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Abstract

Let Ω be a proper subdomain ofRn, n ≥ 2, and letx0 ∈ Ω be fixed. ByGΩ

andKΩ we denote the Green function and the Martin kernel forΩ, respectively.
Under a certain assumption onΩ near a boundary pointξ, we show that the product
GΩ(x, x0)KΩ(x, ξ) is comparable to|x − ξ|2−n for x in a nontangential cone
with vertex atξ. We also give an estimate for the productKΩ(x, ξ)KΩ(x, η) in a
uniform domain, whereη is another boundary point.
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1 Introduction

The purpose of this paper is to show a relationship between the boundary decay of the
Green function and the boundary growth of the Martin kernel. This is motivated by the
results [9, 10, 11, 12, 15] concerned with the boundary decay of the Green function
for a Lipschitz domain and the result [18] concerned with the boundary growth of the
Martin kernel near singularity. Now, we denote a point inRn by (x′, xn) ∈ Rn−1 ×R.

Theorem A. Let φ : Rn−1 → R be a Lipschitz function such thatφ(0′) = 0, and let
Φ = {(x′, xn) : xn > φ(x′)}. Denote byGΦ(·, e) andKΦ(·, o) the Green function
for Φ with pole ate = (0′, 1) and the Martin kernel ofΦ with pole ato = (0′, 0),
respectively. Define

I+ =
∫
{|x′|<1}

max{φ(x′), 0}
|x′|n

dx′, I− =
∫
{|x′|<1}

max{−φ(x′), 0}
|x′|n

dx′.

Then the following statements hold.
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(i) If I+ < +∞ andI− = +∞, then

lim
t→0+

GΦ(te, e)
t

= +∞ and lim
t→0+

KΦ(te, o)
t1−n

= 0.

(ii) If I+ = +∞ andI− < +∞, then

lim
t→0+

GΦ(te, e)
t

= 0 and lim
t→0+

KΦ(te, o)
t1−n

= +∞.

(iii) If I+ < +∞ andI− < +∞, then lim
t→0+

GΦ(te, e)/t and lim
t→0+

KΦ(te, o)/t1−n

exist, and each of them is positive and finite.

The proof of Theorem A was based on the convergence ofI+, I− and the minimal
fine topology. The following question is natural: is the productGΦ(te, e)KΦ(te, o)
comparable tot2−n for 0 < t < 1/2? We shall show such an estimate in more general
domains. LetΩ be a proper subdomain ofRn, n ≥ 2, and letδΩ(x) stand for the
distance fromx to the boundary∂Ω. By B(x, r) andS(x, r), we denote the open ball
and the sphere of centerx and radiusr, respectively.

Definition 1.1. We say thatξ ∈ ∂Ω satisfiesa local carrot condition(abbreviated to
LCC) if there exist constantsκ ≥ 2, rξ > 0 andAξ ≥ 1 with the following property:
for each positiver ≤ rξ, there is a pointyr ∈ Ω ∩ S(ξ, r) with δΩ(yr) ≥ r/Aξ such
that eachx ∈ Ω ∩ B(ξ, r/κ) can be connected toyr by a curveγ in Ω ∩ B(ξ, κr) for
which

`(γ(x, z)) ≤ AξδΩ(z) for all z ∈ γ, (1.1)

where`(γ(x, z)) denotes the length of the subarcγ(x, z) of γ from x to z.

Remark1.2. In the study of minimal Martin boundary points of a John domain, Aikawa,
Lundh and the author introduced the notion “a system of local reference points” by
using the quasi-hyperbolic metric instead of the stronger condition (1.1). See [4, Defi-
nition 2.1]. For the above question, we do not need to assume a global condition onΩ,
so we adopt (1.1) and the terminology “a local carrot condition”.

Let x0 ∈ Ω be fixed andα > 1. A nontangential cone atξ ∈ ∂Ω is denoted by

Γα(ξ) = {x ∈ Ω ∩ B(ξ, δΩ(x0)/2) : |x − ξ| ≤ αδΩ(x)}.

Note thatΓα(ξ) ∩ B(ξ, r) is nonempty for eachr > 0 whenever (1.1) holds and
α ≥ Aξ. By the symbolA, we denote an absolute positive constant whose value is
unimportant and may change from line to line. For two positive functionsf1 andf2,
we writef1 ≈ f2 if there exists a constantA ≥ 1 such thatf1/A ≤ f2 ≤ Af1. The
constantA will be called the constant of comparison. The LCC atξ implies thatξ has
a unique Martin kernel (see Lemma 2.5). ByGΩ(·, x0) andKΩ(·, ξ), we denote the
Green function forΩ with pole atx0 and the Martin kernel ofΩ at ξ, respectively.

