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Abstract

Given two intersecting domains, we investigate the boundary behavior of the
guotient of Martin kernels of each domain. To this end, we give a characteriza-
tion of minimal thinness for a difference of two subdomains in terms of Martin
kernels of each domain. As a consequence of our main theorem (Theorem 2.1),
we obtain the boundary growth of the Martin kernel of a Lipschitz domain, which
corresponds to earlier results for the boundary decay of the Green function for a
Lipschitz domain investigated by Burdzy, Carroll and Gardiner.
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1 Introduction

One of the aims of this paper is to examine the boundary growth of the Martin kernel
of a Lipschitz domain. This is motivated by earlier work due to Burdzy, Carroll and
Gardiner. We writed for the origin ofR™ (n > 2) to distinguish this from) € R, and
write = (', z,) € R"~! x Rande = (0',1). Suppose that : R"~! — R satisfies
¢(0’) = 0 and the Lipschitz property: there is a positive consfastich that

lp(z') — o(y')| < Llz’ — /| fora’,y € R*—1.

We putQy = {(«/, z,) : z, > ¢(2’)} and set

I+ :/ ma.X{¢/(fE/),0}dx/’ (11)
{]z'|<1} |’ |

I~ = / de’. (1.2)
{J2/|<1} x|

In [2, 3], Burdzy obtained a result on the angular derivative problem for analytic func-
tions in a Lipschitz domain. The key step was to establish a relationship between the
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convergence of the above integrals and the boundary behavior of the Green function
Gq, for Q4. Burdzy’s approach was based on probabilistic methods and the minimal
fine topology. Analytic proofs were given by Carroll [4, 5] and Gardiner [7]. A proof
based on the extremal length may be found in Sastry [12].

Theorem A. Suppose thaft and I~ are as in(1.1) and(1.2). The following state-
ments hold.

(i) fI™ <ooandl™ = oo, then

In view of the boundary Harnack principle, Theorem A sholaesrate of boundary
decayof positive harmonic functions oft4 vanishing continuously on a part of the
boundary of(2, near the origin. We are now interested in a relationship between the
convergence of the integrals, I~ andthe rate of boundary growtbf positive har-
monic functions orf2, with singularity at the origin. In view of the Fatou-ka-Doob
theorem (see [1, Theorem 9.4.6]), it is enough to investigate it for the Martin kernel of
Q4 with pole at the origin. See the first paragraph of Section 2 for the definition of the
Martin kernel.

Theorem 1.1. Suppose thaft and/~ are as in(1.1) and(1.2). The following state-
ments hold.

(i) f I <ooandI~ = oo, then

. n—1 _
tli%1+t Kq,(te,0) = 0.

(i) If I* = 0o andI~ < oo, then

t1i151+ "' Kq, (te,0) = oo.

(i) f IT™ < coandI™ < oo, then the limit oft”*lK% (te,0), ast — 0+, exists
and

: n—1
0< t£%1+t Kq,(te,0) < co.



WhenIt = oo and/~ = oo, the limit of t"~! K, (te, 0) may take the following
values:0, any positive and finite value, ob.

Example 1.2. To simplify the notation, we writ®} ' = {z’ € R*~! : 2; > 0} and
R~ = {2/ € R*!: z; <0} in this example.

(i) If (') is equal tar; /2 on R;ﬁl andz; onR}~!, then

: n—1 _
tlirgl+t Kq,(te,0) = 0.

(i) If ¢(z')is equal tar; onRY; " andz;, onRY~", then the limit ot~ K, (te, 0),
ast — 0+, exists and

: -1
0< 751_1)1(1)1_|rtn Kq,(te,0) < co.

(iii) If ¢(2’) is equal tor; onRY ;' andz; /2 onR}~", then

t1i151+ "' Kq, (te, 0) = oo.

It is easy to check thaf™ = oo andI~ = oo. The value of the limit in each case
follows from [9, Theorems 1 and 2].

LetR"} = {(2',zy) : ,, > 0}. As will be explained in Section 5, the convergence
of the integralg/* andI~ is connected with minimal thinness of the sift5 \ Q2 and
Q4 \ RY (see Section 2 for the definition of minimal thinness). SifGe, (te,0) =
t!=", Theorem 1.1 may be interpreted as the relationship between minimal thinness of
the setR” \ Q4, Q4 \ R} and the boundary behavior of the quotient of Martin kernels
of Q4 andR” . So, given two intersecting domaidsand ¥, it is valuable for us to
investigate a relationship between minimal thinness of the differedeied, ¥ \ ®
and the boundary behavior of the quotient of Martin kernel® ahd¥ (Theorem 2.1).

