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Abstract

We study Martin boundary points of cones generated by spherical John regions.
In particular, we show that such a cone has a unique (minimal) Martin boundary
point at the vertex, and also at infinity. We also study a relation between ordinary
thinness and minimal thinness, and the boundary behavior of positive superhar-
monic functions.
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1 Introduction

We work in the Euclidean spad®®, wheren > 3. Let() be a subdomain dR™ and

G, stand for the Green function f&2. Let zy € Q be fixed, and let be a bound-

ary point of Q. Suppose now thafy;} is a sequence if2 converging tof. Then,

for each bounded open setsuch thatzy € w andw C £, there isj, such that
{Ga(,y5)/Galro, ;) }52;, is a uniformly bounded sequence of positive harmonic
functions inw. Therefore some subsequencd 6%, (-, y;)/Ga(zo,y;)},; converges to

a positive harmonic function if. All limit functions obtained in this way are called
Martin kernels at¢ or Martin boundary points at. Note that the number of Martin
boundary points a depends on geometry 6f near¢, so it is not necessarily unique.
We say that a positive harmonic functiéris minimalif every positive harmonic func-
tion less than or equal th coincides with a constant multiple &f If a Martin kernel

is minimal, then we call it a minimal Martin kernel or a minimal Martin boundary
point. There have been many investigations for minimal Martin boundary points of
several types of domains. For instance, every Euclidean boundary point of Lipschitz
domains [11], NTA domains [12] or uniform domains [2], has a unique Martin bound-
ary point and it is minimal. See also [4] and [3] for other domains. For Denjoy domains



[7, 10, 16], Lipschitz-Denjoy domains [5, 8], sectorial domains [9] and quasi-sectorial
domains [15], there are criteria for the number of minimal Martin boundary points at
a fixed Euclidean boundary point. In [3], Aikawa, Lundh and the author investigated
the number of minimal Martin boundary points at each Euclidean boundary point of a
John domain. An open subgetof R™ is said to be a John domain with John constant
C; and John centeKj if each pointz in 2 can be connected t&, by a rectifiable
curve~ in 2 such that

dist(z,0Q) > Cjl(y(x,z)) forall z € ~, (1.1)

wherel(~(x, z)) denotes the length of the subaygr, ) of v connectinge to 2, and

dist(z, 092) stands for the distance fromto the Euclidean bounda®? of Q2. John
domains include domains stated above and domains with fractal boundaries. Each
Euclidean boundary point of a John domain may have many minimal Martin boundary
points, but its number is finite.

Theorem A. Let() be a John domain with John constar;. The following statements
hold:

(i) The number of minimal Martin boundary points at every poini@fis bounded
by a constant depending only ary.

(i) If Cy > /3/2, then there are at most two minimal Martin boundary points at
every point ob{2.

The bound”; > /3/2 in (ii) is sharp (cf. [3, Remark 1.1]). However, the number
of minimal Martin boundary points at a given Euclidean boundary point can not be
determined in terms of the John constaht

In this note, we will consider a cone generated by a (relatively) open subset of the
unit sphere with a John property, and will study Martin boundary points at the vertex
and at infinity. Forz € R™ andr > 0, let B(z,r) andS(z, r) denote the open ball and
the sphere of centerand radius-, respectively. Wher = 0, we write B(r) and.S(r)
to abbreviate the notation. Let € S(1). We say that a connected (relatively) open
subset’ of S(1) is a John region of centey, if there exists a positive constant with
the following property: for each € V there is a rectifiable curvgin V' connectinge
to zo such that

dist(z, S(1)\ V) > cjl(y(x,2)) forall z € ~. (1.2)

Throughout the note, we cdll a cone (with vertex at the origin) generated by a John
baseV of centerz if V' is a John region it$ (1) of centerz, and

F:{xeR”\{O}:meV}.

2|
Our result is as follows.

