Estimates for the products of the Green function
and the Martin kernel

Kentaro Hirata

Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan
e-mail: hirata@math.sci.hokudai.ac.jp

Abstract

Let Q2 be a proper subdomain &", n > 2, and letzy € 2 be fixed. ByGq
and K we denote the Green function and the Martin kernel(iorespectively.
Under a certain assumption &near a boundary poiigt we show that the product
Go(z,z0)Ka(z,£) is comparable tgz — £]*>~™ for « in a nontangential cone
with vertex at¢. We also give an estimate for the prodics (z, §) Ko (x,n) ina
uniform domain, where is another boundary point.
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1 Introduction

The purpose of this paper is to show a relationship between the boundary decay of the
Green function and the boundary growth of the Martin kernel. This is motivated by the
results [9, 10, 11, 12, 15] concerned with the boundary decay of the Green function
for a Lipschitz domain and the result [18] concerned with the boundary growth of the
Martin kernel near singularity. Now, we denote a poinRinby (2’ x,,) € R"~ x R.

Theorem A. Let¢ : R"~! — R be a Lipschitz function such that0’) = 0, and let
O = {(«/,xn) : ®, > ¢(z’)}. Denote byGs (-, e) and Ks(+, 0) the Green function
for ® with pole ate = (0,1) and the Martin kernel oft with pole ato = (0/,0),
respectively. Define

P [ melow0) [ e 0],
{l='|<1} {l='|<1}

[ i

Then the following statements hold.
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(i) fIT™ < +ocandl~ = +oo, then

Ga(t Ka(t
im Gole0) _ L and ol Helteo) o
t—0-+ t t—0+  ¢l—n
(i) If IT = +coandl™ < +oo, then
Ga(t Kas(t
Galte:©) _ 1 and  1im Holteo) _ o
t—0+ t t—04+ tl—m

(iiiy If It < +ooandl~ < +oo, thenth%lJr Go(te,e)/t andtliI(I)lJr Kg(te,0)/t*™"
exist, and each of them is positive and finite.

The proof of Theorem A was based on the convergende of ~ and the minimal
fine topology. The following question is natural: is the prodGgt(te, e) K¢ (te, 0)
comparable t@?>~" for 0 < ¢t < 1/2? We shall show such an estimate in more general
domains. Lef be a proper subdomain &", n > 2, and letdg(z) stand for the
distance frome to the boundary(). By B(z,r) andS(z,r), we denote the open ball
and the sphere of centerand radius-, respectively.

Definition 1.1. We say that € 02 satisfiesa local carrot condition(abbreviated to
LCC) if there exist constants > 2, r > 0 and A, > 1 with the following property:
for each positive: < r¢, there is a poiny,. € QN S(&,r) with éo(y,) > r/A¢ such
that eachr € QN B(¢,r/x) can be connected tg by a curvey in Q N B(&, xr) for
which

Uvy(z, 2)) < Aeda(z) forall z € v, (1.1)

where/l(vy(z, z)) denotes the length of the subarge, z) of v from z to z.

Remarkl.2 Inthe study of minimal Martin boundary points of a John domain, Aikawa,
Lundh and the author introduced the notion “a system of local reference points” by
using the quasi-hyperbolic metric instead of the stronger condition (1.1). See [4, Defi-
nition 2.1]. For the above question, we do not need to assume a global conditin on
so we adopt (1.1) and the terminology “a local carrot condition”.

Letz, € Q be fixed andv > 1. A nontangential cone &t< 052 is denoted by

Fa(§) = {2 € QN B(¢, 6a(20)/2) : |z — ¢| < ada(x)}-

Note thatT',,(£) N B(&,r) is nonempty for eachr > 0 whenever (1.1) holds and

a > A¢. By the symbol4, we denote an absolute positive constant whose value is
unimportant and may change from line to line. For two positive functiinand f»,

we write f; & fs if there exists a constamt > 1 such thatf; /A < fo < Af;. The
constantA4 will be called the constant of comparison. The LCQ @nplies that¢ has

a unique Martin kernel (see Lemma 2.5). By (-, z0) and Kq(-, ), we denote the
Green function fof2 with pole atz, and the Martin kernel of? at&, respectively.

