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Abstract

We study Martin boundary points of cones generated by spherical John regions.
In particular, we show that such a cone has a unique (minimal) Martin boundary
point at the vertex, and also at infinity. We also study a relation between ordinary
thinness and minimal thinness, and the boundary behavior of positive superhar-
monic functions.
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1 Introduction

We work in the Euclidean spaceRn, wheren ≥ 3. Let Ω be a subdomain ofRn and
GΩ stand for the Green function forΩ. Let x0 ∈ Ω be fixed, and letξ be a bound-
ary point ofΩ. Suppose now that{yj} is a sequence inΩ converging toξ. Then,
for each bounded open setω such thatx0 ∈ ω and ω ⊂ Ω, there isj0 such that
{GΩ(·, yj)/GΩ(x0, yj)}∞j=j0

is a uniformly bounded sequence of positive harmonic
functions inω. Therefore some subsequence of{GΩ(·, yj)/GΩ(x0, yj)}j converges to
a positive harmonic function inΩ. All limit functions obtained in this way are called
Martin kernels atξ or Martin boundary points atξ. Note that the number of Martin
boundary points atξ depends on geometry ofΩ nearξ, so it is not necessarily unique.
We say that a positive harmonic functionh is minimal if every positive harmonic func-
tion less than or equal toh coincides with a constant multiple ofh. If a Martin kernel
is minimal, then we call it a minimal Martin kernel or a minimal Martin boundary
point. There have been many investigations for minimal Martin boundary points of
several types of domains. For instance, every Euclidean boundary point of Lipschitz
domains [11], NTA domains [12] or uniform domains [2], has a unique Martin bound-
ary point and it is minimal. See also [4] and [3] for other domains. For Denjoy domains
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[7, 10, 16], Lipschitz-Denjoy domains [5, 8], sectorial domains [9] and quasi-sectorial
domains [15], there are criteria for the number of minimal Martin boundary points at
a fixed Euclidean boundary point. In [3], Aikawa, Lundh and the author investigated
the number of minimal Martin boundary points at each Euclidean boundary point of a
John domain. An open subsetΩ of Rn is said to be a John domain with John constant
CJ and John centerX0 if each pointx in Ω can be connected toX0 by a rectifiable
curveγ in Ω such that

dist(z, ∂Ω) ≥ CJ`(γ(x, z)) for all z ∈ γ, (1.1)

where`(γ(x, z)) denotes the length of the subarcγ(x, z) of γ connectingx to z, and
dist(z, ∂Ω) stands for the distance fromz to the Euclidean boundary∂Ω of Ω. John
domains include domains stated above and domains with fractal boundaries. Each
Euclidean boundary point of a John domain may have many minimal Martin boundary
points, but its number is finite.

Theorem A. LetΩ be a John domain with John constantCJ . The following statements
hold:

(i) The number of minimal Martin boundary points at every point of∂Ω is bounded
by a constant depending only onCJ .

(ii) If CJ >
√

3/2, then there are at most two minimal Martin boundary points at
every point of∂Ω.

The boundCJ >
√

3/2 in (ii) is sharp (cf. [3, Remark 1.1]). However, the number
of minimal Martin boundary points at a given Euclidean boundary point can not be
determined in terms of the John constantCJ .

In this note, we will consider a cone generated by a (relatively) open subset of the
unit sphere with a John property, and will study Martin boundary points at the vertex
and at infinity. Forx ∈ Rn andr > 0, letB(x, r) andS(x, r) denote the open ball and
the sphere of centerx and radiusr, respectively. Whenx = 0, we writeB(r) andS(r)
to abbreviate the notation. Letx0 ∈ S(1). We say that a connected (relatively) open
subsetV of S(1) is a John region of centerx0 if there exists a positive constantcJ with
the following property: for eachx ∈ V there is a rectifiable curveγ in V connectingx
to x0 such that

dist(z, S(1) \ V ) ≥ cJ`(γ(x, z)) for all z ∈ γ. (1.2)

Throughout the note, we callΓ a cone (with vertex at the origin) generated by a John
baseV of centerx0 if V is a John region inS(1) of centerx0 and

Γ =
{

x ∈ Rn \ {0} :
x

|x|
∈ V

}
.