2 Statement for general domains

Let Q2 be a Greenian domain iR™ with n > 2. Here a Greenian domain means
a domain possessing the Green funct@gn for the Laplace operator. Let, be a
reference pointif). The Martin kernel of2 is defined for(z, y) € (QxQ)\{(zo, o)}
by
GQ (‘Ta y)

Ko(z,y) = —~222
Now, let{y, } be a sequence i with no limit point in{2. We observe by the Harnack
inequality that ifj, is sufficiently large, thed K (-, y;)};>;, is a uniformly bounded
sequence of positive harmonic functions on a given relatively compact open subset of
Q. Therefore the Harnack principle shows that there exists a subseqguU€nce y,, ) }
converging to a positive harmonic function &n The Martin boundanA(Q) of Q2 is



defined as an ideal boundary consisting of all positive harmonic functior% that
can be obtained as the limit §f{, (-, y,)} for some sequencgy, } in 2 with no limit
point in Q. The set U A(Q2) (equipped with a suitable metric) is called a Martin
compactification of2 (see [1, Section 8.1] for details). Henceforth, we wiig (-, )
for the positive harmonic function of? corresponding tg € A(Q). We say that
& € A(Q) is minimalif every positive harmonic function of less than or equal to the
corresponding Martin kernél (-, £) coincides with a constant multiple &fq (-, ).
By A, (), we denote the collection of all minimal Martin boundary pointa\iff2).

The notion of minimal thinness was introduced byig11], using a regularized
reduced function. Let be a positive superharmonic function énhand letE be a
subset of2. A reduced function of; relative toE on (2 is defined by

R} (x) = inf{v(2)},

where the infimum is taken over all positive superharmonic functiomis$2 such that
v > uonE. By “RE, we denote the lower semicontinuous regularizatio?Rf .
Observe tha?ﬁ{f is nonnegative superharmonic andgﬁf < u. Let§ € Ay(A).
A setF is said to baninimally thinat ¢ with respect td? if

Qﬁﬁg(,@(z) < Kq(z,€) forsomez € Q.

Minimal thinness enables us to equip the Martin compactification wfith the mini-
mal fine topology. This is the collection of subsétsof the Martin compactification
of Q) satisfying

(i) Q\ W is (ordinary) thin at every point i’ N (2,
(i) Q\ W is minimally thin at every point of¥ N A;(Q).

See [1, Chapter 7] for details on ordinary thinness. lLéie a minimal fine neighbor-
hood of¢ € A;1(Q2). We say that a functiorf on U hasminimal fine limitl at £ with
respect td? if there is a subsel of 2, minimally thin at¢ with respect td?, such that
f(z) — lasx — &alongU \ E, and then we write

Héf_ilgé flz)=1.

We note from the definition that a function is not necessarily defined on the whole of a
domain when we consider the minimal fine limit.
The following theorem is our main result.

Theorem 2.1. Let® and ¥ be Greenian domains iR™ such thatb N is a non-empty
domain. Suppose thate A, (®) is in the closure oo N ¥ in the Martin compactifica-
tion of @, and that{ € A, () is in the closure of> N T in the Martin compactification
of U. If &\ ¥ is minimally thin at{ with respect tod, thenKy (-, ()/Ks(-,£) has a
finite minimal fine limit at with respect tob. Furthermore, the following statements
hold.

(i) If ¥\ @ is not minimally thin at with respect tol, then
K\Il (37, C)

mf- lim ——¢ =

¢ o—¢ Ko(z,8)



(i) If U\ @ is minimally thin at{ with respect tol, where( is the point such that

Ky(-.¢) = "Rpst o = a(Ka(-.€) = *R\Y ) onénw  (2.1)

for some positive constant, then

0 f-lim ——= .
S Ke(e6)

(i) If ¥\ @ is minimally thin at¢ with respect tol, where( is a point such that
(2.1)is not satisfied, then

f-lim ———>2 = 0.

We explain condition (2.1) using the following example.