Theorem 1.3. Let() be a proper subdomain &”, n > 3, and suppose that € 02
satisfies the LCC. Then

Go(z,x0)Ka(x,&) =[x — > foraz € Ta(é), (1.2)

where the constant of comparison depends only ahand (2.



Remarkl.4. In Section 4, we give a bounded domain such that (1.2) fails to hold,
which is also a simple counterexample to the 3G inequality.

We say thaf) is a uniform domainif there exists a constant, > 1 such that each
pair of pointsz, y € Q can be connected by a curyawith v \ {z,y} C Q for which
() < Aolz —yl,
min{¢(y(x, 2)), £(v(z,9))} < Apda(z) forall z € ~.

If © is a uniform domain, then all boundary points satisfy the LCC. Moreover, the
constant of comparison in (1.2) can be taken independengycod2.

(1.3)

Corollary 1.5. Let{2 be a uniform domain iiR"™, n > 3. Then
Go(z,x0)Kq(x, &) ~ |z — > foré € 0Q andx € Ty (€),
where the constant of comparison depends only @amd 2.

Only the upper bound in Corollary 1.5 follows from the following 3G inequality.
Let Q be a bounded uniform domain R, n > 3. Then there exists a constast
depending only off2 such that

Gol@,y)Golw, 2) <A(lz—yP "+ lz—2*") foraz,y,z €. (1.4)
Gal(y,2)
See Cranston-Fabes-Zhao [13] for Lipschitz domains and Aikawa-Lundh [5] for uni-
formly John domains, and also Bogdan [8] and Hansen [17] in which a certain global
estimate for the Green function was obtained. If wezlet xy and lety — £ € 09,
then forz € QN B(E, da(z0)/2),

Ko(z,€)Gal(z,20) < Al — €77 + |z — zo[*™") < Alz — 7.

Corollary 1.5 asserts that the proddét (-, zo) Kq(+, €) is bounded from below by the
function| - —¢|>~" as well.

The 3G inequality in two dimensions was proved by Bass-Burdzy [7]: for any
bounded domaing in R?, there exists a constardtdepending only o2 such that

Gao(z,y)Galx, 2)
Gal(y, 2)

If 2 is a bounded uniform domain iR?, then the same reasoning as above gives that
for z € Q) close tog € 01,

1
<A(1+log" +logt —— forz,y,z € Q.
|z —y| |z — 2|

1
Kq(z,§)Ga(z,z0) < Alog .
|z — ¢
When¢ is an isolated boundary point (i.&(¢,¢) \ {£} € Q for somes > 0), this is
sharp. Indeed, letting = min{1, ¢, |zo — £|}/2, we obtain by the Harnack inequality
that forx € B(€,9) \ {¢}.

Gauiey (7, €) GBe25)(x,€) 20 1
Ko(x,§) = > — > 1 ,
ale) Gougey(@0:€) = AGq(zo,2) ~ AGg(w,ag) ° o —¢]




However, ifQ2 is the unit disc ofR?, then Kq(r&, £)Ga(ré, 0) ~ 1 for ¢ € 9Q and
1/2 < r < 1. To obtain comparison estimate (1.2) for= 2, we need some exterior
condition. Let us define the Green capacity of a compacksatan open set/ by

Capy (E) = u(U),

wherey is the associated Riesz measure of the regularized reduced fuﬁtﬁion U.
We say that € 052 satisfiesa capacity density conditiofabbreviated to CDC) if there
exist constants; > 0 andA; > 0 such that

inf CapB(&Q,r)(B(f,r) \ Q) > Alg.

