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Abstract

Given two intersecting domains, we investigate the boundary behavior of the
quotient of Martin kernels of each domain. To this end, we give a characteriza-
tion of minimal thinness for a difference of two subdomains in terms of Martin
kernels of each domain. As a consequence of our main theorem (Theorem 2.1),
we obtain the boundary growth of the Martin kernel of a Lipschitz domain, which
corresponds to earlier results for the boundary decay of the Green function for a
Lipschitz domain investigated by Burdzy, Carroll and Gardiner.
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1 Introduction

One of the aims of this paper is to examine the boundary growth of the Martin kernel
of a Lipschitz domain. This is motivated by earlier work due to Burdzy, Carroll and
Gardiner. We write0 for the origin ofRn (n ≥ 2) to distinguish this from0 ∈ R, and
write x = (x′, xn) ∈ Rn−1 × R ande = (0′, 1). Suppose thatφ : Rn−1 → R satisfies
φ(0′) = 0 and the Lipschitz property: there is a positive constantL such that

|φ(x′) − φ(y′)| ≤ L|x′ − y′| for x′, y′ ∈ Rn−1.

We putΩφ = {(x′, xn) : xn > φ(x′)} and set

I+ =
∫
{|x′|<1}

max{φ(x′), 0}
|x′|n

dx′, (1.1)

I− =
∫
{|x′|<1}

max{−φ(x′), 0}
|x′|n

dx′. (1.2)

In [2, 3], Burdzy obtained a result on the angular derivative problem for analytic func-
tions in a Lipschitz domain. The key step was to establish a relationship between the

∗Current address: Faculty of Education and Human Studies, Akita University, Akita 010-8502, Japan
e-mail: hirata@math.akita-u.ac.jp

1



convergence of the above integrals and the boundary behavior of the Green function
GΩφ

for Ωφ. Burdzy’s approach was based on probabilistic methods and the minimal
fine topology. Analytic proofs were given by Carroll [4, 5] and Gardiner [7]. A proof
based on the extremal length may be found in Sastry [12].

Theorem A. Suppose thatI+ andI− are as in(1.1) and (1.2). The following state-
ments hold.

(i) If I+ < ∞ andI− = ∞, then

lim
t→0+

GΩφ
(te, e)
t

= ∞.

(ii) If I+ = ∞ andI− < ∞, then

lim
t→0+

GΩφ
(te, e)
t

= 0.

(iii) If I+ < ∞ andI− < ∞, then the limit ofGΩφ
(te, e)/t, ast → 0+, exists and

0 < lim
t→0+

GΩφ
(te, e)
t

< ∞.

In view of the boundary Harnack principle, Theorem A showsthe rate of boundary
decayof positive harmonic functions onΩφ vanishing continuously on a part of the
boundary ofΩφ near the origin. We are now interested in a relationship between the
convergence of the integralsI+, I− and the rate of boundary growthof positive har-
monic functions onΩφ with singularity at the origin. In view of the Fatou-Naı̈m-Doob
theorem (see [1, Theorem 9.4.6]), it is enough to investigate it for the Martin kernel of
Ωφ with pole at the origin. See the first paragraph of Section 2 for the definition of the
Martin kernel.

Theorem 1.1. Suppose thatI+ andI− are as in(1.1)and(1.2). The following state-
ments hold.

(i) If I+ < ∞ andI− = ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If I+ = ∞ andI− < ∞, then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

(iii) If I+ < ∞ andI− < ∞, then the limit oftn−1KΩφ
(te,0), ast → 0+, exists

and
0 < lim

t→0+
tn−1KΩφ

(te,0) < ∞.
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WhenI+ = ∞ andI− = ∞, the limit of tn−1KΩφ
(te,0) may take the following

values:0, any positive and finite value, or∞.

Example 1.2. To simplify the notation, we writeRn−1
1+ = {x′ ∈ Rn−1 : x1 ≥ 0} and

Rn−1
1− = {x′ ∈ Rn−1 : x1 ≤ 0} in this example.