Our result is as follows.

Theorem 1.1. Let Γ be a cone generated by a John baseV of centerx0. Then there
exists a unique Martin kernelKΓ(·, 0) at the origin and it is minimal. Also, there exists
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a unique Martin kernelKΓ(·,∞) at infinity and it is minimal. Furthermore, there exist
a positive continuous functionf onV andp ≥ n − 2 such that forx ∈ Γ,

KΓ(x, 0) = |x|−pf(x/|x|) and KΓ(x,∞) = |x|2−n+pf(x/|x|). (1.3)

Theorem 1.1 is an extension of Kuran’s result [13, Theorem 1]. He considered
an NTA cone, i.e. a coneΓ such thatΓ ∩ B(1) is an NTA domain in the sense of
Jerison and Kenig [12]. The boundary Harnack principle and the uniqueness theorem
obtained in [12] was applied to a bounded NTA domainΓ∩B(1) in his arguments. It is
noteworthy that cones generated by John bases do not satisfy, in general, the boundary
Harnack principle at a given boundary point. For example, letΓ = {x ∈ Rn \ {0} :
x/|x| ∈ S(1) \ γ}, whereγ is a closed arc inS(1) with endpointsa, b. Then the
boundary Harnack principle does not hold at every point in{x ∈ Rn \ {0} : x/|x| ∈
γ \ {a, b}}. We will show the boundary Harnack principle at the origin, using ideas
from our previous paper [3].

The rest of the note is organized as follows. In Section 2, we will give a proof
of Theorem 1.1. In Section 3, we will show the equivalence of the ordinary thinness
and the mininal thinness of a set contained in a subcone ofΓ, and will show that
there is no positive superharmonic functionu in a domain, which containsΓ, such that
|x|pu(x) → +∞ asx → 0 along a subcone ofΓ, wherep is the homogeneous degree
of KΓ(·, 0) in Theorem 1.1.

Throughout the note, we use the symbolC to denote an absolute positive constant
whose value is unimportant and may change from line to line. If necessary, we use
C1, C2, · · · to specify them.

2 Proof of Theorem 1.1

We start by recalling the Harnack inequality involving the quasi-hyperbolic metric. Let
x andy be points in a subdomainΩ of Rn. The quasi-hyperbolic metric onΩ is defined
by

kΩ(x, y) = inf
γ

∫
γ

ds(z)
dist(z, ∂Ω)

,

where the infimum is taken over all rectifiable curvesγ in Ω connectingx to y andds
stands for the line element onγ. We say that a finite sequence of balls{B(xj , 2−1

dist(xj , ∂Ω))}N
j=1 is a Harnack chain betweenx andy if x1 = x, xN = y andxj+1 ∈

B(xj , 2−1 dist(xj , ∂Ω)) for j = 1, · · · , N − 1. The numberN is called the length of
the Harnack chain. We observe that the infimum of the lengths of the Harnack chains
betweenx andy is comparable tokΩ(x, y) + 1. Therefore the Harnack inequality
yields the following.

Lemma 2.1. There exists a constantC > 1 depending only on the dimensionn such
that if x, y ∈ Ω, then

exp(−C(kΩ(x, y) + 1)) ≤ h(x)
h(y)

≤ exp(C(kΩ(x, y) + 1))

for every positive harmonic functionh in Ω.
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We next recall the notion, a system of local reference points of orderN (see [3,
Definition 2.1] for details). We need the caseN = 1.