Theorem 1.3. Let Ω be a proper subdomain ofRn, n ≥ 3, and suppose thatξ ∈ ∂Ω
satisfies the LCC. Then

GΩ(x, x0)KΩ(x, ξ) ≈ |x − ξ|2−n for x ∈ Γα(ξ), (1.2)

where the constant of comparison depends only onα, ξ andΩ.
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Remark1.4. In Section 4, we give a bounded domain such that (1.2) fails to hold,
which is also a simple counterexample to the 3G inequality.

We say thatΩ is a uniform domainif there exists a constantA0 ≥ 1 such that each
pair of pointsx, y ∈ Ω can be connected by a curveγ with γ \ {x, y} ⊂ Ω for which

`(γ) ≤ A0|x − y|,
min{`(γ(x, z)), `(γ(z, y))} ≤ A0δΩ(z) for all z ∈ γ.

(1.3)

If Ω is a uniform domain, then all boundary points satisfy the LCC. Moreover, the
constant of comparison in (1.2) can be taken independently ofξ ∈ ∂Ω.

Corollary 1.5. LetΩ be a uniform domain inRn, n ≥ 3. Then

GΩ(x, x0)KΩ(x, ξ) ≈ |x − ξ|2−n for ξ ∈ ∂Ω andx ∈ Γα(ξ),

where the constant of comparison depends only onα andΩ.

Only the upper bound in Corollary 1.5 follows from the following 3G inequality.
Let Ω be a bounded uniform domain inRn, n ≥ 3. Then there exists a constantA
depending only onΩ such that

GΩ(x, y)GΩ(x, z)
GΩ(y, z)

≤ A
(
|x − y|2−n + |x − z|2−n

)
for x, y, z ∈ Ω. (1.4)

See Cranston-Fabes-Zhao [13] for Lipschitz domains and Aikawa-Lundh [5] for uni-
formly John domains, and also Bogdan [8] and Hansen [17] in which a certain global
estimate for the Green function was obtained. If we letz = x0 and lety → ξ ∈ ∂Ω,
then forx ∈ Ω ∩ B(ξ, δΩ(x0)/2),

KΩ(x, ξ)GΩ(x, x0) ≤ A(|x − ξ|2−n + |x − x0|2−n) ≤ A|x − ξ|2−n.

Corollary 1.5 asserts that the productGΩ(·, x0)KΩ(·, ξ) is bounded from below by the
function| · −ξ|2−n as well.

The 3G inequality in two dimensions was proved by Bass-Burdzy [7]: for any
bounded domainsΩ in R2, there exists a constantA depending only onΩ such that

GΩ(x, y)GΩ(x, z)
GΩ(y, z)

≤ A

(
1 + log+ 1

|x − y|
+ log+ 1

|x − z|

)
for x, y, z ∈ Ω.

If Ω is a bounded uniform domain inR2, then the same reasoning as above gives that
for x ∈ Ω close toξ ∈ ∂Ω,

KΩ(x, ξ)GΩ(x, x0) ≤ A log
1

|x − ξ|
.

Whenξ is an isolated boundary point (i.e.B(ξ, ε) \ {ξ} ⊂ Ω for someε > 0), this is
sharp. Indeed, lettingδ = min{1, ε, |x0 − ξ|}/2, we obtain by the Harnack inequality
that forx ∈ B(ξ, δ) \ {ξ},

KΩ(x, ξ) =
GΩ∪{ξ}(x, ξ)
GΩ∪{ξ}(x0, ξ)

≥
GB(ξ,2δ)(x, ξ)
AGΩ(x0, x)

≥ 2δ

AGΩ(x, x0)
log

1
|x − ξ|

.
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However, ifΩ is the unit disc ofR2, thenKΩ(rξ, ξ)GΩ(rξ, o) ≈ 1 for ξ ∈ ∂Ω and
1/2 < r < 1. To obtain comparison estimate (1.2) forn = 2, we need some exterior
condition. Let us define the Green capacity of a compact setE in an open setU by

CapU (E) = µ(U),

whereµ is the associated Riesz measure of the regularized reduced functionR̂E
1 onU .

We say thatξ ∈ ∂Ω satisfiesa capacity density condition(abbreviated to CDC) if there
exist constantsr′ξ > 0 andA′

ξ > 0 such that

inf
0<r<r′

ξ

CapB(ξ,2r)(B(ξ, r) \ Ω) ≥ A′
ξ.

Theorem 1.6. LetΩ be a proper subdomain ofR2, and suppose thatξ ∈ ∂Ω satisfies
the LCC and the CDC. Then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ Γα(ξ),

where the constant of comparison depends only onα, ξ andΩ.