(i) If φ(x′) is equal tox1/2 onRn−1
1+ andx1 onRn−1

1− , then

lim
t→0+

tn−1KΩφ
(te,0) = 0.

(ii) If φ(x′) is equal tox1 onRn−1
1+ andx1 onRn−1

1− , then the limit oftn−1KΩφ
(te,0),

ast → 0+, exists and

0 < lim
t→0+

tn−1KΩφ
(te,0) < ∞.

(iii) If φ(x′) is equal tox1 onRn−1
1+ andx1/2 onRn−1

1− , then

lim
t→0+

tn−1KΩφ
(te,0) = ∞.

It is easy to check thatI+ = ∞ andI− = ∞. The value of the limit in each case
follows from [9, Theorems 1 and 2].

Let Rn
+ = {(x′, xn) : xn > 0}. As will be explained in Section 5, the convergence

of the integralsI+ andI− is connected with minimal thinness of the setsRn
+ \Ωφ and

Ωφ \ Rn
+ (see Section 2 for the definition of minimal thinness). SinceKRn

+
(te,0) =

t1−n, Theorem 1.1 may be interpreted as the relationship between minimal thinness of
the setsRn

+ \Ωφ, Ωφ \Rn
+ and the boundary behavior of the quotient of Martin kernels

of Ωφ andRn
+. So, given two intersecting domainsΦ andΨ, it is valuable for us to

investigate a relationship between minimal thinness of the differenciesΦ \ Ψ, Ψ \ Φ
and the boundary behavior of the quotient of Martin kernels ofΦ andΨ (Theorem 2.1).

2 Statement for general domains

Let Ω be a Greenian domain inRn with n ≥ 2. Here a Greenian domain means
a domain possessing the Green functionGΩ for the Laplace operator. Letx0 be a
reference point inΩ. The Martin kernel ofΩ is defined for(x, y) ∈ (Ω×Ω)\{(x0, x0)}
by

KΩ(x, y) =
GΩ(x, y)
GΩ(x0, y)

.

Now, let{yj} be a sequence inΩ with no limit point inΩ. We observe by the Harnack
inequality that ifj0 is sufficiently large, then{KΩ(·, yj)}j≥j0 is a uniformly bounded
sequence of positive harmonic functions on a given relatively compact open subset of
Ω. Therefore the Harnack principle shows that there exists a subsequence{KΩ(·, yjk

)}
converging to a positive harmonic function onΩ. The Martin boundary∆(Ω) of Ω is
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defined as an ideal boundary consisting of all positive harmonic functions onΩ that
can be obtained as the limit of{KΩ(·, yj)} for some sequence{yj} in Ω with no limit
point in Ω. The setΩ ∪ ∆(Ω) (equipped with a suitable metric) is called a Martin
compactification ofΩ (see [1, Section 8.1] for details). Henceforth, we writeKΩ(·, ξ)
for the positive harmonic function onΩ corresponding toξ ∈ ∆(Ω). We say that
ξ ∈ ∆(Ω) is minimal if every positive harmonic function onΩ less than or equal to the
corresponding Martin kernelKΩ(·, ξ) coincides with a constant multiple ofKΩ(·, ξ).
By ∆1(Ω), we denote the collection of all minimal Martin boundary points in∆(Ω).

The notion of minimal thinness was introduced by Naı̈m [11], using a regularized
reduced function. Letu be a positive superharmonic function onΩ and letE be a
subset ofΩ. A reduced function ofu relative toE onΩ is defined by

ΩRE
u (x) = inf{v(x)},

where the infimum is taken over all positive superharmonic functionsv onΩ such that
v ≥ u on E. By ΩR̂E

u , we denote the lower semicontinuous regularization ofΩRE
u .

Observe thatΩR̂E
u is nonnegative superharmonic onΩ andΩR̂E

u ≤ u. Let ξ ∈ ∆1(∆).
A setE is said to beminimally thinat ξ with respect toΩ if

ΩR̂E
KΩ(·,ξ)(z) < KΩ(z, ξ) for somez ∈ Ω.