Example 2.2. Let

®={(x,22) ER?*: —2< 2, <1,0< x5 <2},
U= {(z1,m) eR?: 1 <21 <2, 0< 29 <2} \ E,

where
E = {(z1,29) € R?: |z1]* + |20 — 1/2|*> = 1/4, 21 > 0}.

See Figure 1. Observe that the Martin boundarg ¢ homeomorphic to its Euclidean
boundary and all points are minimal, and that there are two minimal Martin boundary
points, say(i, (2, over(0,0) with respect tol. Suppose thak'y (-, ¢1) is the limit of
Ky(-,y) asy — (0,0) along{(0,z2) : 0 < 2o < 1}, and thatKy (-, (2) is the limit

of Ky (-,y) asy — (0,0) along{(z1,x2) : |z1]?> + |z2 — 1| = 1, 21 > 0}. Also,

let (3 = (0,2). Then® \ ¥ is minimally thin at(0, 0) with respect tob, and¥ \ &

is minimally thin at¢;, j = 1,2, 3, with respect tol. It is not difficult to see thaf;
satisfies condition (2.1), bdt and{s do not.

For Lipschitz domain® and ¥, Theorem 2.1 can be restated as the corollary be-
low. We note from [8] that each Euclidean boundary point of a Lipschitz domain
corresponds in a natural way to a unique Martin boundary point and it is minimal. So,
Martin boundary points and Euclidean boundary points may be identified in this set-
ting. Let{) be a Lipschitz domain ifR™ and letc > 1. We define a non-tangential
region aty € 012 (the Euclidean boundary 6f) by

F(y)={z e Q:|z—y| <cdist(z,00)}.

Note that this region is non-empty oneeés sufficiently large. We say that a functign
on 2 has non-tangential limitaty if, for eachc sufficiently large,f () has limitl as
x — y alongl'.(y). Then we write

nt- lim f(x) =1.

Q z—y



(0,0)

Figure 1: Condition (2.1)

Corollary 2.3. Suppose thab and ¥ are Lipschitz domains iR such thatb N U is
also a Lipschitz domain. Let € 9% N 9V, and suppose thab \ ¥ is minimally thin
at y with respect tad. The following statements hold.

(i) If '\ @ is not minimally thin aty with respect tol, then

nt - lim M =0.
e NY z—y K@(.ﬁ, y)
(i) If ¥\ @ is minimally thin aty with respect tol, then the non-tangential limit of
Ky(-,y)/Ks(-,y) aty with respect tab N ¥ exists and
K‘II(‘T7 y)

0< nt -lim ———— < oo.
s a:liIglJK@(%y) >

Remark2.4. If ®\ ¥ is notminimally thin aty with respect tab and¥ \ ® is notmin-
imally thin aty with respect tol, then the non-tangential limit oKy (-, v)/Ka (-, y)
may take the following values), any positive and finite value, ax (see Example
1.2).

3 Characterization of minimal thinness for a difference
of two subdomains

Naim [11, Threome 11] gave a characterization of minimal thinness for a difference
of two subdomains in terms of Green functions for each domain, which played an
important role in the proof of Theorem A. In order to prove Theorem 2.1, we need a
new characterization of minimal thinness for a difference.

Lemma 3.1. Let 2 be a Greenian domain iiR™ and let D be a subdomain of.
Suppose thag € A;(Q) is in the closure ofD in the Martin compactification of2.
The following statements are equivalent:



(i) ©\ D is minimally thin at¢ with respect td;
(i) there exists) € A;(D) such that

. KSZ (CC, g)
I%f— ;13% K (@) > 0. (3.1)
Furthermore, the poing € A;(D) in (ii) is uniquely determined and the correspond-
ing Martin kernel is represented as

Kp(n) = a(Ka(~ ) - "Ry ) onD

for some positive constant

Remark3.2 We note that the minimal fine limit in (3.1) always exists and that it
satisfies
Ko(z,§) Ko(z,§)

.. Ka(z,&) . . Q

D _ Q\Ly _ TN ST

T = Moo () = Inf 2270 = lminf 2270w < oo,
(3.2)

Whereugﬂ(.@ is the measure oA (D) associated withiq (-, £) in the Martin repre-
sentation. See [1, Theorems 9.2.6 and 9.3.3]. Thus minimal thinnés§ @ can be

also characterized in terms of any of the quantities in (3.2) instead of the minimal fine
limit.

f- i
B mli% Kp(x,n

For the proof of Lemma 3.1, we need the following lemmas. Lemma 3.3 can be
deduced from [1, Theorems 9.2.6 and 9.3.3]. Lemma 3.4 is dueito M4, Theoeme
15] (cf. [1, Theorem 9.5.5]).