/
0<7‘<r£

Theorem 1.6. LetQ be a proper subdomain &2, and suppose that € 99 satisfies
the LCC and the CDC. Then

Ga(z,20)Ka(z,§) =1 forz e I'y(§),
where the constant of comparison depends onlyahand (2.

A uniform domain{? is said to beNTAIf there are constantgy > 0 andA > 1
such that for eaclf € 9 and0 < r < rg, there is a ballB(z,r/A) contained in
B(&,r) \ Q. Observe that all boundary points of an NTA domain satisfy the CDC, and
the constants; and A; can be taken uniformly fof € 01.

Corollary 1.7. LetQ be an NTA domain iiR2. Then
Ga(z,z0)Kqo(z,&) =1 foré e 9Qandz € T, (£),
where the constant of comparison depends only @amd 2.

Remarkl.8 Since the Green function and the Martin kernel are conformal invariant
(cf. [14, Section 6.3]), it is easy to see thaflfis a Jordan domain iR? and¢ € 09,
thenGq(z,70)Ka(z, &) ~ 1 forz € v~ 1({(r,0) : 1/2 < r < 1}), wherey is a
conformal mapping fron§2 onto the unit disc such thai(zo) = (0,0) andy (&) =
(1,0). In view of this, the LCC is not essential when= 2. Howeverof) does not
need to be a Jordan curve and may have infinitely many components.

Without the assumptions ofi*, I~ in Theorem A, we can obtain the following
relationships as a consequence of Corollaries 1.5 and 1.7.

Corollary 1.9. Let® be as in Theorem A and let > 0. Then the following hold:

. t . . Kog(t
(i) liminf Gallee) _ it and only iflim sup Kafte,0) _ +00
t—0 to 0 t2—n—a
. . . K
(i) limsup M = 4o if and only iflim inf M =0.
t—0 A t—0 {2—n—a



Next, we give an estimate for the product of two Martin kernels with different
singularities in a uniform domain. L&t n € 99 and lety be a curve connectingjand
n such thaty \ {{, 7} C © and (1.3) holds. We denote by ,, the middle point ofy so
thatl(y(€, ze.)) = £(y(ze.0. 1)) = £(~)/2, and define

B € —nl>" }
g(&mn) = max{l, Galzem 20)? :

Theorem 1.10. LetQ) be a bounded uniform domain &, n > 2, and let¢, n € 99
be distinct. Suppose thatis a curve connecting andn such thaty \ {¢,7} C Q2 and
(1.3) holds. Then the following statements hold.

@) Ifn > 3,then
KQ(xaf)KQ(m7n) %9(6777) (|x_5|2_n+ ‘37_7]|2_n) forﬂ? € e (15)
where the constant of comparison depends onlf2on
(i) If n=2andis abounded NTA domain, théh.5)holds.

Corollary 1.11. LetQ) be a bounded’'**-domain inR", n > 2, and let¢, n € 99 be
distinct. Suppose that is a curve connecting and» such thaty \ {¢,7} C Q and
(1.3)holds. Then

1 —-n —-n
Ko(z,§)Ka(z,n) ~ €= (le =€* " + |z —n*™") forz ey,

€ -

where the constant of comparison depends onl§2on

2 Preparatory material

Throughout this section, we suppose that a proper subdomain &, n > 2. The
quasi-hyperbolic metric of? is defined by

ka(z,y) = igf/ (?58

where the infimum is taken over all rectifiable curvem 2 connectingr andy, and

ds stands for the line element on We say tha{ B(x;, da(z;)/2) ;":1 is a Harnack
chain joiningz andy in Q if ; = z, 2y = y andx;41 € B(z;,d0(z;)/2) for
j=1,...,N — 1. The numberV is called the length of the Harnack chain. Observe
that the shortest length of the Harnack chain joiningndy in € is comparable to
kq(z,y) + 1. The following Harnack inequality is valid.