Minimal thinness enables us to equip the Martin compactification ofΩ with the mini-
mal fine topology. This is the collection of subsetsW of the Martin compactification
of Ω satisfying

(i) Ω \ W is (ordinary) thin at every point ofW ∩ Ω,

(ii) Ω \ W is minimally thin at every point ofW ∩ ∆1(Ω).

See [1, Chapter 7] for details on ordinary thinness. LetU be a minimal fine neighbor-
hood ofξ ∈ ∆1(Ω). We say that a functionf on U hasminimal fine limitl at ξ with
respect toΩ if there is a subsetE of Ω, minimally thin atξ with respect toΩ, such that
f(x) → l asx → ξ alongU \ E, and then we write

mf
Ω

- lim
x→ξ

f(x) = l.

We note from the definition that a function is not necessarily defined on the whole of a
domain when we consider the minimal fine limit.

The following theorem is our main result.

Theorem 2.1. LetΦ andΨ be Greenian domains inRn such thatΦ∩Ψ is a non-empty
domain. Suppose thatξ ∈ ∆1(Φ) is in the closure ofΦ∩Ψ in the Martin compactifica-
tion ofΦ, and thatζ ∈ ∆1(Ψ) is in the closure ofΦ∩Ψ in the Martin compactification
of Ψ. If Φ \ Ψ is minimally thin atξ with respect toΦ, thenKΨ(·, ζ)/KΦ(·, ξ) has a
finite minimal fine limit atξ with respect toΦ. Furthermore, the following statements
hold.

(i) If Ψ \ Φ is not minimally thin atζ with respect toΨ, then

mf
Φ

- lim
x→ξ

KΨ(x, ζ)
KΦ(x, ξ)

= 0.
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(ii) If Ψ \ Φ is minimally thin atζ with respect toΨ, whereζ is the point such that

KΨ(·, ζ) − ΨR
Ψ\Φ
KΨ(·,ζ) = α

(
KΦ(·, ξ) − ΦR

Φ\Ψ
KΦ(·,ξ)

)
onΦ ∩ Ψ (2.1)

for some positive constantα, then

0 < mf
Φ

- lim
x→ξ

KΨ(x, ζ)
KΦ(x, ξ)

< ∞.

(iii) If Ψ \ Φ is minimally thin atζ with respect toΨ, whereζ is a point such that
(2.1) is not satisfied, then

mf
Φ

- lim
x→ξ

KΨ(x, ζ)
KΦ(x, ξ)

= 0.

We explain condition (2.1) using the following example.

Example 2.2. Let

Φ = {(x1, x2) ∈ R2 : −2 < x1 < 1, 0 < x2 < 2},
Ψ = {(x1, x2) ∈ R2 : −1 < x1 < 2, 0 < x2 < 2} \ E,

where
E = {(x1, x2) ∈ R2 : |x1|2 + |x2 − 1/2|2 = 1/4, x1 > 0}.

See Figure 1. Observe that the Martin boundary ofΦ is homeomorphic to its Euclidean
boundary and all points are minimal, and that there are two minimal Martin boundary
points, sayζ1, ζ2, over(0, 0) with respect toΨ. Suppose thatKΨ(·, ζ1) is the limit of
KΨ(·, y) asy → (0, 0) along{(0, x2) : 0 < x2 < 1}, and thatKΨ(·, ζ2) is the limit
of KΨ(·, y) asy → (0, 0) along{(x1, x2) : |x1|2 + |x2 − 1|2 = 1, x1 > 0}. Also,
let ζ3 = (0, 2). ThenΦ \ Ψ is minimally thin at(0, 0) with respect toΦ, andΨ \ Φ
is minimally thin atζj , j = 1, 2, 3, with respect toΨ. It is not difficult to see thatζ1

satisfies condition (2.1), butζ2 andζ3 do not.