Lemma 3.3. Let E be a subset of a Greenian domd¥in R™ and let§ € A;(Q2). The
following statements are equivalent:

() FE is minimally thin at with respect td?;
(i) there exists a positive superharmonic functioan 2 such that

. u(z) : u(z)
B Kewd i Koo

Lemma 3.4. Let 2 be a Greenian domain iiR"™ and let D be a subdomain of2.
Suppose thaf € A;(Q) is in the closure ofD in the Martin compactification of2.
Assume thaf2 \ D is minimally thin at¢ with respect td?, and lety € A;(D) be the
point such that

Kp(n) = a(Ka(-&) - "Ryl ) onD

for some positive constant The following statements for a subgebf D are equiv-
alent:

(i) E is minimally thin aty with respect taD;



(i) E'is minimally thin ats with respect td?.

We say that a property holds quasi-everywhere if it holds apart from a polar set. The
following lemma is elementary. For the convenience of the reader, we give a proof.

Lemma 3.5. Let D be a Greenian domain iR™ and let¢ € A;(D). ThenKp(-,()
vanishes quasi-everywhere 0.

Proof. LetV be a Martin topology (closed) neighborhood,ofiith respect taD. Then
V' N D is not minimally thin atf with respect taD. Therefore, from [1, Theorem 6.9.1],
we have

D\V
Kp(w,¢) =PRYOP o (2) = HL\ a0 (@) fOrze DAV,

whereHD\Y denotes the Perron-Wiener-Brelot solution of the Dirichlet prob-
Kp(-,¢)XovnD

lem in D\ V with the boundary functiod(-,¢) ond(V N D) N D and0 on dD.
SinceV is arbitrary, we obtain the lemma. O

Let{2 be a domain iflR™ and letD be a subdomain d®. If 4 is a positive harmonic
function onD which vanishes quasi-everywhere @D N 2 and is bounded near each
point of 0D N (2, then we see from [1, Theorem 5.2.1] tlhattas a subharmonic exten-
sionh* to 2 which is valued) quasi-everywhere ofiD N ) and everywhere oft \ D.

In what follows, we use an asterisk, agih, to denote such a subharmonic extension.

Let us prove Lemma 3.1.

Proof of Lemma 3.1By [11, Theoeme 12] (cf. [1, Theorem 9.5.5]), we can easily
show that (i) implies (ii). In factf := Kq(-,&) — QR%})_[(’_’E) is a minimal harmonic
function onD, and so there existg € A (D) such thatK p(-,n) = f/f(xo) on D.
Hence we obtain that

o Lal,§)
2eD Kp(z,n)

and thus (3.1) follows from (3.2).
We next show that (ii) implies (i). We may assume thiat D is non-polar. Let

n € Ay(D) be a point such that

Zf(xo) >07

L . Kﬂ(xaf)
@ n[1)f 3}122, Kp(z,n) >0

By (3.2), we haveéK p (-, n) < a™'Kq(-,£) onD. This shows thak p (-, 1) is bounded
near each point 00D N Q. Also, Kp(-,n) vanishes quasi-everywhere 6 N

by Lemma 3.5. Thus(},(-,n) is well-defined as a subharmonic function @rand
is dominated byn "' Kq(-,¢) on Q. Letu = o 'Kq(-,€) — K5 (-,n). Thenu is

superharmonic of2. Sincef2 \ D is non-polar, there is a point 1 \ D at whichu is

positive. Therefore the minimum principle yields that positive orf2. Also, we find
that

. u J’J) 1 KD(%U) -1
inf ———=a " —sup —"—"~ <a -,
€N KQ(J?,&) weg KQ(£7€)
) u(z) 1 Kp(x,n) —1
inf ——~—=a"'— sup L2 =a ,
z€0\(DUF) Kq(z, &) sco\(pur) Ka(z,§)



whereF' is a polar set irdD N €2 such thatK’},(-,n) > 0 on F'. Hence it follows from