Definition 2.2. Let 0 < η < 1. We say thatξ ∈ ∂Ω hasa system of local reference
points of order1 with factor η if there existrξ > 0 andCξ > 1 with the following
property: for each positiver < rξ there isyr ∈ Ω ∩ S(ξ, r) such thatdist(yr, ∂Ω) ≥
C−1

ξ r and

kΩ∩B(ξ,η−3r)(x, yr) ≤ Cξ log
r

dist(x, ∂Ω)
+ Cξ for x ∈ Ω ∩ B(ξ, ηr). (2.1)

We should note that this notion controls the boundary behavior of positive harmonic
functions. Indeed, by Lemma 2.1 and (2.1), there exist constantsC > 1 andα > 1
depending only onn andCξ such that

h(x) ≤ C

(
r

dist(x, ∂Ω)

)α

h(yr) for x ∈ Ω ∩ B(ξ, ηr), (2.2)

wheneverh is a positive harmonic function inΩ ∩ B(ξ, η−3r). In view of this, we
would like to show the Carleson type estimate: ifh is a positive and bounded harmonic
function inΩ ∩ B(ξ, η−3r) vanishing on∂Ω ∩ B(ξ, η−3r) except for a polar set, then

h(x) ≤ Ch(yr) for x ∈ Ω ∩ B(ξ, η2r). (2.3)

To do this, we need to show that each point inΓ ∩ B(1) can be connected tox0 by a
curve satisfying (1.1), and that the origin has a system of local reference points of order
1.

Lemma 2.3. Let Γ be a cone generated by a John baseV of centerx0. Then each
x ∈ Γ ∩ B(1) can be connected tox0 by a rectifiable curveγ in Γ ∩ B(1) such that

dist(z, ∂Γ) ≥ C1`(γ(x, z)) for all z ∈ γ, (2.4)

whereC1 is a positive constant depending only onΓ.

Proof. Let x ∈ Γ ∩ B(1). Then, by the definition ofV , there is a rectifiable curveγ′

in V connectingx/|x| to x0 and satisfying (1.2). Letγ′
x be the image ofγ′ under the

dilation mappingx/|x| to x. Thenγ′
x is the curve inΓ∩S(|x|) ⊂ Γ∩B(1) connecting

x to |x|x0 and satisfies that forz ∈ γ′
x,

dist(z, ∂Γ) = |x|dist(z/|x|, ∂Γ)

≥ |x|cJ

2
`(γ′(x/|x|, z/|x|)) =

cJ

2
`(γ′

x(x, z)).
(2.5)

Indeed, the above inequality can be shown as follows: Ifdist(z/|x|, ∂Γ) = dist(z/|x|, {0})
= 1, then we have by (1.2)

dist(z/|x|, ∂Γ) =
`(γ′(x/|x|, z/|x|))
`(γ′(x/|x|, z/|x|))

≥ `(γ′(x/|x|, z/|x|))
c−1
J dist(z/|x|, S(1) \ V )

≥ cJ

2
`(γ′(x/|x|, z/|x|)).
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If dist(z/|x|, ∂Γ) 6= dist(z/|x|, {0}), then there isy ∈ ∂Γ\{0} such thatdist(z/|x|, ∂Γ)
= |z/|x|−y|. Then the angle∠y0z must be less thanπ/2. Therefore we have by (1.2)

dist(z/|x|, ∂Γ) = |z/|x| − y/|y|| cos(2−1∠y0z) ≥ 1√
2

dist(z/|x|, S(1) \ V )

≥ cJ√
2
`(γ′(x/|x|, z/|x|)).

Let γ = γ′
x ∪ [|x|x0, x0], where[|x|x0, x0] denotes the line segment between|x|x0

andx0. To complete the lemma, it suffices to show (2.4) forz ∈ [|x|x0, x0]. Let w ∈
[|x|x0, x0]. Sincedist(|x|x0, ∂Γ) ≤ |x| ≤ |w|, it follows from (2.5) withz = |x|x0

that

`(γ(x,w)) = `(γ′
x) + ||x|x0 − w| ≤ 2

cJ
dist(|x|x0, ∂Γ) + |w|

≤
(

2
cJ

+ 1
)
|w| =

(
2
cJ

+ 1
)

dist(w, ∂Γ)
dist(x0, ∂Γ)

.