For Lipschitz domainsΦ andΨ, Theorem 2.1 can be restated as the corollary be-
low. We note from [8] that each Euclidean boundary point of a Lipschitz domain
corresponds in a natural way to a unique Martin boundary point and it is minimal. So,
Martin boundary points and Euclidean boundary points may be identified in this set-
ting. Let Ω be a Lipschitz domain inRn and letc > 1. We define a non-tangential
region aty ∈ ∂Ω (the Euclidean boundary ofΩ) by

Γc(y) = {x ∈ Ω : |x − y| < c dist(x, ∂Ω)}.

Note that this region is non-empty oncec is sufficiently large. We say that a functionf
on Ω has non-tangential limitl at y if, for eachc sufficiently large,f(x) has limit l as
x → y alongΓc(y). Then we write

nt
Ω

- lim
x→y

f(x) = l.
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(0, 0)

(0, 2)

Figure 1: Condition (2.1)

Corollary 2.3. Suppose thatΦ andΨ are Lipschitz domains inRn such thatΦ ∩ Ψ is
also a Lipschitz domain. Lety ∈ ∂Φ ∩ ∂Ψ, and suppose thatΦ \ Ψ is minimally thin
at y with respect toΦ. The following statements hold.

(i) If Ψ \ Φ is not minimally thin aty with respect toΨ, then

nt
Φ∩Ψ

- lim
x→y

KΨ(x, y)
KΦ(x, y)

= 0.

(ii) If Ψ \Φ is minimally thin aty with respect toΨ, then the non-tangential limit of
KΨ(·, y)/KΦ(·, y) at y with respect toΦ ∩ Ψ exists and

0 < nt
Φ∩Ψ

- lim
x→y

KΨ(x, y)
KΦ(x, y)

< ∞.

Remark2.4. If Φ\Ψ is notminimally thin aty with respect toΦ andΨ\Φ is notmin-
imally thin aty with respect toΨ, then the non-tangential limit ofKΨ(·, y)/KΦ(·, y)
may take the following values:0, any positive and finite value, or∞ (see Example
1.2).

3 Characterization of minimal thinness for a difference
of two subdomains

Näım [11, Th́eor̀eme 11] gave a characterization of minimal thinness for a difference
of two subdomains in terms of Green functions for each domain, which played an
important role in the proof of Theorem A. In order to prove Theorem 2.1, we need a
new characterization of minimal thinness for a difference.

Lemma 3.1. Let Ω be a Greenian domain inRn and letD be a subdomain ofΩ.
Suppose thatξ ∈ ∆1(Ω) is in the closure ofD in the Martin compactification ofΩ.
The following statements are equivalent:
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(i) Ω \ D is minimally thin atξ with respect toΩ;

(ii) there existsη ∈ ∆1(D) such that

mf
D

- lim
x→η

KΩ(x, ξ)
KD(x, η)

> 0. (3.1)

Furthermore, the pointη ∈ ∆1(D) in (ii) is uniquely determined and the correspond-
ing Martin kernel is represented as

KD(·, η) = α
(
KΩ(·, ξ) − ΩR

Ω\D
KΩ(·,ξ)

)
onD

for some positive constantα.

Remark3.2. We note that the minimal fine limit in (3.1) always exists and that it
satisfies

mf
D

- lim
x→η

KΩ(x, ξ)
KD(x, η)

= µD
KΩ(·,ξ)({η}) = inf

x∈D

KΩ(x, ξ)
KD(x, η)

= lim inf
x→η

KΩ(x, ξ)
KD(x, η)

< ∞,

(3.2)
whereµD

KΩ(·,ξ) is the measure on∆(D) associated withKΩ(·, ξ) in the Martin repre-
sentation. See [1, Theorems 9.2.6 and 9.3.3]. Thus minimal thinness ofΩ \ D can be
also characterized in terms of any of the quantities in (3.2) instead of the minimal fine
limit.