Theorem 1.1. LetT" be a cone generated by a John basef centerxy. Then there
exists a unique Martin kernét-(-, 0) at the origin and it is minimal. Also, there exists



a unique Martin kerneKT(-, oo) at infinity and it is minimal. Furthermore, there exist
a positive continuous functiohonV andp > n — 2 such that forx € T,

Kr(z,0) = |z| P f(x/|z]) and Kr(z,00) = |z|* " f(x/|z]). 1.3)

Theorem 1.1 is an extension of Kuran’s result [13, Theorem 1]. He considered
an NTA cone, i.e. a conE such thatl’ N B(1) is an NTA domain in the sense of
Jerison and Kenig [12]. The boundary Harnack principle and the uniqueness theorem
obtained in [12] was applied to a bounded NTA domiainB(1) in his arguments. Itis
noteworthy that cones generated by John bases do not satisfy, in general, the boundary
Harnack principle at a given boundary point. For examplel'let {x € R™ \ {0} :
x/|z| € S(1) \ v}, wherey is a closed arc ir6(1) with endpointsa,b. Then the
boundary Harnack principle does not hold at every pointine R™ \ {0} : z/|z| €
v\ {a,b}}. We will show the boundary Harnack principle at the origin, using ideas
from our previous paper [3].

The rest of the note is organized as follows. In Section 2, we will give a proof
of Theorem 1.1. In Section 3, we will show the equivalence of the ordinary thinness
and the mininal thinness of a set contained in a subcong, and will show that
there is no positive superharmonic functieim a domain, which contains, such that
|z|Pu(x) — 400 asxz — 0 along a subcone df, wherep is the homogeneous degree
of Kp(-,0) in Theorem 1.1.

Throughout the note, we use the symbbto denote an absolute positive constant
whose value is unimportant and may change from line to line. If necessary, we use
C1,Cs, - - - to specify them.

2 Proof of Theorem 1.1

We start by recalling the Harnack inequality involving the quasi-hyperbolic metric. Let
x andy be points in a subdomain of R™. The quasi-hyperbolic metric dnis defined

by
. ds(2)
ka(x,y) = “f[y dist(z,0)’

where the infimum is taken over all rectifiable curvem 2 connectingr to y andds
stands for the line element on We say that a finite sequence of ba{lB(xz;, 27!
dist(z;,0Q)) §V:1 is a Harnack chain betweenandy if x; =z, zy = y andz; 41 €
B(zj,27 dist(z;,09)) for j = 1,--- , N — 1. The numbetV is called the length of

the Harnack chain. We observe that the infimum of the lengths of the Harnack chains
betweenz andy is comparable tdq(z,y) + 1. Therefore the Harnack inequality
yields the following.

Lemma 2.1. There exists a constait > 1 depending only on the dimensiansuch
thatifx,y € Q, then

=

z)
(y)

exp(—Cl(kq(z,y) +1)) < < exp(C(ka(z,y) + 1))

20 =

for every positive harmonic functignin



We next recall the notion, a system of local reference points of aMiésee [3,
Definition 2.1] for details). We need the ca¥e= 1.

Definition 2.2. Let0 < n < 1. We say that € 99 hasa system of local reference
points of orderl with factor if there existre > 0 andC¢ > 1 with the following
property: for each positive < r, there isy, € QN S(&, r) such thatdist(y,., 0Q) >
C¢'rand

r
kQﬂB(f,n*?’r) ($, yr) < Cg 10g m + Cg forz e QN B(f, 7’]T) (21)

We should note that this notion controls the boundary behavior of positive harmonic
functions. Indeed, by Lemma 2.1 and (2.1), there exist cons@nts1 anda > 1
depending only om andC such that

h(z) < C (W) h(y.) forz e Qn B(E nr), (2.2)

wheneverh is a positive harmonic function if2 N B(&,n~3r). In view of this, we
would like to show the Carleson type estimate: i a positive and bounded harmonic
function inQ N B(¢,n~3r) vanishing oo N B(&, n~3r) except for a polar set, then

h(x) < Ch(y,) forxz € Qn B(&nr). (2.3)

To do this, we need to show that each poinf'im B(1) can be connected tey by a
curve satisfying (1.1), and that the origin has a system of local reference points of order
1.

Lemma 2.3. LetT" be a cone generated by a John bdseof centerzy. Then each

z € I'N B(1) can be connected te, by a rectifiable curvey inI' N B(1) such that

dist(z,0T) > C1(v(x,2)) forall z € v, (2.4)
where( is a positive constant depending only Bn

Proof. Letz € I' N B(1). Then, by the definition o¥’, there is a rectifiable curve
in V connectinge/|x| to ¢ and satisfying (1.2). Let. be the image of/’ under the
dilation mappinge/|x| to z. Theny,, is the curve il"'N S(|x|) € I'N B(1) connecting
z to |z|zo and satisfies that for € 7,

dist(z, 0T") = |z| dist(z/|z|, OT")

> D el ) = D).