Hence the lemma holds withC1 = (2c−1
J + 1)−1 dist(x0, ∂Γ).

Lemma 2.4. Let Γ be a cone generated by a John baseV of centerx0. Then there
exists a positive constantC2 depending only onΓ such that

kΓ∩B(2r)(x, rx0) ≤ C2 log
r

dist(x, ∂Γ)
+ C2 for x ∈ Γ ∩ B(r),

wheneverr > 0. In other words, the origin has a system of local reference points of
order1.

Proof. Let r > 0. We note that the conclusion in Lemma 2.3 is invariant under dilation
sinceΓ is the cone. Therefore we see that for eachx ∈ Γ ∩ B(r) there is a curveγ in
Γ ∩ B(r) connectingx to rx0 such that

dist(z, ∂(Γ ∩ B(2r))) = dist(z, ∂Γ) ≥ C1`(γ(x, z)) for all z ∈ γ.

Since`(γ) ≤ C−1
1 dist(rx0, ∂Γ) = C−1

1 r dist(x0, ∂Γ), we have

kΓ∩B(2r)(x, rx0) ≤
∫

γ

ds(z)
dist(z, ∂Γ)

≤ 1 +
1
C1

∫ `(γ)

2−1 dist(x,∂Γ)

dt

t

≤ C2 log
r

dist(x, ∂Γ)
+ C2,

where a constantC2 depends only onC1 anddist(x0, ∂Γ). Thus the lemma follows.

From now on, we suppose thatΓ is a cone generated by a John base of centerx0.
Using Lemmas 2.3 and 2.4 and repeating similar arguments to [3, Lemmas 5.1 and
6.1], we can obtain Lemmas 2.5 and 2.7 below. We say that a property holds quasi-
everywhere if it holds apart from a polar set.
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Lemma 2.5(Carleson type estimate). Letr > 0. Suppose thath is a positive harmonic
function inΓ ∩ B(2r) vanishing quasi-everywhere on∂Γ ∩ B(2r). If h is bounded in
Γ ∩ B(2r), then

h(x) ≤ Ch(rx0) for x ∈ Γ ∩ B(2−1r),

where a constantC is independent ofx, h andr.

Remark2.6. First, we could prove Lemma 2.5 for sufficiently smallr, say0 < r ≤ r0.
If r > r0 andh satisfies the assumptions in Lemma 2.5, thenh( r

r0
·) satisfies

h( r
r0

x) ≤ Ch( r
r0

r0x0) = Ch(rx0) for x ∈ Γ ∩ B(2−1r0).

Hence Lemma 2.5 holds for allr > 0.

Let ω(x, E,D) denote the harmonic measure of a Borel setE for an open setD
evaluated atx.

Lemma 2.7. Letr > 0. If h is a positive and bounded harmonic function inΓ∩B(2r)
vanishing quasi-everywhere on∂Γ ∩ B(2r), then

ω(x,Γ ∩ S(2−1r), Γ ∩ B(2−1r)) ≤ C
h(x)

h(rx0)
for x ∈ Γ ∩ B(3−1r),

where a constantC is independent ofx, h andr.

As a consequence of these lemmas, we can obtain the following Boundary Harnack
principle at the origin. For two positive functionsf1 andf2, we writef1 ≈ f2 if there
exists a constantC > 1 such thatC−1f1 ≤ f2 ≤ Cf1. The constantC is called the
constant of comparison.

Lemma 2.8(Boundary Harnack principle). Let r > 0. If h1 andh2 are positive and
bounded harmonic functions inΓ∩B(2r) vanishing quasi-everywhere on∂Γ∩B(2r),
then

h1(y)
h2(y)

≈ h1(y′)
h2(y′)

for y, y′ ∈ Γ ∩ B(3−1r),

where the constant of comparison is independent ofy, y′, h1, h2 andr.

