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Abstract

This paper is concerned with the existence of positive solutions of the singular
nonlinear elliptic equation with a Dirichlet boundary condition

(

∆u = F (x, u) in Ω,

u = φ on∂Ω,

whereF is a Borel measurable function inΩ × (0, +∞) such that|F (x, u)| ≤
V (x)u−α for someα > 0 andV satisfying some appropriate conditions. In par-
ticular, we show that the above problem has positive solutions wheneverinf∂Ω φ
is greater than a positive quantity given byα andV .
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1 Introduction

Let Ω be a domain inRn, n ≥ 2, and let∂∞Ω denote the boundary ofΩ in the
one-point compactificationRn ∪ {∞}. In this paper, we study the existence of posi-
tive continuous solutions of the following nonlinear elliptic equation with a Dirichlet
boundary condition: {

∆u = F (x, u) in Ω,

u = φ on∂∞Ω,
(1.1)

where∆ is the Laplace operator onRn, F is a Borel measurable function inΩ ×
(0, +∞) andφ is a nonnegative continuous function on∂∞Ω. The equation∆u =
F (x, u) is understood in the sense of distributions. In the case thatF is negative, we
can expect the existence of positive solutions of (1.1) even ifφ is identical to zero.
This case was investigated by many authors [6, 7, 8, 9, 11] in smooth domains or
in Rn. In contrast to this, the case thatF is nonnegative andφ is identical to zero
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does not guarantee the existence of positive solutions of (1.1), because every positive
solution takes its maximum on∂∞Ω. The question is for whatφ does (1.1) have
positive solutions? In [4], Chen, Williams and Zhao studied it in the case whenΩ is a
Lipschitz domain inRn, n ≥ 3, with compact boundary, and|F (x, u)| ≤ V (x)up with
p ≥ 1 andV being the Green-tight function onΩ. They showed that ifφ is not identical
to zero and its supremum norm is small (i.e. bounded by a constant depending only
on p, V andΩ), then (1.1) has at least one positive solution. However, in the singular
casep < 0, the smallness of the supremum norm ofφ does not imply the existence
of positive solutions (see Proposition 3.1 below). In [1], Athreya studied (1.1) with
the singular nonlinearityF (x, u) = u−α, 0 < α < 1, in a boundedC2-domain in
Rn, n ≥ 3. He showed the existence of solutions, bounded below by a given positive
harmonic functionh0, under the boundary conditionφ ≥ (1 + A)h0 with a constantA
depending onh0, α andΩ.

The purpose of this paper is to give the Chen-Williams-Zhao type theorem for a
singular nonlinear termF (x, u). More precisely, we shall show that (1.1) has positive
solutions wheneverinf∂∞Ω φ is greater than a positive quantity depending onF . We
impose no assumptions on a domainΩ other than the existence of the Green function
and being regular for the Dirichlet problem. Such a domain will be called aDirichlet
regular domain. Note that any domains possess the Green function whenn ≥ 3. Let
GΩ stand for the Green function ofΩ, i.e., for eachy ∈ Ω, the functionGΩ(·, y) is a
distributional solution of {

−∆GΩ(·, y) = δy in Ω,

GΩ(·, y) = 0 on∂∞Ω,

whereδy is the Dirac measure aty. By B(x, r) we denote the open ball of centerx and
radiusr. We say that a Borel measurable functionf in Ω belongs toG(Ω) if, for each
z ∈ Ω ∪ ∂Ω,

lim
r→0

(
sup

x∈Ω∩B(z,r)

∫
Ω∩B(z,r)

GΩ(x, y)|f(y)|dy

)
= 0, (1.2)

and

lim
R→+∞

(
sup
x∈Ω

∫
Ω\B(0,R)

GΩ(x, y)|f(y)|dy

)
= 0 (whenΩ is unbounded). (1.3)

We define

‖f‖G(Ω) = sup
x∈Ω

∫
Ω

GΩ(x, y)|f(y)|dy.

Considering a finite covering ofΩ if it is bounded (orΩ ∩ B(0, R) if unbounded),
we see that‖f‖G(Ω) < ∞ wheneverf ∈ G(Ω). Note in the casen ≥ 3 that f is a
Green-tight function if and only if it satisfies (1.2) and (1.3) with the Newtonian kernel
|x − y|2−n instead of the Green function. Thus all Green-tight functions belong to
G(Ω). Let ω(x,E,D) be the harmonic measure of a setE relative toD evaluated
at x, and let us defineL1

ω(Ω) as the class of every Borel measurable functionf in Ω
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satisfying ∫
Ω\B(z,2r)

|f(y)|ω
(
y, ∂B(z, r) ∩ Ω, Ω \ B(z, r)

)
dy < ∞

for eachz ∈ Ω and small0 < r < rz. Since0 ≤ ω ≤ 1, we see thatL1(Ω) ⊂ L1
ω(Ω).