Lemma 2.1. There exists a constant > 1 depending only on the dimensiarsuch
that

exp(—A(ko(z,y) +1)) < ZEZ; <exp(A(kq(z,y)+1)) forz,yeq,

whenever is a positive harmonic function an.



To apply Lemma 2.1 to the Green function, we need the following lemma (cf. [4,
Lemma 7.2]).

Lemma2.2. Letz € Q. Then
kQ\{z} (%y) < 3]€Q(=’E,y) +m for T,y € Q \ B(Z7 652(’2)/2)

Lemma 2.3. Suppose thaf € 0f? satisfies the LCC. Then there exists a constant
depending only ol such that ifd < r < r¢, then

kans(ewsr) (T, yr) < Alog#(x) +A forxeQnB(&r/k),

wherey, € QN S(&,r) is as in Definition 1.1.
Proof. This follows from (1.1). O

Lemma 2.4. Suppose thaf € 0N satisfies the LCC. Leél < r < re. If z,w €
Q\ B(&, x3r), then

Gal(z,2) ~ Galy, 2)
Go(z,w) Gql(y,w)

where the constant of comparison depends only.om, and(.

forz,y € QN B(&,r/Kk3),

Proof. This can be proved by the similar way as in [4], so we just skech the proof.
Note from Lemma 2.3 that has a system of local reference poigtsof order 1 (see

[4, Definition 2.1] for its definition). The existence of a curve with (1.1) shows that
there ist > 0 such thatme(m)(r/ég(x))Td:c < Ar? for 0 < r < r¢ (see [4,
Lemma 4.1]). As in [4, Lemma 5.1], we can obtain the following Carleson estimate:
forx € QN S(¢,r/k?) andz € Q\ B(&, k3r),

Gal(z, z) < AGq(yr, 2). (2.1)

Let w(z, F,U) denote the harmonic measure of a Borel Befor an open sel/
evaluated atr. Then the similar argument to [4, Lemma 6.1] gives that for
QN B¢, r/k3) andw € Q\ B(, k37),

w(z, QNS r/k?), Q2N B, /) < A Go(z,w)

< AZolr 2.2)

Therefore the maximum principle, together with (2.1) and (2.2), yields that far
QN B¢ r/kr3) andz,w € Q\ B(&, k3r),

Go (yT’ Z)

GQ(JT,Z) < AGQ(y,«,w) GQ(J?,IU)

Changing the roles of andw, we obtain the opposite inequality. Thus the lemma
follows. O



Let¢ € 09 and let{y;} be a sequence ift converging to;. Observe that there
is a subsequencgy;, } such that{ Ga(-,y;,)/Galxo,y;.)} converges to a positive
harmonic function orf2. We call such a limit functiothe Martin kernel of2 (with
pole) até. A positive harmonic functiorh is said to beminimal if every positive
harmonic function less than or equalit@oincides with a constant multiple af

Lemma 2.5. Suppose thaf € 91 satisfies the LCC. Thefihas a unique Martin
kernel and it is minimal.

Proof. This follows from Lemma 2.4 and the Martin representation theorem. [

3 Proofs of Theorems 1.3 and 1.6

Proof of Theorem 1.3Suppose that € 01 satisfies the LCC and put
Ay = max {HS, %a(z0) } .

Te

We may assume without loss of generality that< do(z9)/2. Letz € T'y(§) and let
r =z —¢|/(k3A1). Thenk3r < re, since|lz — &| < da(zo) < Aire. Also, we have
|z — & > kSr and|zg — €] > da(mo) > |z — &| > kOr. Lety, € QN S(&,r) be such
thatdo (y,) > r/Ae. Then Lemma 2.4 gives

GQ(Ia y) ~ GQ(I, yT)
GQ (x07 y) GQ (‘r07 y’l“)

Lettingy — &, we obtain

fory e QN B(&,r).