For the proof of Lemma 3.1, we need the following lemmas. Lemma 3.3 can be
deduced from [1, Theorems 9.2.6 and 9.3.3]. Lemma 3.4 is due to Naı̈m [11, Th́eor̀eme
15] (cf. [1, Theorem 9.5.5]).

Lemma 3.3. LetE be a subset of a Greenian domainΩ in Rn and letξ ∈ ∆1(Ω). The
following statements are equivalent:

(i) E is minimally thin atξ with respect toΩ;

(ii) there exists a positive superharmonic functionu onΩ such that

inf
x∈Ω

u(x)
KΩ(x, ξ)

< inf
x∈E

u(x)
KΩ(x, ξ)

.

Lemma 3.4. Let Ω be a Greenian domain inRn and letD be a subdomain ofΩ.
Suppose thatξ ∈ ∆1(Ω) is in the closure ofD in the Martin compactification ofΩ.
Assume thatΩ \ D is minimally thin atξ with respect toΩ, and letη ∈ ∆1(D) be the
point such that

KD(·, η) = α
(
KΩ(·, ξ) − ΩR

Ω\D
KΩ(·,ξ)

)
onD

for some positive constantα. The following statements for a subsetE of D are equiv-
alent:

(i) E is minimally thin atη with respect toD;
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(ii) E is minimally thin atξ with respect toΩ.

We say that a property holds quasi-everywhere if it holds apart from a polar set. The
following lemma is elementary. For the convenience of the reader, we give a proof.

Lemma 3.5. Let D be a Greenian domain inRn and letζ ∈ ∆1(D). ThenKD(·, ζ)
vanishes quasi-everywhere on∂D.

Proof. Let V be a Martin topology (closed) neighborhood ofζ with respect toD. Then
V ∩D is not minimally thin atζ with respect toD. Therefore, from [1, Theorem 6.9.1],
we have

KD(x, ζ) = DRV ∩D
KD(·,ζ)(x) = H

D\V
KD(·,ζ)X∂V ∩D

(x) for x ∈ D \ V ,

whereHD\V
KD(·,ζ)X∂V ∩D

denotes the Perron-Wiener-Brelot solution of the Dirichlet prob-
lem in D \ V with the boundary functionKD(·, ζ) on ∂(V ∩ D) ∩ D and0 on ∂D.
SinceV is arbitrary, we obtain the lemma.

Let Ω be a domain inRn and letD be a subdomain ofΩ. If h is a positive harmonic
function onD which vanishes quasi-everywhere on∂D ∩ Ω and is bounded near each
point of∂D∩Ω, then we see from [1, Theorem 5.2.1] thath has a subharmonic exten-
sionh∗ to Ω which is valued0 quasi-everywhere on∂D∩Ω and everywhere onΩ\D.
In what follows, we use an asterisk, as inh∗, to denote such a subharmonic extension.

Let us prove Lemma 3.1.

Proof of Lemma 3.1.By [11, Th́eor̀eme 12] (cf. [1, Theorem 9.5.5]), we can easily
show that (i) implies (ii). In fact,f := KΩ(·, ξ) − ΩR

Ω\D
KΩ(·,ξ) is a minimal harmonic

function onD, and so there existsη ∈ ∆1(D) such thatKD(·, η) = f/f(x0) on D.
Hence we obtain that

inf
x∈D

KΩ(x, ξ)
KD(x, η)

≥ f(x0) > 0,

and thus (3.1) follows from (3.2).
We next show that (ii) implies (i). We may assume thatΩ \ D is non-polar. Let

η ∈ ∆1(D) be a point such that

α := mf
D

- lim
x→η

KΩ(x, ξ)
KD(x, η)

> 0.