A uniform domainΩ is said to beNTA if there are constantsr0 > 0 andA > 1
such that for eachξ ∈ ∂Ω and0 < r < r0, there is a ballB(z, r/A) contained in
B(ξ, r) \Ω. Observe that all boundary points of an NTA domain satisfy the CDC, and
the constantsr′ξ andA′

ξ can be taken uniformly forξ ∈ ∂Ω.

Corollary 1.7. LetΩ be an NTA domain inR2. Then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for ξ ∈ ∂Ω andx ∈ Γα(ξ),

where the constant of comparison depends only onα andΩ.

Remark1.8. Since the Green function and the Martin kernel are conformal invariant
(cf. [14, Section 6.3]), it is easy to see that ifΩ is a Jordan domain inR2 andξ ∈ ∂Ω,
thenGΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ ψ−1({(r, 0) : 1/2 < r < 1}), whereψ is a
conformal mapping fromΩ onto the unit disc such thatψ(x0) = (0, 0) andψ(ξ) =
(1, 0). In view of this, the LCC is not essential whenn = 2. However∂Ω does not
need to be a Jordan curve and may have infinitely many components.

Without the assumptions onI+, I− in Theorem A, we can obtain the following
relationships as a consequence of Corollaries 1.5 and 1.7.

Corollary 1.9. LetΦ be as in Theorem A and letα > 0. Then the following hold:

(i) lim inf
t→0

GΦ(te, e)
tα

= 0 if and only iflim sup
t→0

KΦ(te, o)
t2−n−α

= +∞.

(ii) lim sup
t→0

GΦ(te, e)
tα

= +∞ if and only iflim inf
t→0

KΦ(te, o)
t2−n−α

= 0.

4



Next, we give an estimate for the product of two Martin kernels with different
singularities in a uniform domain. Letξ, η ∈ ∂Ω and letγ be a curve connectingξ and
η such thatγ \ {ξ, η} ⊂ Ω and (1.3) holds. We denote byzξ,η the middle point ofγ so
that`(γ(ξ, zξ,η)) = `(γ(zξ,η, η)) = `(γ)/2, and define

g(ξ, η) = max
{

1,
|ξ − η|2−n

GΩ(zξ,η, x0)2

}
.

Theorem 1.10. Let Ω be a bounded uniform domain inRn, n ≥ 2, and letξ, η ∈ ∂Ω
be distinct. Suppose thatγ is a curve connectingξ andη such thatγ \ {ξ, η} ⊂ Ω and
(1.3)holds. Then the following statements hold.

(i) If n ≥ 3, then

KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)
(
|x − ξ|2−n + |x − η|2−n

)
for x ∈ γ, (1.5)

where the constant of comparison depends only onΩ.

(ii) If n = 2 andΩ is a bounded NTA domain, then(1.5)holds.

Corollary 1.11. LetΩ be a boundedC1,1-domain inRn, n ≥ 2, and letξ, η ∈ ∂Ω be
distinct. Suppose thatγ is a curve connectingξ andη such thatγ \ {ξ, η} ⊂ Ω and
(1.3)holds. Then

KΩ(x, ξ)KΩ(x, η) ≈ 1
|ξ − η|n

(
|x − ξ|2−n + |x − η|2−n

)
for x ∈ γ,

where the constant of comparison depends only onΩ.

2 Preparatory material

Throughout this section, we suppose thatΩ is a proper subdomain ofRn, n ≥ 2. The
quasi-hyperbolic metric onΩ is defined by

kΩ(x, y) = inf
γ

∫
γ

ds(z)
δΩ(z)

,

where the infimum is taken over all rectifiable curvesγ in Ω connectingx andy, and
ds stands for the line element onγ. We say that{B(xj , δΩ(xj)/2)}N

j=1 is a Harnack
chain joiningx andy in Ω if x1 = x, xN = y andxj+1 ∈ B(xj , δΩ(xj)/2) for
j = 1, . . . , N − 1. The numberN is called the length of the Harnack chain. Observe
that the shortest length of the Harnack chain joiningx andy in Ω is comparable to
kΩ(x, y) + 1. The following Harnack inequality is valid.

Lemma 2.1. There exists a constantA > 1 depending only on the dimensionn such
that

exp(−A(kΩ(x, y) + 1)) ≤ h(x)
h(y)

≤ exp(A(kΩ(x, y) + 1)) for x, y ∈ Ω,

wheneverh is a positive harmonic function onΩ.
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To apply Lemma 2.1 to the Green function, we need the following lemma (cf. [4,
Lemma 7.2]).

Lemma 2.2. Letz ∈ Ω. Then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \ B(z, δΩ(z)/2).