We note again that this Boundary Harnack principle holds only at the origin, that is,
it does not hold at other boundary points in general. So we can not apply the arguments
in [2, Lemma 4 and Proof of Theorem 3] to prove the first statement in Theorem 1.1.
We need the following lemma.

Lemma 2.9. Let Ω be a subdomain ofRn with n ≥ 2, and letξ ∈ ∂Ω. Suppose
that h is a positive harmonic function inΩ such thath vanishes quasi-everywhere on
∂Ω \ {ξ} andlimx→∞ h(x) = 0 whenΩ is unbounded. Ifh is bounded inΩ \B(ξ, r)
for eachr > 0, then the measure associated withh in the Martin representation is
concentrating on minimal Martin boundary points atξ.
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Proof. Let ∆ and∆1 denote the Martin boundary and the minimal Martin boundary of
Ω, respectively, andKΩ stand for the Martin kernel ofΩ. By the Martin representation,
there is a unique measureµh on∆ such thatµh(∆ \ ∆1) = 0 and

h(x) =
∫

∆

KΩ(x, y)dµh(y) for x ∈ Ω.

We now write∆(ξ) for the set of all Martin boundary points atξ. Let E be a compact
subset of∆\∆(ξ), and let{Ej} be a decreasing sequence of compact neighborhoods of
E in the Martin compactification ofΩ such that

⋂
j Ej = E and(E1∩Ω)∩B(ξ, r1) =

∅ for somer1 > 0. Then, for eachj ∈ N, we have by [6, Corollary 9.1.4]

R̂
Ej∩Ω
h (x) =

∫
∆1

R̂
Ej∩Ω

KΩ(·,y)(x)dµh(y) for x ∈ Ω,

whereR̂F
u denotes the regularized reduced function of a positive superharmonic func-

tionu relative toF in Ω. By assumption onh, we see thatlimj→∞ R̂
Ej∩Ω
h is a bounded

harmonic function inΩ vanishing quasi-everywhere on∂Ω. The maximum principle
giveslimj→∞ R̂

Ej∩Ω
h ≡ 0. Thus we have by the monotone convergence

0 = lim
j→∞

R̂
Ej∩Ω
h (x0) =

∫
∆1

lim
j→∞

R̂
Ej∩Ω

KΩ(·,y)(x0)dµh(y). (2.6)

If y ∈ E∩∆1, thenEj ∩Ω is not minimally thin aty for eachj (cf. [6, Lemma 9.1.5]).
Therefore we have

lim
j→∞

R̂
Ej∩Ω

KΩ(·,y)(x0) = KΩ(x0, y) = 1 for y ∈ E ∩ ∆1.

Hence this, together with (2.6), concludesµh(E) = 0, and soµh(∆\(∆(ξ)∩∆1)) = 0.
Thus the lemma follows.

Let us give a proof of Theorem 1.1.

Proof of Theorem 1.1.We first show that the origin has at most one minimal Martin
boundary point. Letξ andη be minimal Martin boundary points at the origin. Then,
by definition, there are sequences{yj} and{y′

j} in Γ converging to the origin such
thatGΓ(·, yj)/GΓ(x0, yj) → KΓ(·, ξ) andGΓ(·, y′

j)/GΓ(x0, y
′
j) → KΓ(·, η) asj →

∞. HereKΓ(·, ξ) denotes the Martin kernel corresponding toξ. Let r > 0 and let
x ∈ Γ \ B(3r). We apply Lemma 2.8 toh1 = GΓ(x, ·) andh2 = GΓ(x0, ·), and let
j → ∞. Then we haveKΓ(x, ξ) ≈ KΓ(x, η). Since the constant of comparison is
independent ofr, it follows thatKΓ(·, ξ) ≈ KΓ(·, η) on whole ofΓ. By minimality
andKΓ(x0, ξ) = 1 = KΓ(x0, η), we obtainKΓ(·, ξ) ≡ KΓ(·, η), and henceξ = η. To
complete the first statement of the theorem, it is enough to show that Martin boundary
points at the origin are minimal. But this follows from Lemma 2.9. Indeed, ifζ is a
Martin boundary point at the origin and0 < r < 3−1, then Lemma 2.8 yields that