By (3.2), we haveKD(·, η) ≤ α−1KΩ(·, ξ) onD. This shows thatKD(·, η) is bounded
near each point of∂D ∩ Ω. Also, KD(·, η) vanishes quasi-everywhere on∂D ∩ Ω
by Lemma 3.5. ThusK∗

D(·, η) is well-defined as a subharmonic function onΩ and
is dominated byα−1KΩ(·, ξ) on Ω. Let u = α−1KΩ(·, ξ) − K∗

D(·, η). Thenu is
superharmonic onΩ. SinceΩ \ D is non-polar, there is a point inΩ \ D at whichu is
positive. Therefore the minimum principle yields thatu is positive onΩ. Also, we find
that

inf
x∈Ω

u(x)
KΩ(x, ξ)

= α−1 − sup
x∈D

KD(x, η)
KΩ(x, ξ)

< α−1,

inf
x∈Ω\(D∪F )

u(x)
KΩ(x, ξ)

= α−1 − sup
x∈Ω\(D∪F )

K∗
D(x, η)

KΩ(x, ξ)
= α−1,
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whereF is a polar set in∂D ∩ Ω such thatK∗
D(·, η) > 0 onF . Hence it follows from

Lemma 3.3 thatΩ \ (D ∪ F ) is minimally thin atξ with respect toΩ, and so isΩ \D.
We finally show the uniqueness ofη ∈ ∆1(D). We suppose to the contrary that

there existsζ ∈ ∆1(D) such thatKD(·, ζ) ≤ βKΩ(·, ξ) onD andKD(·, ζ) is different
fromKD(·, η) := γ

(
KΩ(·, ξ)−ΩR

Ω\D
KΩ(·,ξ)

)
, whereβ andγ are some positive constants.

We may assume thatβ is the smallest number satisfyingKD(·, ζ) ≤ βKΩ(·, ξ) onD.
Sinceξ ∈ ∆1(Ω), it follows thatβKΩ(·, ξ) is the least harmonic majorant ofK∗

D(·, ζ)
onΩ. Let W be a Martin topology neighborhood ofζ with respect toD such thatη is
apart fromW . ThenW ∩ D is minimally thin atη with respect toD. Thus minimal
thinness ofΩ \ D at ξ with respect toΩ, together with Lemma 3.4, yields thatW ∩ D
is minimally thin atξ with respect toΩ.

On the other hand, sinceW ∩ D is not minimally thin atζ with respect toD, we
have that

KD(·, ζ) = DR̂W∩D
KD(·,ζ) ≤ β DR̂W∩D

KΩ(·,ξ) ≤ β ΩR̂W∩D
KΩ(·,ξ) onD.

SinceβKΩ(·, ξ) is the least one among superharmonic functionsu on Ω satisfying
K∗

D(·, ζ) ≤ u on Ω, we haveΩR̂W∩D
KΩ(·,ξ) = KΩ(·, ξ) on Ω, so thatW ∩ D is not

minimally thin atξ with respect toΩ. Thus we obtain a contradiction, and hence the
uniqueness ofη ∈ ∆1(D) is established. The proof of Lemma 3.1 is complete.

4 Proofs of Theorem 2.1 and Corollary 2.3

We give proofs of Theorem 2.1 and Corollary 2.3.

Proof of Theorem 2.1.In order to prove the first assertion, we assume thatΦ\ (Φ∩Ψ)
is minimally thin atξ with respect toΦ. Let η ∈ ∆1(Φ ∩ Ψ) be the point such that

KΦ∩Ψ(·, η) = α
(
KΦ(·, ξ) − ΦR

Φ\Ψ
KΦ(·,ξ)

)
on Φ ∩ Ψ for some positive constantα. Then, by Lemma 3.1 withD := Φ ∩ Ψ and
Ω := Φ and Remark 3.2, we find that the minimal fine limit ofKΦ(·, ξ)/KΦ∩Ψ(·, η) at
η with respect toΦ ∩ Ψ exists and

0 < mf
Φ∩Ψ

- lim
x→η

KΦ(x, ξ)
KΦ∩Ψ(x, η)

< ∞. (4.1)

It also follows from [1, Theorem 9.3.3] thatKΨ(·, ζ)/KΦ∩Ψ(·, η) has a finite minimal
fine limit at η with respect toΦ ∩ Ψ. The minimal thinness ofΦ \ (Φ ∩ Ψ) at ξ with
respect toΦ, together with Lemma 3.4 withD := Φ ∩ Ψ andΩ := Φ, allows us to
conclude thatKΨ(·, ζ)/KΦ(·, ξ) has a finite minimal fine limit atξ with respect toΦ.