Indeed, the above inequality can be shown as followsistf(z /|z|, OT') = dist(z/|z|,{0})
= 1, then we have by (1.2)

o WGl /) (el 2/la)
dist(=/1el. O0) = Gerta lal 2 lel)) = o dist(z/Jal, S() \ V)
> S (@/lal. 2/ |z]).



If dist(z/|x|, OT) # dist(z/|z|, {0}), thenthere iy € o'\ {0} such thatlist(z/|x|, OT")
= |z/|z| — y|. Then the angle/y0z must be less tham/2. Therefore we have by (1.2)

1

dist(z/|z,0T) = |z/|z| — y/lyll cos(27" £y02) > NG

dist(z/|z[, S(1) \ V)
2 0 (/] 2/|2]))-

Lety = ~. U [|z|xo, zo], Where[|z|zg, zo] denotes the line segment betwdetr,
andx. To complete the lemma, it suffices to show (2.4) fof [|x|zo,x0]. Letw €
[|z|xo, zo]. Sincedist(|z|xo,dT) < |z| < |w], it follows from (2.5) withz = |z|zo
that

2
Uy (z,w)) = U(,) + lzlzo — w] < — dist(Jz|zo, OT) + |w|
J
2 2 dist(w, oT")
<(Zq1)w = (= +1) 0T
- (CJ i ) ol <CJ + ) dist(xq, OT")
Hence the lemma holds with; = (2¢;* 4 1)~! dist(zg, 9T). O

Lemma 2.4. LetT" be a cone generated by a John bdseof centerxzy. Then there
exists a positive constait, depending only ol such that

,
krapr (2, r20) < C2log Tt (2,90 +Cy forxzeT nB(r),

,0r)
whenever > 0. In other words, the origin has a system of local reference points of
order1.

Proof. Letr > 0. We note that the conclusion in Lemma 2.3 is invariant under dilation
sincel is the cone. Therefore we see that for each I' N B(r) there is a curve in
I' N B(r) connectinge to rzq such that

dist(z,0(I' N B(2r))) = dist(z,0I") > C1(~(x, z)) forall z € ~.

Sincel(vy) < C7 dist(rag, OT) = Cy 'r dist(zg, IT), we have

ds(z) 1 /“7) dt
k N re) < | ——5— <1+ — -
rnBe )( O) ¥ dlSt(Z, 8F) Ch 2— 1 dist(z,0T") t

< Cql + (o,

r
o8 dist(x, dI")
where a constant; depends only o, anddist(xzo,dT"). Thus the lemma follows.
O

From now on, we suppose thitis a cone generated by a John base of cenjer
Using Lemmas 2.3 and 2.4 and repeating similar arguments to [3, Lemmas 5.1 and
6.1], we can obtain Lemmas 2.5 and 2.7 below. We say that a property holds quasi-
everywhere if it holds apart from a polar set.



Lemma 2.5(Carleson type estimateletr > 0. Suppose thdt is a positive harmonic
function inT" N B(2r) vanishing quasi-everywhere @' N B(2r). If k is bounded in
I'n B(2r), then

h(z) < Ch(rzg) forz eI N B(2~1r),
where a constant’ is independent of, h andr.

Remark?2.6. First, we could prove Lemma 2.5 for sufficiently smalbay0 < r < rg.
If » > ro andh satisfies the assumptions in Lemma 2.5, th(afg-) satisfies

h(;-x) < Ch(;=rozo) = Ch(rzo) forz € I'nB(271r).
Hence Lemma 2.5 holds for all> 0.

Let w(x, E, D) denote the harmonic measure of a Borel Bdbr an open seD
evaluated at.

Lemma 2.7. Letr > 0. If h is a positive and bounded harmonic functiorfim B(2r)
vanishing quasi-everywhere &' N B(2r), then

h) forz e T N B(3~1r),

wxz,TNnS2 '), I NnBE2 ) <C

where a constant’ is independent of, h andr.

As a consequence of these lemmas, we can obtain the following Boundary Harnack
principle at the origin. For two positive functiorfs and f,, we write f; ~ f if there
exists a constan® > 1 such thatC~1f; < f» < Cfi. The constanC is called the
constant of comparison.