KΓ(x, ζ) ≈ GΓ(x, 3−1rx0)
GΓ(x0, 3−1rx0)

for x ∈ Γ \ B(3r).
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HenceKΓ(·, ζ) satisfies the assumptions in Lemma 2.9, and soζ is minimal. Also, by
the Kelvin transfomation with respect toS(1), we observe that there is a unique Martin
boundary point at infinity and it is minimal. The last statement of the theorem can be
obtained by the similar way to [13, p. 472].

3 Further results

Let E be a subset ofRn and letξ ∈ Rn be a limit point ofE. We say thatE is thin
at ξ (in the ordinary sense) if there exists a positive superharmonic functionu in Rn

such thatu(ξ) < +∞ andu(x) → +∞ asx → ξ alongE. The original definition of
minimal thinness by Näım is based on the regularized reduced function of the Martin
kernel. We define minimal thinness by the following equivalent condition (cf. [6,
Theorem 9.2.7]). Letξ be a minimal Martin boundary point of a domainΩ and let
E be a subset ofΩ, whereξ is a Martin topology limit point ofE. We say thatE is
minimally thin atξ with respect toΩ if there exists a Green potentialGΩµ in Ω such
that

∫
KΩ(x, ξ)dµ(x) < +∞ andGΩµ(y)/GΩ(x0, y) → +∞ asy → ξ alongE in

the Martin topology. For a subsetE of Rn, we writeΓ(E) = {ry : r > 0, y ∈ E}.
Note from Theorem 1.1 that a unique minimal Martin boundary point at0 may be
identified with the Euclidean boundary point0.

Theorem 3.1. Let Γ be a cone generated by a John baseV of centerx0. LetU be a
subset ofS(1) such thatU ⊂ V , and suppose thatE is a subset ofΓ(U). ThenE is
thin at0 if and only ifE is minimally thin at0 with respect toΓ.

This was first proved in the half-space by Lelong-Ferrand [14], and was extended
by Aikawa [1] to a Lipschitz domain. To prove Theorem 3.1, we need the following
estimates.

Lemma 3.2. LetΓ be a cone generated by a John baseV of centerx0, and letU be a
subset ofS(1) such thatU ⊂ V . The following statements hold:

(i) For x ∈ Γ(U) ∩ B(6−1),

GΓ(x, x0)KΓ(x, 0) ≈ |x|2−n, (3.1)

where the constant of comparison is independent ofx.

(ii) For x ∈ Γ(U) ∩ B(6−1) andy ∈ Γ(U) ∩ B(3|x|),

GΓ(x, x0)GΓ(x, y)
GΓ(x0, y)

≈ |x − y|2−n, (3.2)

where the constant of comparison is independent ofx andy;

(iii) For x ∈ Γ ∩ B(6−1) andy ∈ Γ(U) ∩ (B(2−1) \ B(3|x|)),

GΓ(x, x0)GΓ(x, y)
GΓ(x0, y)

≤ C|x − y|2−n, (3.3)

where a constantC is independent ofx andy.
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To apply Lemma 2.1 to the Green function, we need the following: Ifz ∈ Ω, then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \ B(z, 2−1 dist(z, ∂Ω)). (3.4)

The proof of this inequality may be found in [3, Lemma 7.2].

Proof of Lemma 3.2.(i) We observe from the Harnack inequality that

KΓ(6−1x0,∞) ≈ 1 and GΓ(6−1x0, x0) ≈ dist(x0, ∂Γ)2−n.