Lemma 2.3. Suppose thatξ ∈ ∂Ω satisfies the LCC. Then there exists a constantA
depending only onAξ such that if0 < r < rξ, then

kΩ∩B(ξ,κ3r)(x, yr) ≤ A log
r

δΩ(x)
+ A for x ∈ Ω ∩ B(ξ, r/κ),

whereyr ∈ Ω ∩ S(ξ, r) is as in Definition 1.1.

Proof. This follows from (1.1).

Lemma 2.4. Suppose thatξ ∈ ∂Ω satisfies the LCC. Let0 < r < rξ. If z, w ∈
Ω \ B(ξ, κ3r), then

GΩ(x, z)
GΩ(x,w)

≈ GΩ(y, z)
GΩ(y, w)

for x, y ∈ Ω ∩ B(ξ, r/κ3),

where the constant of comparison depends only onrξ, Aξ andΩ.

Proof. This can be proved by the similar way as in [4], so we just skech the proof.
Note from Lemma 2.3 thatξ has a system of local reference pointsyr of order 1 (see
[4, Definition 2.1] for its definition). The existence of a curve with (1.1) shows that
there isτ > 0 such that

∫
Ω∩B(ξ,r)

(r/δΩ(x))τdx ≤ Arn for 0 < r < rξ (see [4,
Lemma 4.1]). As in [4, Lemma 5.1], we can obtain the following Carleson estimate:
for x ∈ Ω ∩ S(ξ, r/κ2) andz ∈ Ω \ B(ξ, κ3r),

GΩ(x, z) ≤ AGΩ(yr, z). (2.1)

Let ω(x,E,U) denote the harmonic measure of a Borel setE for an open setU
evaluated atx. Then the similar argument to [4, Lemma 6.1] gives that forx ∈
Ω ∩ B(ξ, r/κ3) andw ∈ Ω \ B(ξ, κ3r),

ω(x,Ω ∩ S(ξ, r/κ2), Ω ∩ B(ξ, r/κ2)) ≤ A
GΩ(x,w)
GΩ(yr, w)

. (2.2)

Therefore the maximum principle, together with (2.1) and (2.2), yields that forx ∈
Ω ∩ B(ξ, r/κ3) andz, w ∈ Ω \ B(ξ, κ3r),

GΩ(x, z) ≤ A
GΩ(yr, z)
GΩ(yr, w)

GΩ(x,w).

Changing the roles ofz andw, we obtain the opposite inequality. Thus the lemma
follows.
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Let ξ ∈ ∂Ω and let{yj} be a sequence inΩ converging toξ. Observe that there
is a subsequence{yjk

} such that{GΩ(·, yjk
)/GΩ(x0, yjk

)} converges to a positive
harmonic function onΩ. We call such a limit functionthe Martin kernel ofΩ (with
pole) at ξ. A positive harmonic functionh is said to beminimal if every positive
harmonic function less than or equal toh coincides with a constant multiple ofh.

Lemma 2.5. Suppose thatξ ∈ ∂Ω satisfies the LCC. Thenξ has a unique Martin
kernel and it is minimal.

Proof. This follows from Lemma 2.4 and the Martin representation theorem.

3 Proofs of Theorems 1.3 and 1.6

Proof of Theorem 1.3.Suppose thatξ ∈ ∂Ω satisfies the LCC and put

A1 = max
{

κ3,
δΩ(x0)

rξ

}
.

We may assume without loss of generality thatrξ ≤ δΩ(x0)/2. Let x ∈ Γα(ξ) and let
r = |x − ξ|/(κ3A1). Thenκ3r < rξ, since|x − ξ| < δΩ(x0) ≤ A1rξ. Also, we have
|x − ξ| ≥ κ6r and|x0 − ξ| ≥ δΩ(x0) ≥ |x − ξ| ≥ κ6r. Let yr ∈ Ω ∩ S(ξ, r) be such
thatδΩ(yr) ≥ r/Aξ. Then Lemma 2.4 gives

GΩ(x, y)
GΩ(x0, y)

≈ GΩ(x, yr)
GΩ(x0, yr)

for y ∈ Ω ∩ B(ξ, r).

Lettingy → ξ, we obtain

KΩ(x, ξ) ≈ GΩ(x, yr)
GΩ(x0, yr)

. (3.1)

We claim
GΩ(x0, yr) ≈ GΩ(x0, x). (3.2)

To show this, we consider two cases.
Case 1: ρ := κ|x − ξ| < rξ. The LCC and Lemma 2.3 show that there isyρ ∈
Ω ∩ S(ξ, ρ) with δΩ(yρ) ≥ ρ/Aξ such that

kΩ(z, yρ) ≤ A log
ρ

δΩ(z)
+ A for z ∈ Ω ∩ B(ξ, ρ/κ).