See also Section 3.2.
We consider the following singular nonlinear termF (x, t) defined inΩ×(0,+∞):

(I) F (x, t) is continuous with respect tot for eachx ∈ Ω,

(II) 0 6= |F (x, t)| ≤ V (x)t−α for a.e. x ∈ Ω and t > 0, whereα > 0 and
V ∈ G(Ω) ∩ L1

ω(Ω ∩ B(0, R)) for eachR > 0.

Note that|F | 6= 0 implies‖V ‖G(Ω) > 0. Our results are as follows.

Theorem 1.1. LetΩ be an arbitrary Dirichlet regular domain inRn, n ≥ 2. Suppose
thatF is a Borel measurable function inΩ× (0, +∞) satisfying(I) and(II) . Then, for
every continuous functionφ on∂∞Ω satisfying

inf
∂∞Ω

φ ≥ 1 + α

αα/(1+α)
‖V ‖1/(1+α)

G(Ω) , (1.4)

the Dirichlet problem(1.1)has at least one positive continuous solutionu such that

inf
Ω

u ≥ (α‖V ‖G(Ω))1/(1+α).

If V (x) = κ, then we can estimate‖κ‖G(Ω).

Corollary 1.2. Suppose thatΩ is a Dirichlet regular domain inRn, n ≥ 2, with the
same volume as the unit ball. Letα > 0 and κ > 0 be constants. Then, for every
continuous functionφ on∂∞Ω satisfying

inf
∂∞Ω

φ ≥ 1 + α

αα/(1+α)

( κ

2n

)1/(1+α)

, (1.5)

the Dirichlet problem {
∆u = κu−α in Ω,

u = φ on∂∞Ω,
(1.6)

has at least one positiveC2-solution.

We do not know whether the bound (1.5) is sharp to guarantee the existence of
positive solutions of (1.6). However we will see that (1.6) does not have positive solu-
tions for any small boundary dataφ (see Proposition 3.1). As another special case of
Theorem 1.1, we obtain the following.

Corollary 1.3. Let B be the unit ball ofRn, n ≥ 2, and α > 0. Then, for every
continuous functionφ on∂B satisfying

inf
∂B

φ ≥ (1 + α)
αα/(1+α)

81/(1+α),
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the Dirichlet problem ∆u(x) =
1

(1 − |x|)u(x)α
in B,

u = φ on∂B,

has at least one positiveC2-solution.

2 Proofs of Theorem 1.1 and Corollary 1.2

In the proof, we note that0 < ‖V ‖G(Ω) < ∞. Let C(Ω) denote the Banach space of
all bounded continuous functions inΩ = Ω∪∂∞Ω equipped with the supremum norm
‖ · ‖∞. We define

U =

{
u ∈ C(Ω) :

(
α‖V ‖G(Ω)

)1/(1+α) ≤ u ≤ ‖φ‖∞ +
(

1
α

)α/(1+α)

‖V ‖1/(1+α)
G(Ω)

}
.

Sinceα1/(1+α) < α−α/(1+α) for 0 < α < 1, we see thatU is non-empty bounded
closed convex subset ofC(Ω). Let T be the operator onU defined by

T u(x) = Hφ(x) −
∫

Ω

GΩ(x, y)F (y, u(y))dy, (2.1)

whereHφ is the unique (Perron-Wiener-Brelot) solution of{
∆h = 0 in Ω,

h = φ on∂∞Ω.

Write T (U) = {T u : u ∈ U}. Note from (II) that

|F (y, u(y))| ≤ V (y)
(
α‖V ‖G(Ω)

)−α/(1+α)
for a.e.y ∈ Ω, (2.2)

wheneveru ∈ U .

Lemma 2.1. The familyT (U) is equicontinuous inΩ. Moreover, ifu ∈ U , then
T u = φ on∂∞Ω.

Proof. Let z ∈ Ω and letx1, x2 ∈ Ω ∩ B(z, r/2). By (2.2),

|T u(x1) − T u(x2)| ≤ |Hφ(x1) − Hφ(x2)|

+
(
α‖V ‖G(Ω)

)−α/(1+α)
∫

Ω

|GΩ(x1, y) − GΩ(x2, y)|V (y)dy.