GQ('Tv yr)

Kalz, &) ~ Gal(xo,yr)

(3.1)

We claim
Gﬂ(x07y7‘) ~ GQ(Z‘O,JT). (32)

To show this, we consider two cases.
Case 1:p := klz — &| < re. The LCC and Lemma 2.3 show that thereyjs €
QNS p) with 66 (y,) > p/Ae¢ such that

p

Observe that:, y, € QN B(&, p/k), da(z) > |z —¢&|/a = p/(ak) andiq(y,) >
p/(Ag¢A1k%). Therefore

ko(z,y,) < Alog +A forzeQn B, p/k).

kﬂ(mayp) S A and kQ(yTayp) S A.
Sincex, yr, y, € U\ B(zo, 0a(x0)/2), it follows from Lemmas 2.1 and 2.2 that
Ga(zo,yr) = Galzo,y,) = Galxo, ).

Thus (3.2) holds in this case.



Case 2:x|x — &| > r¢. Sincer > r¢/(A1x%), it follows from the Harnack inequality
on the compact sét, (&) \ B(&,r¢/(A1kY)) thatGa(zo, yr) &~ Galxo, z), Where the
constant of comparison depends onlyéoand(2. Thus (3.2) follows.
We next claim
GQ(‘Tvyr) ~ ‘x - §|2in' (33)

Letw € S(yr, da(yr)/2). Then the similar argument as above gives
GQ(:Cayr) ~ GQ(wayr) ~ |w - yr‘Qin' (34)

Since|lw — y,| = r = |z — £|, we obtain (3.3). Combining (3.1), (3.2) and (3.3), we
complete the proof of Theorem 1.3. O

Proof of Corollary 1.5.1f 2 is a uniform domain, ther, ¢ and A, can be taken uni-
formly for ¢ € Q. Therefore (5.1) gives (3.2) and (3.3) with the comparison constant
depending only o and2. O

Proof of Theorem 1.6The proofs of (3.1), (3.2) and the first estimate in (3.4) are
independent of the dimension. It is enough to show tHa{w,y,) ~ 1 for w €
S(yr, 0 (yr)/2). This will be shown in Proposition 3.2 below. O

Lemma 3.1. Let2 be a proper subdomain &”, n > 2, and letz,w € Q satisfy
|z — w| < da(z)/4. Suppose that is a subharmonic function o (z, dq(z)) U
B(w, dq(w)) such thatu < M. If u < (1 —60)M on B(z,dq(z)/8) for somed < 0 <

1, then
us(1- (%)"G)M on B(w, 5o (w)/8).

Proof. Letz € B(w, dq(w)/8). Observe that
B(z,6q(2)/8) C B(x,176a(z)/32) C B(w, da(w)).

Write £y = B(x,176q(2)/32) andE; = Ey \ B(z,0q(%)/8). By the mean value
inequality, we have

w(w) < 2 [ uly)dy < (1 — O)MIE; \ Bl + M|Ey))

~ B g, | Er |
<x(1-(5)"0)
— 17 )
where|E| denotes the volume of a st Thus the lemma follows. O

Proposition 3.2. Let() be a proper subdomain &? and suppose that € 91 satisfies
the LCC and the CDC. Then

Ga(z,y) =1 forxz eT,(&)andy € S(z,da(x)/2),

where the constant of comparison depends onlyahand (2.



Proof. Clearly, Ga(z,y) > Gp(a,5,())(z,y) = 1fory € S(x,0a(x)/2). Let us
show
Go(z,y) <A forz eT,(¢) andy € S(x,dq(x)/2). (3.5)

The method is based on Aikawa [3, Proof of Lemma 2]. The CDiatplies that
Capp(¢ 0 (B(§, 1)\ Q) > A whenevel < r < do(zo), (3.6)

where A > 0 depends only om;, A; anddq(zo). Letr = do(x)/2 and letM =
SUPg(z,r) Ga(z, ). Then the maximum principle gives that fore Q N B(E, r),