Lemma 3.3 thaf2 \ (D U F') is minimally thin at¢ with respect td?, and so i€2 \ D.
We finally show the uniqueness gfe A;(D). We suppose to the contrary that

there existg € A, (D) suchthatp (-, () < BKq(-, &) onD andKp(-, () is different

from Kp(-,n) := v(Kal(-,€) 79}2?(?2?"5)) , where3 andy are some positive constants.
We may assume thatis the smallest number satisfyidgp (-, ¢) < 8Kq(-,£) onD.
Since¢ € A(), it follows that 3K q (-, £) is the least harmonic majorant &f7, (-, ¢)
on (). Let W be a Martin topology neighborhood ¢fwith respect taD such thaty is
apart fromW. ThenW N D is minimally thin atn with respect taD. Thus minimal
thinness of2 \ D at¢ with respect td?, together with Lemma 3.4, yields thét N D
is minimally thin at¢ with respect td?.

On the other hand, sind® N D is not minimally thin at¢ with respect taD, we
have that

Kp(¢) = PRIV < BRI < BREL g onD.

Since 8K q (-, €) is the least one among superharmonic functiansn Q2 satisfying
Kp(-,¢) < uon®, we have’Ri 17, = Ka(-,€) on €, so thatW N D is not
minimally thin at¢ with respect td2. Thus we obtain a contradiction, and hence the

uniqueness off € A, (D) is established. The proof of Lemma 3.1 is complete. [

4 Proofs of Theorem 2.1 and Corollary 2.3

We give proofs of Theorem 2.1 and Corollary 2.3.

Proof of Theorem 2.1In order to prove the first assertion, we assumedha(® N )
is minimally thin at¢ with respect tob. Letn € A;(® N ¥) be the point such that

Konw (1) = a(Ks(-,€) — (bR}}}g-,s))

on® N ¥ for some positive constamat. Then, by Lemma 3.1 witth := & N ¥ and
Q := ® and Remark 3.2, we find that the minimal fine limit&& (-, &)/ Konw (-, n) at
71 with respect teb N ¥ exists and
. K@(x7 g)
0< qf%fy_il_% Kanw (@.1) < 00. (4.1)

It also follows from [1, Theorem 9.3.3] thdfy (-, ¢)/Kaonw (-, 1) has a finite minimal
fine limit atn with respect tod N ¥. The minimal thinness o \ (® N ¥) at{ with
respect tod, together with Lemma 3.4 witlh := & N ¥ and(? := &, allows us to
conclude thaf{y (-, ¢)/Kas(+, &) has a finite minimal fine limit a with respect tob.

To prove (i), we assume in addition thé&t\ (® N ¥) is not minimally thin at¢
with respect tol. Then Lemma 3.1 wittD := & N ¥ and() := ¥ shows that for any
n € A1 (® N W), the minimal fine limit in (3.1) is zero. Therefore we have that

mf - lim 71{\11(1:’ S

=0.
PNY x—n Kq;m\p(l',n)
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Hence (i) follows from (4.1) and Lemma 3.4 wifh := & N ¥ and() := ®.
To prove (ii), we assume in addition thét\ (® N ¥) is minimally thin at¢ with
respect tol, where( is the point inA; (¥) such that (2.1) is satisfied. We note from

(2.1) thatKenw (-, 7) is also written agd( Ky (-, ¢) — ‘I’R}I'(\q(’ ) on@ N T for some
positive constan. Then, by Lemma 3.1 witlh := & N ¥ and(? := ¥ and Remark
3.2, we find that the minimal fine limit of(y (-, ¢)/Kenw (-, n) atn with respect to

® N ¥ exists and
Ky(z,()

0< mf -lim ——"— < .
e NY xz—n Kq;.ﬂ\p(.%‘ 77)

Therefore (ii) follows from (4.1) and Lemma 3.4 wifh := & N ¥ and() := .
To prove (i), we assume in addition thét\ (® N ¥) is minimally thin at¢ with
respect to¥, where( is a point inA;(¥) such that (2.1) is not satisfied. Then the

normalizationK ¢y (-, w) of Kg(-,() — ‘I’R}I’(\q(’ 0 at a reference point is a minimal
Martin kernel of® "W, but is different froqumq,( 7). We note from the uniqueness
in Lemma 3.1 that for onlyw € A(® N ¥), Kg(-,¢)/Kanu(-,w) has a positive

minimal fine limit atw with respect tad N ¥. Therefore we have that

mf - lim 7[(\1,(:5,()

=0.
e NY xz—n qu\y(x, 77)