If r > 0 is sufficiently small, then it follows from (1.2) and (1.3) that∫
Ω

|GΩ(x1, y) − GΩ(x2, y)|V (y)dy

≤ ε +
∫

Ω∩B(0,1/r)\B(z,2r)

|GΩ(x1, y) − GΩ(x2, y)|V (y)dy.
(2.3)
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SinceGΩ is continuous on
(
Ω ∩ B(z, r/2)

)
×

(
Ω∩∂B(z, r)

)
, it takes the maximumM

on there. By the maximum principle,GΩ(xi, y) ≤ Mω
(
y, ∂B(z, r)∩Ω, Ω \B(z, r)

)
for i = 1, 2 andy ∈ Ω \ B(z, r). Therefore the integrand of the right hand side in
(2.3) is bounded by a constant multiple ofV ∈ L1

ω(Ω ∩ B(0, 1/r)). The Lebesgue
convergence theorem implies that

∫
Ω
|GΩ(x1, y) − GΩ(x2, y)|V (y)dy → 0 as|x1 −

x2| → 0. HenceT u is continuous atz uniformly for u ∈ U . SinceGΩ(·, y) = 0
andHφ = φ on ∂∞Ω, the similar argument shows thatT u(x) → φ(x) uniformly for
u ∈ U asx → ∂∞Ω.

Lemma 2.2. The operatorT is a continuous mapping fromU into itself such that
T (U) is relatively compact inC(Ω).

Proof. We first show thatT (U) ⊂ U . Let u ∈ U . Then, by (1.4) and (2.2),

T u(x) ≥ 1 + α

αα/(1+α)
‖V ‖1/(1+α)

G(Ω) −
(

1
α‖V ‖G(Ω)

)α/(1+α) ∫
Ω

GΩ(x, y)V (y)dy

≥
(
α‖V ‖G(Ω)

)1/(1+α)
,

and

T u(x) ≤ ‖φ‖∞ +
(

1
α‖V ‖G(Ω)

)α/(1+α) ∫
Ω

GΩ(x, y)V (y)dy

≤ ‖φ‖∞ +
(

1
α

)α/(1+α)

‖V ‖1/(1+α)
G(Ω) .

SinceT u ∈ C(Ω) by Lemma 2.1, we obtainT (U) ⊂ U . Moreover, the Ascoli-Arzelá
theorem yields thatT (U) is relatively compact inC(Ω).

We next show thatT is continuous onU . Let {uj} be a sequence inU converging
to u ∈ U with respect to‖ · ‖∞. Then

|T uj(x) − T u(x)| ≤
∫

Ω

GΩ(x, y)|F (y, uj(y)) − F (y, u(y))|dy.

In view of (I) and (2.2), it follows from the Lebesgue convergence theorem thatT uj(x)
converges pointwisely toT u(x) asj → ∞. Hence the relative compactness ofT (U)
concludes that‖T uj − T u‖∞ → 0 asj → ∞.

Proof of Theorem 1.1.By the Schauder fixed point theorem, there existsu ∈ U such
thatT u = u. We see from the Fubini theorem that∫

Ω

u(x)∆ψ(x)dx =
∫

Ω

F (y, u(y))ψ(y)dy for ψ ∈ C∞
0 (Ω),

so thatu is a distributional solution of∆u = F (x, u) in Ω satisfyingu ≥ (α‖V ‖G(Ω))1/(1+α).
Also, we have by Lemma 2.1 thatu = φ on ∂∞Ω. This completes the proof of Theo-
rem 1.1.

5



Proof of Corollary 1.2.Suppose that the volume ofΩ is same as the unit ballB. Then
the following isoperimetric inequality for the Green function holds (see [3, p. 61]):

sup
x∈Ω

∫
Ω

GΩ(x, y)dy ≤
∫

B

GB(0, y)dy =
1
2n

.

Hence‖κ‖G(Ω) ≤ κ/2n. Therefore, if (1.5) is satisfied, then Theorem 1.1 shows that
there existsu ∈ C(Ω) such thatu ≥ (α‖κ‖G(Ω))1/(1+α) and

u(x) = Hφ(x) − κ

∫
Ω

GΩ(x, y)u(y)−αdy.

Sinceu−α is bounded inΩ, it follows from [10, Theorem 6.6] thatu ∈ C1(Ω), and so
u−α ∈ C1(Ω). In particular,u−α is locally Hölder continuous inΩ, which concludes
thatu ∈ C2(Ω) and∆u = κu−α in Ω. Thus Corollary 1.2 is proved.