Observe thatx, yr ∈ Ω ∩ B(ξ, ρ/κ), δΩ(x) ≥ |x − ξ|/α = ρ/(ακ) andδΩ(yr) ≥
ρ/(AξA1κ

4). Therefore

kΩ(x, yρ) ≤ A and kΩ(yr, yρ) ≤ A.

Sincex, yr, yρ ∈ Ω \ B(x0, δΩ(x0)/2), it follows from Lemmas 2.1 and 2.2 that

GΩ(x0, yr) ≈ GΩ(x0, yρ) ≈ GΩ(x0, x).

Thus (3.2) holds in this case.
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Case 2:κ|x − ξ| ≥ rξ. Sincer ≥ rξ/(A1κ
4), it follows from the Harnack inequality

on the compact setΓα(ξ) \B(ξ, rξ/(A1κ
4)) thatGΩ(x0, yr) ≈ GΩ(x0, x), where the

constant of comparison depends only onξ andΩ. Thus (3.2) follows.
We next claim

GΩ(x, yr) ≈ |x − ξ|2−n. (3.3)

Let w ∈ S(yr, δΩ(yr)/2). Then the similar argument as above gives

GΩ(x, yr) ≈ GΩ(w, yr) ≈ |w − yr|2−n. (3.4)

Since|w − yr| ≈ r ≈ |x − ξ|, we obtain (3.3). Combining (3.1), (3.2) and (3.3), we
complete the proof of Theorem 1.3.

Proof of Corollary 1.5. If Ω is a uniform domain, thenκ, rξ andAξ can be taken uni-
formly for ξ ∈ Ω. Therefore (5.1) gives (3.2) and (3.3) with the comparison constant
depending only onα andΩ.

Proof of Theorem 1.6.The proofs of (3.1), (3.2) and the first estimate in (3.4) are
independent of the dimension. It is enough to show thatGΩ(w, yr) ≈ 1 for w ∈
S(yr, δΩ(yr)/2). This will be shown in Proposition 3.2 below.

Lemma 3.1. Let Ω be a proper subdomain ofRn, n ≥ 2, and letz, w ∈ Ω satisfy
|z − w| ≤ δΩ(z)/4. Suppose thatu is a subharmonic function onB(z, δΩ(z)) ∪
B(w, δΩ(w)) such thatu ≤ M . If u ≤ (1− θ)M onB(z, δΩ(z)/8) for some0 < θ <
1, then

u ≤
(
1 −

( 4
17

)n

θ
)
M onB(w, δΩ(w)/8).

Proof. Let x ∈ B(w, δΩ(w)/8). Observe that

B(z, δΩ(z)/8) ⊂ B(x, 17δΩ(z)/32) ⊂ B(w, δΩ(w)).

Write E1 = B(x, 17δΩ(z)/32) andE2 = E1 \ B(z, δΩ(z)/8). By the mean value
inequality, we have

u(x) ≤ 1
|E1|

∫
E1

u(y)dy ≤ 1
|E1|

(
(1 − θ)M |E1 \ E2| + M |E2|

)
≤ M

(
1 −

( 4
17

)n

θ
)
,

where|E| denotes the volume of a setE. Thus the lemma follows.

Proposition 3.2. LetΩ be a proper subdomain ofR2 and suppose thatξ ∈ ∂Ω satisfies
the LCC and the CDC. Then

GΩ(x, y) ≈ 1 for x ∈ Γα(ξ) andy ∈ S(x, δΩ(x)/2),

where the constant of comparison depends only onα, ξ andΩ.
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Proof. Clearly, GΩ(x, y) ≥ GB(x,δΩ(x))(x, y) ≈ 1 for y ∈ S(x, δΩ(x)/2). Let us
show

GΩ(x, y) ≤ A for x ∈ Γα(ξ) andy ∈ S(x, δΩ(x)/2). (3.5)

The method is based on Aikawa [3, Proof of Lemma 2]. The CDC atξ implies that

CapB(ξ,2r)(B(ξ, r) \ Ω) ≥ A whenever0 < r < δΩ(x0), (3.6)

whereA > 0 depends only onr′ξ, A′
ξ andδΩ(x0). Let r = δΩ(x)/2 and letM =

supS(x,r) GΩ(x, ·). Then the maximum principle gives that forz ∈ Ω ∩ B(ξ, r),

GΩ(x, z) ≤ Mω(z, S(x, r),Ω \ B(x, r)) ≤ Mω(z, S(ξ, r), B(ξ, r) \ E),

whereE = B(ξ, r/2) \ Ω andω(z, F, U) is the harmonic measure of a setF for an
open setU evaluated atz. By [1, Lemma 3] and (3.6), we have

sup
B(ξ,r/2)