Ga(z,z) < Mw(z,5(x, 1), 2\ B(x, 7)) < Mw(z, S(,7), B(§,7) \ E),

whereE = B(&,r/2) \ Q andw(z, F,U) is the harmonic measure of a détfor an
open seU evaluated at. By [1, Lemma 3] and (3.6), we have

1
sSup W(',S(g,’l"),B(f,T) \E) <1- Z CapB(&,r)(E) <1- 95
B(&,r/2)
where(0 < 6 < 1. Therefore
Go(z,2) < M(1—-6) forzeQnB(,r/2). 3.7)

Fix z € QN S(§,r/4) with 6q(2z) > r/(4a), and letw € S(z, 3r/2). Thendq(w) >
r/2 and|z — w| < Ar. We observe, as in the proof of Theorem 1.3, that

ko) (2, ) < Bka(z,w) + 7 < A,

where A depends only o, £ and2. Thereforez andw can be joined by B(wj,
59\{;8}(11)])/4) évzl such thatwl = Z, WN =W andij € B(wj,ég\{x}(wj)/él)
forj = 1,...,N — 1, where N depends only omy, £ and2. Note from (3.7) that

Ga(z,-) < M(1—0)onB(wi, b\ {23 (w1)/8). Apply Lemma 3.1 repeatedly. Then

Go(z,w) < M(l - (%)HNH) forw € S(x, ;r) (3.8)

Observe that foy € B(z, 3r/2),

Ghasn/2) (T,y) = Galz,y) — Rau(s 5P (y),

whereRgQ(x , Is the reduced function af(z, ) relative to a sef’ in Q. By (3.8),

4 \nN 3
sup Go(z,-)—M(1—(— 0) < sup Gpgar/o(x,-) =log =.
S(mg) a(z,) ( (17) ) S(wg) B(z,3 /2)( ) g B

Hence we obtaii/ < log(3/2) - (17/4)"" /#, and thus (3.5) holds. O



4 Counterexample

In this section, we give an example of a domain on which (1.2) fails to hold. Let us
denote a point € R™ by (2, z,,) € R*~! x R, and writeo = (0’,0).

Example 4.1. Suppose that > 3. LetQ2 be the inverse of2* with respect taS(o, 1),
where

O ={(2,x,) : 2’| < 1/2, z,, > 0} \ B(o, 1).
Letzo = (0/,1/2). Then

lim sup = 400, (4.2)

r—o, x€FE

whereE = {(0/,z,) : 0 < z,, < 1/4}.

—> Ip

Figure 1:Q2 andQ*.

Proof. Suppose to the contrary that there is a constastich that

Go(z,z0)Ka(z,0) < Alz|*™™ forz € E.
Let Kq-(-,+00) denote the Martin kernel ad* at +oo, i.e. the limit function of
Ga-(, (', yn))/Ga~ (25, (¥, yn)) @Syn — +o0. Since

9 n—2
Ko« (z,+00) = (;z:|) Kao(z/|z)?,0),
Ga-(z,25) = (2]z])* " Ga(z/|z]? z0)

for x € Q*, it follows that forz € E*,

G- (x,25) Ko- (x, +00) = [2[*C"" Gq(z/|2]*, x0) Ka(x/|z]*, 0)

4.2
< Alz*. (4-2)

Letw = {(«/,2,) : |2/| < 1/2, —0 < z, < 4+o0}. Note thatQ* C w and
Q*N{z, > 1} =wn{z, > 1}, and that the Martin kernels af at+oo and—oo are
respectively of the form

K, (z,+00) =™ f(2') and K, (x,—o00) = Ae 7" f(z'), (4.3)

10



o Ye

T, =2

Figure 2: Positions of andy;.

wherer > 0 andA > 0 are constants anfl is a positive function oz’ € R"~! :
|#’| < 1/2} vanishing continuously ofiz’ : |2'| = 1/2}. Let{ = (¢/,2) € dw, and
let y. be the point in the line segmegit} such thaty, — | = 1/4. The boundary
Harnack principle gives

