4. Let0 < A < Ag. ThenT), is continuous onV,,.

Proof. Let {w,} be a sequence W, converging tow € W, with respect td| - ||.
Then, for eachr € T, it follows from (P1)—(P4), Proposition 4.5 and Lebesgue’s
convergence theorem that, As~» +oo,

/ Hr<x,y>|wj<y> — w(y)|dlul(y) —
/ Gr (9| (0, w; (9) K (9, 50)) — £ (3 w() K (y, 00))|dy — 0.

proo

HenceT\w; converges pointwisely t@yw in I" asj — +oo. SinceT\(W,) is rel-
atively compact inC(I' U {oco0}), the pointwise convergence implies the uniform con-
vergence. Thereforglhw; — Thw||oc — 0 @sj — +o0. ThusT) is continuous on
Wi. O

Let us prove Theorem 5.1.

Proof of Theorem 5.1Let 0 < A < Ag, where)\ is the positive constant in Lemma
5.3. Note again thatV, is a non-empty bounded closed convex sefiil’ U {oo}).
SinceT’, is compact mapping fromV, into itself, it follows from Schauder’s fixed
point theorem that there exists € W, such thatw = Thw = A — Fw, that is, for
zel,

== [ Hr@)wt)dn) - [ Grlen) . w) Kelv.00)ds.

Let u(z) = w(x)Kr(z,00). Thenu > 0in T, andu = 0 on ,T sinceKr(-,00) is
so. Also, we have for € T,

< \Kr(z, o)
—2H|M|||H 3 =2|||ulll =

and

u(w) = M (x, 00) /ery /ery (v, u(y))dy.
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SinceKr (-, c0) is harmonicin’’, we see that is a distributional solution téu —pu =
f(-,u)inT. Finally, sinceFw € Cy(T" U {oc0}), it follows that

Iim ——————=\— lim F =\
Thus the proof of Theorem 5.1 is complete. O
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