ω(·, S(ξ, r), B(ξ, r) \ E) ≤ 1 − 1
A

CapB(ξ,r)(E) ≤ 1 − θ,

where0 < θ < 1. Therefore

GΩ(x, z) ≤ M(1 − θ) for z ∈ Ω ∩ B(ξ, r/2). (3.7)

Fix z ∈ Ω ∩ S(ξ, r/4) with δΩ(z) ≥ r/(4α), and letw ∈ S(x, 3r/2). ThenδΩ(w) ≥
r/2 and|z − w| ≤ Ar. We observe, as in the proof of Theorem 1.3, that

kΩ\{x}(z, w) ≤ 3kΩ(z, w) + π ≤ A,

whereA depends only onα, ξ andΩ. Thereforez andw can be joined by{B(wj ,
δΩ\{x}(wj)/4)}N

j=1 such thatw1 = z, wN = w andwj+1 ∈ B(wj , δΩ\{x}(wj)/4)
for j = 1, . . . , N − 1, whereN depends only onα, ξ andΩ. Note from (3.7) that
GΩ(x, ·) ≤ M(1 − θ) onB(w1, δΩ\{x}(w1)/8). Apply Lemma 3.1 repeatedly. Then

GΩ(x, w) ≤ M
(
1 −

( 4
17

)nN

θ
)

for w ∈ S(x,
3
2
r). (3.8)

Observe that fory ∈ B(x, 3r/2),

GB(x,3r/2)(x, y) = GΩ(x, y) − R
Ω\B(x,3r/2)
GΩ(x,·) (y),

whereRF
GΩ(x,·) is the reduced function ofGΩ(x, ·) relative to a setF in Ω. By (3.8),

sup
S(x,r)

GΩ(x, ·) − M
(
1 −

( 4
17

)nN

θ
)
≤ sup

S(x,r)

GB(x,3r/2)(x, ·) = log
3
2
.

Hence we obtainM ≤ log(3/2) · (17/4)nN/θ, and thus (3.5) holds.
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4 Counterexample

In this section, we give an example of a domain on which (1.2) fails to hold. Let us
denote a pointx ∈ Rn by (x′, xn) ∈ Rn−1 × R, and writeo = (0′, 0).

Example 4.1. Suppose thatn ≥ 3. Let Ω be the inverse ofΩ∗ with respect toS(o, 1),
where

Ω∗ = {(x′, xn) : |x′| < 1/2, xn > 0} \ B(o, 1).

Let x0 = (0′, 1/2). Then

lim sup
x→o, x∈E

GΩ(x, x0)KΩ(x, o)
|x|2−n

= +∞, (4.1)

whereE = {(0′, xn) : 0 < xn < 1/4}.

Ω∗ xn

Ω

x∗= x
|x|2⇐⇒

Figure 1:Ω andΩ∗.

Proof. Suppose to the contrary that there is a constantA such that

GΩ(x, x0)KΩ(x, o) ≤ A|x|2−n for x ∈ E.

Let KΩ∗(·,+∞) denote the Martin kernel ofΩ∗ at +∞, i.e. the limit function of
GΩ∗(·, (y′, yn))/GΩ∗(x∗

0, (y
′, yn)) asyn → +∞. Since

KΩ∗(x,+∞) =
(

2
|x|

)n−2

KΩ(x/|x|2, o),

GΩ∗(x, x∗
0) = (2|x|)2−nGΩ(x/|x|2, x0)

for x ∈ Ω∗, it follows that forx ∈ E∗,

GΩ∗(x, x∗
0)KΩ∗(x,+∞) = |x|2(2−n)GΩ(x/|x|2, x0)KΩ(x/|x|2, o)

≤ A|x|2−n.
(4.2)

Let ω = {(x′, xn) : |x′| < 1/2, −∞ < xn < +∞}. Note thatΩ∗ ⊂ ω and
Ω∗ ∩ {xn > 1} = ω ∩ {xn > 1}, and that the Martin kernels ofω at+∞ and−∞ are
respectively of the form

Kω(x,+∞) = eτxnf(x′) and Kω(x,−∞) = Ae−τxnf(x′), (4.3)

10



xn

xn = 2

x∗
0

yξ

ξ

Figure 2: Positions ofξ andyξ.

whereτ > 0 andA > 0 are constants andf is a positive function on{x′ ∈ Rn−1 :
|x′| < 1/2} vanishing continuously on{x′ : |x′| = 1/2}. Let ξ = (ξ′, 2) ∈ ∂ω, and
let yξ be the point in the line segmentξx∗

0 such that|yξ − ξ| = 1/4. The boundary
Harnack principle gives

GΩ∗(y, x∗
0)

Kω(y,−∞)
≈ GΩ∗(yξ, x

∗
0)

Kω(yξ,−∞)
for y = (y′, 2) ∈ ω ∩ B(ξ, 1/4),

where the constant of comparison is independent ofy, yξ andξ. Observe from the
Harnack inequality thatGΩ∗(y, x∗