To prove (i), we assume in addition thatΨ \ (Φ ∩ Ψ) is not minimally thin atζ
with respect toΨ. Then Lemma 3.1 withD := Φ ∩ Ψ andΩ := Ψ shows that for any
η ∈ ∆1(Φ ∩ Ψ), the minimal fine limit in (3.1) is zero. Therefore we have that

mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)
KΦ∩Ψ(x, η)

= 0.
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Hence (i) follows from (4.1) and Lemma 3.4 withD := Φ ∩ Ψ andΩ := Φ.
To prove (ii), we assume in addition thatΨ \ (Φ ∩ Ψ) is minimally thin atζ with

respect toΨ, whereζ is the point in∆1(Ψ) such that (2.1) is satisfied. We note from

(2.1) thatKΦ∩Ψ(·, η) is also written asβ
(
KΨ(·, ζ) − ΨR

Ψ\Φ
KΨ(·,ζ)

)
on Φ ∩ Ψ for some

positive constantβ. Then, by Lemma 3.1 withD := Φ ∩ Ψ andΩ := Ψ and Remark
3.2, we find that the minimal fine limit ofKΨ(·, ζ)/KΦ∩Ψ(·, η) at η with respect to
Φ ∩ Ψ exists and

0 < mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)
KΦ∩Ψ(x, η)

< ∞.

Therefore (ii) follows from (4.1) and Lemma 3.4 withD := Φ ∩ Ψ andΩ := Φ.
To prove (iii), we assume in addition thatΨ \ (Φ ∩ Ψ) is minimally thin atζ with

respect toΨ, whereζ is a point in∆1(Ψ) such that (2.1) is not satisfied. Then the
normalizationKΦ∩Ψ(·, ω) of KΨ(·, ζ) − ΨR

Ψ\Φ
KΨ(·,ζ) at a reference point is a minimal

Martin kernel ofΦ∩Ψ, but is different fromKΦ∩Ψ(·, η). We note from the uniqueness
in Lemma 3.1 that for onlyω ∈ ∆1(Φ ∩ Ψ), KΨ(·, ζ)/KΦ∩Ψ(·, ω) has a positive
minimal fine limit atω with respect toΦ ∩ Ψ. Therefore we have that

mf
Φ∩Ψ

- lim
x→η

KΨ(x, ζ)
KΦ∩Ψ(x, η)

= 0.

Hence (iii) follows from (4.1) and Lemma 3.4 withD := Φ ∩ Ψ andΩ := Φ. Thus
Theorem 2.1 is established.

Proof of Corollary 2.3.Let y ∈ ∂Φ ∩ ∂Ψ. We first show (i). By Theorem 2.1 (i) and
Lemma 3.4, we find thatKΨ(·, y)/KΦ(·, y) has minimal fine limit0 aty with respect to
Φ∩Ψ. Since the non-tangential regionΓc(y) is not minimally thin aty with respect to
Φ∩Ψ (see [8, Section 5]), the existence of the minimal fine limit ofKΨ(·, y)/KΦ(·, y)
with respect toΦ ∩ Ψ implies the existence of the non-tangential limit with respect to
Φ ∩ Ψ, and the both values coincide. Hence (i) follows.

We next show (ii). We observe thatKΦ(·, y) andKΨ(·, y) satisfy (2.1) onΦ ∩ Ψ,
sinceKΦ(·, y)−ΦR

Φ\Ψ
KΦ(·,y) andKΨ(·, y)−ΨR

Ψ\Φ
KΨ(·,y) are minimal harmonic functions

onΦ ∩ Ψ with pole aty. Therefore (ii) follows from Theorem 2.1 (ii).