Lemma 2.8(Boundary Harnack principle)Letr > 0. If h; and hs are positive and
bounded harmonic functions InN B(2r) vanishing quasi-everywhere & N B(2r),

then ) )
1(y 1(y / STCES Y
~ fory,y’ e TN B(3~1r),
ha(y) — ha(y') 37

where the constant of comparison is independent gf, 1, hy andr.

We note again that this Boundary Harnack principle holds only at the origin, that is,
it does not hold at other boundary points in general. So we can not apply the arguments
in [2, Lemma 4 and Proof of Theorem 3] to prove the first statement in Theorem 1.1.
We need the following lemma.

Lemma 2.9. Let 2 be a subdomain oR™ with n > 2, and let§ € 9. Suppose
that h is a positive harmonic function ift such thath vanishes quasi-everywhere on
o0\ {¢} andlim, o h(z) = 0 when( is unbounded. If is bounded i \ B(,r)
for eachr > 0, then the measure associated within the Martin representation is
concentrating on minimal Martin boundary pointséat



Proof. Let A andA; denote the Martin boundary and the minimal Martin boundary of
Q, respectively, andl, stand for the Martin kernel dd. By the Martin representation,
there is a unique measutg on A such thau, (A \ A;) = 0 and

h(z) = /AKgl(x,y)duh(y) forz € Q.

We now writeA (&) for the set of all Martin boundary points &tLet E be a compact
subset oA\ A(¢), and let{ E; } be a decreasing sequence of compact neighborhoods of
E in the Martin compactification d? such thaf); £; = E'and(E1NQ)NB(E, 1) =

() for somer; > 0. Then, for each € N, we have by [6, Corollary 9.1.4]

HE;NQ ~FE.NOQ
R}LJ” (z) = /A RKiS.,y)(ﬁ)d/lh(y) forxz € Q,
1

Whereﬁf denotes the regularized reduced function of a positive superharmonic func-
tion v relative toF in §. By assumption oh, we see thalim; . Rthm is a bounded

harmonic function im2 vanishing quasi-everywhere @lf2. The maximum principle

giveslim; ﬁf’m = 0. Thus we have by the monotone convergence
0= lim R (o) = / Jim Ry (wo)dun(y). (2.6)
—00 Aq — 00 ?

If y € ENAq, thenE; NQis not minimally thin aty for eachy (cf. [6, Lemma 9.1.5]).
Therefore we have

~E;NQ

jlij& Ry p(@0) = Ka(zo,y) =1 fory e ENA,.
Hence this, together with (2.6), concludeg £) = 0, and squ, (A\(A(§)NA1)) = 0.
Thus the lemma follows. O

Let us give a proof of Theorem 1.1.

Proof of Theorem 1.1We first show that the origin has at most one minimal Martin
boundary point. Let andrn be minimal Martin boundary points at the origin. Then,
by definition, there are sequencgg } and{y;} in I converging to the origin such
thatGr(-,y;)/Gr(zo, y;) — Kr(,§) andGr(-,y;)/Gr(zo, y;) — Kr(-,n) asj —

oo. Here Kr(-, &) denotes the Martin kernel correspondingétoLet » > 0 and let

xz € I'\ B(3r). We apply Lemma 2.8 td; = Gr(z,-) andhy = Gr(zo,-), and let

j — oo. Then we havekr(z,¢) = Kr(z,n). Since the constant of comparison is
independent of, it follows that Kr(-, &) ~ Kr(-,n) on whole ofl". By minimality
andKr(zo,&) =1 = Kr(xo,n), we obtainKr(-,£) = Kr(-,n), and hencé€ = 1. To
complete the first statement of the theorem, it is enough to show that Martin boundary
points at the origin are minimal. But this follows from Lemma 2.9. Indeed,if a
Martin boundary point at the origin artd< » < 371, then Lemma 2.8 yields that

_ Gr(z,3 ') —

Kr(z,() =~ Gr (0.3~ 1rz0) forxz € T'\ B(3r).