0) ≥ A > 0 andKω(y,−∞) ≈ Kω(x∗
0,−∞) ≈ 1

for y = (y′, 2) with δω(y) ≥ 1/4. Therefore

Kω(y,−∞) ≤ AGΩ∗(y, x∗
0) (4.4)

for y = (y′, 2) ∈ (ω ∩B(ξ, 1/4))∪{δω(y) ≥ 1/4}. The arbitrariness ofξ = (ξ′, 2) ∈
∂ω shows that (4.4) holds for ally = (y′, 2) ∈ ω, and so for ally ∈ {(y′, yn) ∈ ω :
yn ≥ 2} by the maximum principle. It follows from (4.2) and (4.3) that forx ∈ E∗,

KΩ∗(x, +∞)
Kω(x,+∞)

≈ Kω(x,−∞)KΩ∗(x,+∞) ≤ A|x|2−n.

As x ∈ E∗ andxn → +∞, we have a contradiction, because

lim sup
xn→+∞

KΩ∗((0′, xn),+∞)
Kω((0′, xn), +∞)

> 0 (4.5)

(see Remark 4.2 below). Hence (4.1) holds.

Remark4.2. We see from [6, Theorems 9.2.6 and 9.3.3] that

lim sup
xn→+∞

KΩ∗((x′, xn), +∞)
Kω((x′, xn),+∞)

> 0.

As in the proof of Example 4.1, the boundary Harnack principle and the usual Harnack
inequality give that for eachxn ≥ 2,

KΩ∗((x′, xn), +∞)
Kω((x′, xn), +∞)

≈ KΩ∗((0′, xn), +∞)
Kω((0′, xn),+∞)

for |x′| < 1/2.

Thus (4.5) follows.
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Remark4.3. Aikawa and Lundh [5] constructed a bounded domain inRn, n ≥ 3,
such that 3G inequality (1.4) fails to hold. A domainΩ in Example 4.1 is also one
of conterexamples to (1.4). Indeed, as stated in the introduction, (1.4) implies that
GΩ(x, x0)KΩ(x, o) ≤ A|x|2−n for x ∈ Ω close too. But this contradicts (4.1).

5 Proof of Theorem 1.10

If Ω is a uniform domain, then the constantsκ, rξ andAξ in (1.1) can be taken uni-
formly for ξ ∈ ∂Ω. In this case, Lemma 2.4 is restated as follows: there is a constant
r1 > 0 depending only onΩ such that ifξ ∈ ∂Ω and0 < r ≤ r1, then

GΩ(x, z)
GΩ(x,w)

≈ GΩ(y, z)
GΩ(y, w)

for x, y ∈ Ω ∩ B(ξ, r) andz, w ∈ Ω \ B(ξ, κ6r), where the constant of comparison
depends only onΩ. This was indeed proved in [2] and is calledthe uniform boundary
Harnack principle(abbreviated to UBHP). Recall that a uniform domainΩ is charac-
terized in terms of the quasi-hyperbolic metric (cf. [16]):

kΩ(x, y) ≤ A log
(

|x − y|
min{δΩ(x), δΩ(y)}

+ 1
)

+ A for x, y ∈ Ω. (5.1)

The following lemma is an elementary consequence of (5.1) and Lemma 2.1.

Lemma 5.1. Let Ω be a uniform domain inRn, n ≥ 3, or an NTA domain inR2. If
x, y ∈ Ω satisfyδΩ(y)/2 ≤ |x − y| ≤ A2 min{δΩ(x), δΩ(y)} for some constantA2,
then

GΩ(x, y) ≈ |x − y|2−n,

where the constant of comparison depends only onA2 andΩ.

Proof of Theorem 1.10.We give a proof only whenn ≥ 3. We may assume without
loss of generality thatδΩ(x0) ≥ (κ6 + 2)A0r1, whereA0 is the constant in (1.3). Let
ξ, η ∈ ∂Ω be distinct and letγ be a curve connectingξ andη such thatγ \ {ξ, η} ⊂ Ω
and (1.3) holds. Putr = |ξ − η|/(κ6 + 2). We consider two cases.
Case 1:r ≤ r1. Let x ∈ γ ∩ B(ξ, r). Thenx, x0 ∈ Ω \ B(η, κ6r). The UBHP gives

KΩ(x, η) ≈ GΩ(x,wη)
GΩ(x0, wη)

, (5.2)

wherewη ∈ γ ∩ S(η, r) ⊂ Ω \ B(ξ, κ6r). We again apply the UBHP to obtain

GΩ(x,wη)
GΩ(x, x0)

≈ GΩ(wξ, wη)
GΩ(wξ, x0)