Hence (jii) follows from (4.1) and Lemma 3.4 with := & N ¥ and(2 := &. Thus
Theorem 2.1 is established. O

Proof of Corollary 2.3.Lety € 9 N 9¥. We first show (i). By Theorem 2.1 (i) and
Lemma 3.4, we find thak'y (-, v) / K& (-, y) has minimal fine limi0 aty with respect to
® N . Since the non-tangential regidN(y) is not minimally thin aty with respect to
NV (see [8, Section 5)), the existence of the minimal fine limik&f (-, v) /Ko (-, y)
with respect tob N ¥ implies the existence of the non-tangential limit with respect to
® N ¥, and the both values coincide. Hence (i) follows.

We next show (ii). We observe thanp( ,y) and Ky (-, y) satisfy (2.1) ond N T,
sinceKs (-, y ‘I’R{’\‘I’ andKy (-, ‘I’R‘II;\‘I’_ are minimal harmonic functions
ondNv W|th pole aty 'Izherefore (i) follows from Theorem 2.1 (ii). O

5 Proof of Theorem 1.1

In order to prove Theorem 1.1, we collect lemmas on relationships between the con-
vergence of the integrals™, I~ in (1.1), (1.2) and minimal thinness of the differences
Qy \ R, RY \ Q4. See [7, Lemma 1 and Proof of Theorem 1] for Lemma 5.1 and [6,
Theorem 4.2] for Lemma 5.2.

Lemma 5.1. The following statements hold.
(i) It < ooifand only ifR” \ Q, is minimally thin at0 with respect taR’; .

(i) If I < ccandl~ = oo, thenQ, \ R is not minimally thin a0 with respect
to Q¢,.

10



Lemma5.2. LetQ2 be a Greenian domain iR™ containingR’; . Suppose tha® has a
unique Martin boundary point at infinity and it is minimal €\ @ is minimally thin
at oo with respect taR” := {(2/,z,,) : x, < 0}, thenQ \ R} is minimally thin atoo
with respect td).

Lemma5.3. If I~ < oo, thenQg \ R} is minimally thin at0 with respect td24 UR?; .

Proof. By Lemma 5.1, we see that, \M is minimally thin at0 with respect to

R™. Since minimal thinness is invariant under the inversion with respect to the unit
sphere, it follows from Lemma 5.2 th&¥, \ R} is minimally thin at0 with respect to

Qy URT. O

Lemma5.4.If T < coandl™ < oo, thenQ, \R": is minimally thin a0 with respect
to Q¢.

Proof. We note from Lemma 5.3 thdf, U R") \ R’ is minimally thin at0 with
respect td2, U R’ . Therefore we see from Lemmas 3.4 and 5.1 (Rt U R} ) \
is minimally thin at0 with respect td), UR” . Applying Lemma 3.4 again, we obtain
the lemma. O

Let us now prove Theorem 1.1.

Proof of Theorem 1.1We can easily obtain (i) and (iii) from Corollary 2.3 with :=
R% andV¥ := Q4 and Lemmas 5.1 and 5.4. We show (ii). Siri€g, UR" ) \ R is
minimally thin at0 with respect td2, UR’; by Lemma 5.3, it follows from Lemma 3.1
with D := RY} andQ := Q,URY thatKq,ur» (-, 0)/Kr» (-, 0) has a positive minimal
fine limit at 0 with respect tdR’} . Thereforet"—lKQd)URi (te,0) has a positive limit
ast — 0+. Also, it follows from Lemmas 3.4 and 5.1 they U R ) \ Qg is not
minimally thin at0 with respect td2, U R”}. Therefore we have by Lemma 3.1 with
D := Q4 andQ) := Qg UR" thatKQ¢UR1(~,O)/KQ¢(-,O) has minimal fine limit)
at 0 with respect td;, and soKq, (te, 0)/ Kq,ur: (te, 0) has limitoo ast — 0+.
Thus we conclude that'~' Kq, (te, 0) has limitco ast — 0+. O

Remark5.5. For a non-Lipschitz functiom, a relationship between the convergence
of the integrall ™ and minimal thinness of the differen€k, \ R”; was recently studied
in [10].
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Note added in the proof

Recently, we have obtained a relationship between the boundary decay rate of the
Green function and the growth rate of the Martin kernel (Estimates for the products
of the Green function and the Martin kernel, Nagoya Math. J., to appear).
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