By Lemma 2.8 and (1.3), we have forx ∈ Γ ∩ B(6−1),

GΓ(x, x0) ≈
GΓ(x, x0)

GΓ(6−1x0, x0)
≈ KΓ(x,∞)

KΓ(6−1x0,∞)
≈ KΓ(x,∞) =

|x|2−n

KΓ(x, 0)
f(x/|x|)2.

Sincef is positive and continuous onU , we obtain (3.1) forx ∈ Γ(U) ∩ B(6−1).
(ii) Let x ∈ Γ(U) ∩ B(6−1) andy ∈ Γ(U) ∩ B(3|x|). We will consider three

cases.
Case 1: |y| ≤ 6−1|x|. By Lemma 2.8 and (3.1), we have

GΓ(x, x0)
GΓ(x, y)
GΓ(x0, y)

≈ GΓ(x, x0)KΓ(x, 0) ≈ |x|2−n.

Since|x| ≈ |x − y|, we obtain (3.2) in this case.
Case 2: |y| ≥ 6−1|x| and|y−x| ≥ 2−1 dist(x, ∂Γ). Sincedist(y, ∂Γ) ≥ |y|dist(U, ∂Γ)
anddist(6−1|x|x0, ∂Γ) = 6−1|x|dist(x0, ∂Γ) ≥ 18−1|y|dist(x0, ∂Γ), we have by
Lemma 2.4

kΓ∩B(1)(6−1|x|x0, y) ≤ kΓ∩B(1)(6−1|x|x0, |y|x0) + kΓ∩B(1)(y, |y|x0)

≤ C2 log
|y|

dist(6−1|x|x0, ∂Γ)
+ C2 log

|y|
dist(y, ∂Γ)

+ 2C2

≤ C.

Therefore Lemma 2.1, together with (3.4), gives

GΓ(x, y) ≈ GΓ(x, 6−1|x|x0) and GΓ(x0, y) ≈ GΓ(x0, 6−1|x|x0).

Since|x − 6−1|x|x0| ≈ |x − y|, we obtain from Case 1 that

GΓ(x, x0)GΓ(x, y)
GΓ(x0, y)

≈ GΓ(x, x0)GΓ(x, 6−1|x|x0)
GΓ(x0, 6−1|x|x0)

≈ |x − y|2−n.

Case 3: |y−x| ≤ 2−1 dist(x, ∂Γ). By the Harnack inequality,GΓ(x, x0) ≈ GΓ(y, x0).
SinceGΓ(x, y) ≈ |x − y|2−n in this case, we obtain (3.2).

(iii) Let x ∈ Γ ∩ B(6−1) andy ∈ Γ(U) ∩ (B(2−1) \ B(3|x|)). By Lemma 2.5,
we haveGΓ(x, x0) ≤ CGΓ(|y|x0, x0). It follows from Lemma 2.4 anddist(y, ∂Γ) ≥
|y|dist(U, ∂Γ) thatkΓ∩B(1)(y, |y|x0) ≤ C, and so Lemma 2.1 givesGΓ(|y|x0, x0) ≈
GΓ(y, x0). Hence

GΓ(x, x0)GΓ(x, y)
GΓ(x0, y)

≤ CGΓ(x, y) ≤ C|x − y|2−n.

The proof of the lemma is complete.
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Let R̂E
1 denote the regularized reduced function of the constant function1 relative

to E in Rn.