7



HenceKr (-, ¢) satisfies the assumptions in Lemma 2.9, and sominimal. Also, by

the Kelvin transfomation with respect #{1), we observe that there is a unique Martin
boundary point at infinity and it is minimal. The last statement of the theorem can be
obtained by the similar way to [13, p. 472]. O

3 Further results

Let F be a subset dR™ and let¢ € R™ be a limit point of E. We say that¥ is thin

at¢ (in the ordinary sense) if there exists a positive superharmonic funatioriR™
such thatu(¢) < +oo andu(z) — 400 asz — £ alongE. The original definition of
minimal thinness by Nian is based on the regularized reduced function of the Martin
kernel. We define minimal thinness by the following equivalent condition (cf. [6,
Theorem 9.2.7]). Let be a minimal Martin boundary point of a domdhand let

E be a subset of2, where¢ is a Martin topology limit point ofE. We say thatZ is
minimally thin até with respect td if there exists a Green potenti@l, . in €2 such
that [ Kqo(z,&)du(z) < 400 andGopu(y)/Ga(zo,y) — +oo asy — £ alongE in

the Martin topology. For a subsét of R™, we writeT'(E) = {ry : r > 0,y € E}.
Note from Theorem 1.1 that a unique minimal Martin boundary poirit atay be
identified with the Euclidean boundary point

Theorem 3.1. LetT" be acone generated by a John basef centerzy. LetU be a
subset 0f5(1) such that ¢ V, and suppose thak is a subset of (U). ThenE is
thin at0 if and only if £ is minimally thin at0 with respect td".

This was first proved in the half-space by Lelong-Ferrand [14], and was extended
by Aikawa [1] to a Lipschitz domain. To prove Theorem 3.1, we need the following
estimates.

Lemma 3.2. LetT" be a cone generated by a John basef centerz,, and letU be a
subset of5(1) such thaty C V. The following statements hold:

(i) Forz e T(U)N B(671),
Gr(z, o) Kr(z,0) = |z[*7", (3.1)

where the constant of comparison is independent of
(i) Forz e T(U)N B(671) andy € T'(U) N B(3|z|),

Gr(z,z0)Gr(z,y) 2—
~ oy, 3.2
Gr(zo,y) ==l 52

where the constant of comparison is independentanfidy;
(i) Forz e TN B(671)andy € T(U)N (B(271) \ B(3|z])),

GF(xaCCO)GF(x7ZU) < C|$ _ y|2—n (33)
Gr(zo,y) N 7

where a constant’ is independent of andy.




To apply Lemma 2.1 to the Green function, we need the following:4f(2, then
kov (o1 (2,y) < Bkg(z,y) + 7 forz,y € Q\ B(z,27" dist(z,0Q)). (3.4)
The proof of this inequality may be found in [3, Lemma 7.2].
Proof of Lemma 3.2(i) We observe from the Harnack inequality that
Kr(6™'29,00) ~ 1 and Gr(6™ g, xq) = dist(xg, OT)* ™.
By Lemma 2.8 and (1.3), we have forc I' N B(671),

. Gr(w,mg) _  Kr(z,00)
GF(I,xO) - GF(G_lmo,SC()) - KF(G_IQT(),OO)

T 2—n
~ Kr(x,00) = [lr|(m’0)f(l"/l"|)2

Sincef is positive and continuous di, we obtain (3.1) for: € T'(U) N B(671).

(i) Letz € T(U) N B(671) andy € T'(U) N B(3|z|). We will consider three
cases.
Case I |y| < 6 !|z|. By Lemma 2.8 and (3.1), we have

Gp(x,y)
GF(x()vy)
Since|x| = |x — y|, we obtain (3.2) in this case.

Case 2 |y| > 671|z| and|y—z| > 2~ ! dist(z, OT). Sincedist(y, ') > |y| dist(U, o)
anddist (671 |z|zg, OT) = 6~ !z|dist(xo, ) > 18 !|y|dist(wo, L), we have by
Lemma 2.4

Gr(z,x0) ~ Gr(z,z9)Kr(z,0) = \J;|2_".

krap (67 2|20, y) < krapa) (67 z|zo, [ylzo) + krasa) (¥, [ylzo)

| |y
< Oyl Col 2C:
= 02008 G (6 aleo,aT) T 28 Gisi(y,am) T 27

<C.