Go-(y,25)  Go-(ye, 25)

Kw(y7 _OO) Kw(ygu _OO)
where the constant of comparison is independeny, af; and¢. Observe from the
Harnack inequality thafio« (y, zf) > A > 0 and K, (y, —0) ~ K, (zf, —o0) = 1
for y = (v', 2) with d,,(y) > 1/4. Therefore

Kw(ya —OO) S AGQ* (yv .TJS) (44)

fory = (v,2) € (wnNB(£,1/4)) U{d,(y) > 1/4}. The arbitrariness of = (¢',2) €
Ow shows that (4.4) holds for all = (y/,2) € w, and so for ally € {(y/,y,) € w :
yn > 2} by the maximum principle. It follows from (4.2) and (4.3) that foe E*,

fory=(y',2) e wn B(&,1/4),

Kq+(x,4+00) 9
— 7 =~ K, (r,—0c0)Kq«(z, <A "
Ko (2, 700) (x, —00)Ka« (z, +00) < Alz|

Asz € E* andz,, — +o00, we have a contradiction, because

Ko (0, zp,), +00)

limsu >0 4.5
9:n—>+£ K, (0, 2p), +00) (45)
(see Remark 4.2 below). Hence (4.1) holds. O

Remarkd.2. We see from [6, Theorems 9.2.6 and 9.3.3] that

!/
lim sup S L2 £, +00)

> 0.
wn—too Ko (2, 75),+00)

As in the proof of Example 4.1, the boundary Harnack principle and the usual Harnack
inequality give that for each,, > 2,

Ko-((¢',zn),+00) Ko+ ((0, z,), +00)
Kw((xlﬂwn)v+oo) -~ Kw((o/yxn)7+00)
Thus (4.5) follows.

for |2'| < 1/2.

11



Remark4.3. Aikawa and Lundh [5] constructed a bounded domaiRih n > 3,

such that 3G inequality (1.4) fails to hold. A domdhin Example 4.1 is also one

of conterexamples to (1.4). Indeed, as stated in the introduction, (1.4) implies that
Ga(z,z0)Kq(x,0) < Alz|*~ for z € Q close too. But this contradicts (4.1).

5 Proof of Theorem 1.10

If © is a uniform domain, then the constamtsr, and A, in (1.1) can be taken uni-
formly for £ € 09). In this case, Lemma 2.4 is restated as follows: there is a constant
r1 > 0 depending only o2 such that it € 92 and0 < r < ry, then

Gqlz, z) ~ Galy, 2)
Gao(z,w)  Gal(y,w)

forz,y € QN B(&r) andz,w € Q\ B(&, k%), where the constant of comparison
depends only of. This was indeed proved in [2] and is calldggk uniform boundary
Harnack principle(abbreviated to UBHP). Recall that a uniform domgins charac-
terized in terms of the quasi-hyperbolic metric (cf. [16]):

|z =y
min{do(z), da(y)}

The following lemma is an elementary consequence of (5.1) and Lemma 2.1.

kq(z,y) < Alog < + 1) + A forx,y € Q. (5.1)

Lemma 5.1. LetQ be a uniform domain ifR™, n > 3, or an NTA domain ifR?2. If
z,y € Q satisfydq(y)/2 < |z —y| < Ay min{dq(x), da(y)} for some constants,
then

Galz,y) ~ |z —y*™",
where the constant of comparison depends onlylgand ).
Proof of Theorem 1.10We give a proof only whem > 3. We may assume without
loss of generality thaig (zo) > (k® + 2) Agr1, whereA, is the constant in (1.3). Let
&, n € 09 be distinct and lety be a curve connectingandn such thaty \ {¢,7} C Q
and (1.3) holds. Put = |¢ — n|/(k% + 2). We consider two cases.
Case 1ir < r;. Letx € yN B(£,r). Thenz, zg € Q\ B(n, ). The UBHP gives
Gal(z,wy)
Go(zo, wy)’