Proof of Theorem 3.1.We may assume, without loss of generality, that0 is a limit
point ofE andE ⊂ B(6−1). We first assume thatE is thin at0. By Wiener’s criterion
(cf. [6, Theorem 7.7.2]), there exists a sequence{aj} of positive numbers such that

lim
j→∞

aj = +∞ and
∞∑

j=1

ajR̂
Ej

1 (0) < +∞,

whereEj = {x ∈ E : 2−j−1 ≤ |x| ≤ 2−j}. Let dνj(x) = GΓ(x, x0)dµj(x), where

R̂
Ej

1 (x) =
∫
|x−y|2−ndµj(y). Sinceµj is supported onEj , it follows from (3.2) that

1 = R̂
Ej

1 (y) ≤ C
GΓνj(y)
GΓ(x0, y)

for quasi-everyy ∈ Ej .

Thenu(y) =
∑∞

j=1 ajGΓνj(y) is a Green potential inΓ such thatu(y)/GΓ(x0, y) →
+∞ asy → 0 alongE \ F , whereF is a polar set. We also have by (3.1)

∞∑
j=1

aj

∫
KΓ(x, 0)dνj(x) ≤ C

∞∑
j=1

ajR̂
Ej

1 (0) < +∞.

HenceE \ F is minimally thin at0 with respect toΓ, and so isE.
We next assume thatE is minimally thin at0 with respect toΓ. Then there is

a measureµ supported onΓ(U) ∩ B(6−1) such that
∫

KΓ(x, 0)dµ(x) < +∞ and
GΓµ(y)/GΓ(x0, y) → +∞ asy → 0 alongE. Let dν(x) = GΓ(x, x0)−1dµ(x).
Then we have by (3.2) and (3.3)

GΓµ(y)
GΓ(x0, y)

≤ C

∫
|x − y|2−ndν(x) for y ∈ E,

and so
∫
|x − y|2−ndν(x) → +∞ asy → 0 alongE. Also, we have by (3.1)∫

|x|2−ndν(x) ≤ C

∫
KΓ(x, 0)dµ(x) < +∞.

HenceE is thin at0. The proof is complete.

Corollary 3.3. Let Γ be a cone generated by a John base, and suppose thatE is a
non-polar set such thatE ⊂ Γ. ThenΓ(E) is not minimally thin at0 with respect toΓ.

Proof. Let r > 0 and letrE = {ry : y ∈ E}. Observe that̂RE
1 (x) = R̂rE

1 (rx) for
x ∈ Rn. SinceE is non-polar, we have

R̂rE
1 (0) = R̂E

1 (0) > 0 for all r > 0.

This shows thatΓ(E) is not thin at0. Hence Theorem 3.1 concludes thatΓ(E) is not
minimally thin at0 with respect toΓ.
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Theorem 3.4. Let Γ be a cone generated by a John base, and suppose thatΩ is a
domain such thatΓ∩B(1) ⊂ Ω and0 ∈ ∂Ω. If E is a non-polar set such thatE ⊂ Γ,
then there is no positive superharmonic functionu in Ω such that

lim
x→0,x∈Γ(E)

|x|pu(x) = +∞, (3.5)

wherep > 0 is the homogeneous degree ofKΓ(·, 0) in Theorem 1.1.

Proof. Let u be a positive superharmonic function inΩ. By [6, Theorem 9.3.3],
u/KΓ(·, 0) has a finite minimal fine limitl at 0 with respect toΓ. That is, there exists
a subsetF of Γ, minimally thin at0, such thatu(x)/KΓ(x, 0) → l asx → 0 along
Γ \ F . By Corollary 3.3, we can find a sequence{xj} in Γ(E) \ F converging to0
such thatu(xj)/KΓ(xj , 0) → l asj → ∞. Hence there is no positive superharmonic
function inΩ satisfying (3.5).

References

[1] H. Aikawa,On the minimal thinness in a Lipschitz domain, Analysis5 (1985), no.
4, 347–382.

[2] , Boundary Harnack principle and Martin boundary for a uniform domain,
J. Math. Soc. Japan53 (2001), no. 1, 119–145.

[3] H. Aikawa, K. Hirata and T. Lundh,Martin boundary points of a John domain and
unions of convex sets, J. Math. Soc. Japan58 (2006), no. 1, 247–274.
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