Therefore Lemma 2.1, together with (3.4), gives

Gr(x,y) = Gr(z,6™'|zlzo) and Gr(zo,y) ~ Gr(zo,6 '[x]zo).
Since|z — 67 |x|zo| ~ |z — y|, we obtain from Case 1 that

Gr(z,x0)Gr(z,y) _ Gr(z,z0)Gr(z, 6~ |z]zo)
Gr(zo,9) Gr(zo, 6~ z[xo)

Case 3 [y—z| < 271 dist(z, o). By the Harnack inequalityzr(z, 7o) ~ Gr(y, xo).
SinceGr(z,y) ~ |z — y|*>~™ in this case, we obtain (3.2).

(i) Letz e TN B(67Y) andy € T(U) N (B(271) \ B(3|z])). By Lemma 2.5,
we haveGr(z, ) < CGr(|y|zo, zo). It follows from Lemma 2.4 andist(y, oI") >
ly| dist(U, 9I') thatkpn ) (y, [y|zo) < C, and so Lemma 2.1 giveSr(|y|zo, zo) ~
Gr(y,zo). Hence

GF(‘ra IO)GF(’IMy)
Gr(zo,v)
The proof of the lemma is complete. O

~ |z -y

< CGr(z,y) < Cla —y|* ™.



Let f%lE denote the regularized reduced function of the constant funttietative
to Ein R™.

Proof of Theorem 3.1We may assume, without loss of generality, thas a limit
pointof E andE C B(6~1). We first assume thdt is thin at0. By Wiener’s criterion
(cf. [6, Theorem 7.7.2]), there exists a sequeficg of positive numbers such that

lim aj =400 and Zajﬁfj (0) < +o0,
WhereE ={z € F:2797! <|z| <277} Letdy,(z) = Gr(z,zo)du,(x), where
R1 = [ |z —y|>"du;(y). Sinceu; is supported ok, it follows from (3.2) that

GFVJ (y)
Gr(zo,y)

Thenu(y) = Zj 1 a;Grv;(y) is a Green potential it such thaw(y)/Gr(zo,y) —
+oo asy — 0 alongE \ F, whereF is a polar set. We also have by (3.1)

Zaj /Kp(a:,O)dl/j(x) < C’Zajf%fj (0) < +o0.
j=1 j=1

HenceE \ F' is minimally thin at0 with respect td", and so isF.

We next assume thdf is minimally thin at0 with respect tol'. Then there is
a measurg, supported o’ (U) N B(6-') such that| Kr(z,0)du(z) < +oo and
Gru(y)/Gr(xo,y) — +oo asy — 0alongE. Letdv(z) = Gr(z,z0) tdu(z).
Then we have by (3.2) and (3.3)

1= RlE]( )< C for quasi-every € E;.

Gru(y)

< 2—n
Gr@o.v) C’/\x yl*"dv(z) fory e E,

and sof |z — y|* "dv(z) — +oo asy — 0 alongE. Also, we have by (3.1)

/|x\2_”dl/(a:) < C/Kp(m,O)du(a:) < 400.

HenceF is thin at0. The proof is complete. O

Corollary 3.3. LetI" be a cone generated by a John base, and supposefthsta
non-polar set such that’ C T'. Thenl'(E) is not minimally thin ab with respect td".

Proof. Letr > 0 and letrE = {ry : y € E}. Observe thakZ(z) = R7Z(rz) for
x € R™, SinceFE is non-polar, we have

RP(0) = RF(0) >0 forallr > 0.
This shows thal'(£) is not thin at0. Hence Theorem 3.1 concludes tiigt) is not
minimally thin at0 with respect td". O

10



Theorem 3.4. LetI" be a cone generated by a John base, and suppos&hiata
domain such thaf' N B(1) C QL and0 € 99. If E is a non-polar set such tha C T,
then there is no positive superharmonic functioim 2 such that

lim  |z[Pu(z) = +oo, (3.5)
z—0,z€l'(E)

wherep > 0 is the homogeneous degreefof (-, 0) in Theorem 1.1.

Proof. Let w be a positive superharmonic function §a By [6, Theorem 9.3.3],
u/Kr(-,0) has a finite minimal fine limit at 0 with respect td". That is, there exists
a subsetr of T, minimally thin at0, such that(z)/Kr(x,0) — [ asz — 0 along

I' \ F. By Corollary 3.3, we can find a sequenge;} in I'(E) \ F converging to0
such thatu(x;)/Kr(z;,0) — | asj — oco. Hence there is no positive superharmonic
function inQ satisfying (3.5). O
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