3 Remarks and Proof of Corollary 1.3

3.1 Nonexistence of positive solutions

The following proposition shows that any small boundary data do not guarantee posi-
tive solutions of (1.6).

Proposition 3.1. Suppose thatΩ is a Dirichlet regular domain inRn, n ≥ 2, contain-
ing the unit ballB. Let α > 0 andκ > 0 be constants. Then, for every continuous
functionφ on∂∞Ω satisfying

sup
∂∞Ω

φ ≤
( κ

2n

)1/(1+α)

,

the Dirichlet problem(1.6)has no positive solutions.

Proof. Suppose to the contrary that (1.6) has a positive solutionu. Then the Riesz
decomposition theorem for a subharmonic function yields that

0 < u(0) = Hφ(0) − κ

∫
Ω

GΩ(0, y)u(y)−αdy,

whereHφ is the harmonic function inΩ determined byφ. Observe from the maximum
principle thatu ≤ Hφ ≤ (κ/2n)1/(1+α) in Ω. Therefore

κ

(
2n

κ

)α/(1+α) ∫
B

GB(0, y)dy ≤ κ

∫
Ω

GΩ(0, y)u(y)−αdy <
( κ

2n

)1/(1+α)

,

and so
1
2n

=
∫

B

GB(0, y)dy <
1
2n

.

This is a contradiction.
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3.2 Remarks onG(Ω) and L1
ω(Ω)

Let δΩ(x) denote the distance fromx to the boundary ofΩ. For two positive functions
f andg in Ω, we writef ≈ g if there exists a constantA depending only onΩ such that
f/A ≤ g ≤ Af . Note that ifΩ is a bounded Lipschitz domain, thenG(Ω) ⊂ L1

ω(Ω).
Indeed, letz ∈ Ω andr > 0 be small. The boundary Harnack principle (cf. [2]) yields
that there is a constantA(r,Ω) such that

ω
(
y, ∂B(z, r) ∩ Ω, Ω \ B(z, r)

)
≤ A(r,Ω)GΩ(x0, y) for y ∈ Ω \ B(z, 2r),

wherex0 ∈ Ω is fixed. Therefore, iff ∈ G(Ω), then∫
Ω\B(z,2r)

|f(y)|ω
(
y, ∂B(z, r) ∩ Ω, Ω \ B(z, r)

)
dy ≤ A‖f‖G(Ω) < ∞,

and sof ∈ L1
ω(Ω). Also,G(Ω) is strictly bigger than the Green-tight class.

Example 3.2. Let Ω be a boundedC1,1-domain inRn, n ≥ 2. Thenδ−1
Ω belongs to

G(Ω), but not in the Green-tight class.

Proof. It is known from [5, 12] that

GΩ(x, y) ≈


min

{
1,

δΩ(x)δΩ(y)
|x − y|2

}
|x − y|2−n if n ≥ 3,

log
(

1 +
δΩ(x)δΩ(y)
|x − y|2

)
if n = 2.

(3.1)

Let z ∈ Ω andr > 0. Whenn ≥ 3, we have forx ∈ Ω ∩ B(z, r),∫
Ω∩B(z,r)

GΩ(x, y)δΩ(y)−1dy

≤
∫

B(x,2r)∩B(x,δΩ(x)/2)

AδΩ(x)−1dy

|x − y|n−2
+

∫
B(x,2r)\B(x,δΩ(x)/2)

Ady

|x − y|n−1

≤ Ar,

and so (1.2) is satisfied. Similarly, we obtain this forn = 2. Henceδ−1
Ω ∈ G(Ω). On

the other hand, it is not difficult to see that the Green-tight class is a subset ofL1(Ω),
and thatδ−1

Ω 6∈ L1(Ω).

Let us give a proof of Corollary 1.3.

Proof of Corollary 1.3. Instead of (3.1), we use

GB(x, y) ≤



2
σn

δB(x)δB(y)
|x − y|n

if y 6∈ B(x, δB(x)/2),

1
σn(n − 2)

|x − y|2−n if n ≥ 3 andy ∈ B(x, δB(x)/2),

1
σ2

log
(

5δB(x)
2|x − y|

)
if n = 2 andy ∈ B(x, δB(x)/2),
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whereσn denotes the surface area of the unit sphere ofRn. In the same way as above,
we obtain‖δ−1

B ‖G(Ω) ≤ 8. Hence the conclusion follows from Theorem 1.1.
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