Ko(z,n) ~ (5.2

wherew, € yN S(n,r) C Q\ B(&, k%). We again apply the UBHP to obtain

Go(z,wy) _ Ga(we,wy)
Ga(z,z0)  Galwe,xo)’

(5.3)

wherew, € yN S(&,r). Note from (1.3) that: € T'4, (). Therefore (5.2), (5.3) and
Corollary 1.5 give

Gaol(we,w x — &2

~ Ga(we, 20)Ga(wy, o) Kolz,€) (5.4)
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Let z¢ ,, be the middle point of. Observe from (1.3) that, (w¢), da(wy,), da(2¢ ) are
greater tham /Ay, and thatwe — z¢ |, |w, — z¢ | are bounded by(y) < Aglé —n| =
Ao(k® + 2)r. Thereforekq(we, z¢,) < A andkg(wy, z¢,,) < A by (5.1). Since
We, Wy, 2en € O\ B(zo, 0a(z0)/2), it follows from Lemmas 2.1 and 2.2 that

Galwe, z0) = Ga(ze,n, xo) = Go(wy, o). (5.5)

Also, we have by Lemma 5.1

Ga(we, wy) = [we — wn|2in Rt R 1€ — 77|27n~ (5.6)
Combining (5.4), (5.5) and (5.6), we obtain
‘E — 77|2—n 2—n
Ko(z,§)Ka(z,n) = =——lr — ¢ (5.7)

GQ(Zﬁﬁlva)

whenever € YN B(E,r). If x € y(&, z¢ ) \ B(&,7), then|z — we| < Ar < Ado(x)
by (1.3). Therefore Lemma 2.1 and (5.1) give

Kaq(x,§)Ka(z,n) = Kao(we, §) Ka(we,n).
Since|z — | = r = |we — €], it follows from (5.7) witha = w, that (5.7) holds for
z € (&, 2¢,). Observe thaty — > ~ |z — &2 + |z — " forx € v(&, z¢.,p)
and|é — 727" /Ga(z¢ ., 20)* > A(Q) > 0. Hence we obtain
Ko(z,6)Ka(z,n) = g(&n) (Jo = &P + [« —n|*™") (5.8)

for z € v(&, z¢ ). Similarly, we can obtain (5.8) far € v(z¢ ;. 7).
Case 2:r > ry. Letz € yN B({, 1) and letwy € yN S(€,71). Then

Kqo(wo,n) =1 and Gq(wo, o) ~ 1,

where the constants of comparisons depend Qg () anddiam(2). Note that
|€ —n| = (k% + 2)r > k%, By the UBHP and Corollary 1.5,

Ko(wo, ) i S i { el
Ga(wo, o) Kq(z,§) Ko(z,§) .
If x € v(& 2¢.) \ B(§,71), thendq(z) > 71 /Ao by (1.3), and so

Ko(z,§) ~ 1~ Kq(z,n) and |z—¢{~1~[z—nl

Ka(z,n) = Go(z,x0) ~

where the constants of comparisons depend-gtly, o (z¢) anddiam(Q). Since
€ = PP /Galze .y m0)? < A(Q), we obtainKq(x, ) Ka(z,n) ~ g(&n)(lx —
P + |z — ™) for z € (&, 2z¢,,). Similarly, we obtain this for: € v(z¢ ., 7).
Thus the proof of Theorem 1.10 is complete. O

Proof of Corollary 1.11.Let v be a curve connectinggandn such thaty \ {£, 7} C Q
and (1.3) holds, and let ,, be the middle point of.. Then

1 1
m‘f -] < A*Of(W(fsz,n» < dalzey) <V 2e.m)) < Aolé —nl.

It is known that if Q2 is a bounded”"!-domain, thenGq(z, ) ~ dqo(z) for z €
Q\ B(zo,0a(z0)/2). Hence Corollary 1.11 follows from Theorem 1.10. O
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