, (5.3)

wherewξ ∈ γ ∩ S(ξ, r). Note from (1.3) thatx ∈ ΓA0(ξ). Therefore (5.2), (5.3) and
Corollary 1.5 give

KΩ(x, η) ≈ GΩ(wξ, wη)
GΩ(wξ, x0)GΩ(wη, x0)

|x − ξ|2−n

KΩ(x, ξ)
. (5.4)
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Let zξ,η be the middle point ofγ. Observe from (1.3) thatδΩ(wξ), δΩ(wη), δΩ(zξ,η) are
greater thanr/A0, and that|wξ −zξ,η|, |wη −zξ,η| are bounded bỳ(γ) ≤ A0|ξ−η| =
A0(κ6 + 2)r. ThereforekΩ(wξ, zξ,η) ≤ A andkΩ(wη, zξ,η) ≤ A by (5.1). Since
wξ, wη, zξ,η ∈ Ω \ B(x0, δΩ(x0)/2), it follows from Lemmas 2.1 and 2.2 that

GΩ(wξ, x0) ≈ GΩ(zξ,η, x0) ≈ GΩ(wη, x0). (5.5)

Also, we have by Lemma 5.1

GΩ(wξ, wη) ≈ |wξ − wη|2−n ≈ r2−n ≈ |ξ − η|2−n. (5.6)

Combining (5.4), (5.5) and (5.6), we obtain

KΩ(x, ξ)KΩ(x, η) ≈ |ξ − η|2−n

GΩ(zξ,η, x0)2
|x − ξ|2−n (5.7)

wheneverx ∈ γ ∩B(ξ, r). If x ∈ γ(ξ, zξ,η) \B(ξ, r), then|x−wξ| ≤ Ar ≤ AδΩ(x)
by (1.3). Therefore Lemma 2.1 and (5.1) give

KΩ(x, ξ)KΩ(x, η) ≈ KΩ(wξ, ξ)KΩ(wξ, η).

Since|x − ξ| ≈ r = |wξ − ξ|, it follows from (5.7) withx = wξ that (5.7) holds for
x ∈ γ(ξ, zξ,η). Observe that|x− ξ|2−n ≈ |x− ξ|2−n + |x− η|2−n for x ∈ γ(ξ, zξ,η)
and|ξ − η|2−n/GΩ(zξ,η, x0)2 ≥ A(Ω) > 0. Hence we obtain

KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)
(
|x − ξ|2−n + |x − η|2−n

)
(5.8)

for x ∈ γ(ξ, zξ,η). Similarly, we can obtain (5.8) forx ∈ γ(zξ,η, η).
Case 2:r > r1. Let x ∈ γ ∩ B(ξ, r1) and letw0 ∈ γ ∩ S(ξ, r1). Then

KΩ(w0, η) ≈ 1 and GΩ(w0, x0) ≈ 1,

where the constants of comparisons depend onr1, δΩ(x0) anddiam(Ω). Note that
|ξ − η| = (κ6 + 2)r ≥ κ6r1. By the UBHP and Corollary 1.5,

KΩ(x, η) ≈ KΩ(w0, η)
GΩ(w0, x0)

GΩ(x, x0) ≈
|x − ξ|2−n

KΩ(x, ξ)
≈ |x − ξ|2−n + |x − η|2−n

KΩ(x, ξ)
.

If x ∈ γ(ξ, zξ,η) \ B(ξ, r1), thenδΩ(x) ≥ r1/A0 by (1.3), and so

KΩ(x, ξ) ≈ 1 ≈ KΩ(x, η) and |x − ξ| ≈ 1 ≈ |x − η|,

where the constants of comparisons depend onr1/A0, δΩ(x0) anddiam(Ω). Since
|ξ − η|2−n/GΩ(zξ,η, x0)2 ≤ A(Ω), we obtainKΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)(|x −
ξ|2−n + |x − η|2−n) for x ∈ γ(ξ, zξ,η). Similarly, we obtain this forx ∈ γ(zξ,η, η).
Thus the proof of Theorem 1.10 is complete.

Proof of Corollary 1.11.Let γ be a curve connectingξ andη such thatγ \ {ξ, η} ⊂ Ω
and (1.3) holds, and letzξ,η be the middle point ofγ. Then

1
2A0

|ξ − η| ≤ 1
A0

`(γ(ξ, zξ,η)) ≤ δΩ(zξ,η) ≤ `(γ(ξ, zξ,η)) ≤ A0|ξ − η|.

It is known that ifΩ is a boundedC1,1-domain, thenGΩ(z, x0) ≈ δΩ(z) for z ∈
Ω \ B(x0, δΩ(x0)/2). Hence Corollary 1.11 follows from Theorem 1.10.
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