5 Proof of Theorem 1.1

In order to prove Theorem 1.1, we collect lemmas on relationships between the con-
vergence of the integralsI+, I− in (1.1), (1.2) and minimal thinness of the differences
Ωφ \ Rn

+, Rn
+ \ Ωφ. See [7, Lemma 1 and Proof of Theorem 1] for Lemma 5.1 and [6,

Theorem 4.2] for Lemma 5.2.

Lemma 5.1. The following statements hold.

(i) I+ < ∞ if and only ifRn
+ \ Ωφ is minimally thin at0 with respect toRn

+.

(ii) If I+ < ∞ andI− = ∞, thenΩφ \ Rn
+ is not minimally thin at0 with respect

to Ωφ.
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Lemma 5.2. LetΩ be a Greenian domain inRn containingRn
+. Suppose thatΩ has a

unique Martin boundary point at infinity and it is minimal. IfΩ \Rn
+ is minimally thin

at ∞ with respect toRn
− := {(x′, xn) : xn < 0}, thenΩ \ Rn

+ is minimally thin at∞
with respect toΩ.

Lemma 5.3. If I− < ∞, thenΩφ \Rn
+ is minimally thin at0 with respect toΩφ ∪Rn

+.

Proof. By Lemma 5.1, we see thatΩφ \ Rn
+ is minimally thin at0 with respect to

Rn
−. Since minimal thinness is invariant under the inversion with respect to the unit

sphere, it follows from Lemma 5.2 thatΩφ \ Rn
+ is minimally thin at0 with respect to

Ωφ ∪ Rn
+.

Lemma 5.4. If I+ < ∞ andI− < ∞, thenΩφ\Rn
+ is minimally thin at0 with respect

to Ωφ.

Proof. We note from Lemma 5.3 that(Ωφ ∪ Rn
+) \ Rn

+ is minimally thin at0 with
respect toΩφ ∪ Rn

+. Therefore we see from Lemmas 3.4 and 5.1 that(Ωφ ∪ Rn
+) \ Ωφ

is minimally thin at0 with respect toΩφ ∪Rn
+. Applying Lemma 3.4 again, we obtain

the lemma.

Let us now prove Theorem 1.1.

Proof of Theorem 1.1.We can easily obtain (i) and (iii) from Corollary 2.3 withΦ :=
Rn

+ andΨ := Ωφ and Lemmas 5.1 and 5.4. We show (ii). Since(Ωφ ∪ Rn
+) \ Rn

+ is
minimally thin at0 with respect toΩφ∪Rn

+ by Lemma 5.3, it follows from Lemma 3.1
with D := Rn

+ andΩ := Ωφ∪Rn
+ thatKΩφ∪Rn

+
(·,0)/KRn

+
(·,0) has a positive minimal

fine limit at 0 with respect toRn
+. Thereforetn−1KΩφ∪Rn

+
(te,0) has a positive limit

ast → 0+. Also, it follows from Lemmas 3.4 and 5.1 that(Ωφ ∪ Rn
+) \ Ωφ is not

minimally thin at0 with respect toΩφ ∪ Rn
+. Therefore we have by Lemma 3.1 with

D := Ωφ andΩ := Ωφ ∪ Rn
+ thatKΩφ∪Rn

+
(·,0)/KΩφ

(·,0) has minimal fine limit0
at 0 with respect toΩφ, and soKΩφ

(te,0)/KΩφ∪Rn
+
(te,0) has limit∞ ast → 0+.

Thus we conclude thattn−1KΩφ
(te,0) has limit∞ ast → 0+.

Remark5.5. For a non-Lipschitz functionφ, a relationship between the convergence
of the integralI+ and minimal thinness of the differenceΩφ \Rn

+ was recently studied
in [10].
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Note added in the proof

Recently, we have obtained a relationship between the boundary decay rate of the
Green function and the growth rate of the Martin kernel (Estimates for the products
of the Green function and the Martin kernel, Nagoya Math. J., to appear).
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