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Abstract

This paper is concerned with the existence of positive solutions of the singular
nonlinear elliptic equation with a Dirichlet boundary condition

Au= F(z,u) inQ,
u=q¢ on o,

whereF' is a Borel measurable function id x (0, 400) such thai F'(z, u)| <
V(xz)u~® for somea > 0 andV satisfying some appropriate conditions. In par-
ticular, we show that the above problem has positive solutions whenefer ¢

is greater than a positive quantity givendyandV'.
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1 Introduction

Let Q be a domain inR™, n > 2, and letd>°Q) denote the boundary d® in the
one-point compactificatioR™ U {oc}. In this paper, we study the existence of posi-
tive continuous solutions of the following nonlinear elliptic equation with a Dirichlet
boundary condition:

(1.1)

Au = F(z,u) inQ,
u=q¢ on o>,

where A is the Laplace operator 0R”, F' is a Borel measurable function 1 x

(0, +00) and ¢ is a nonnegative continuous function 6f/°Q2. The equatiomu =
F(z,u) is understood in the sense of distributions. In the caseRhatnegative, we

can expect the existence of positive solutions of (1.1) eveniff identical to zero.

This case was investigated by many authors [6, 7, 8, 9, 11] in smooth domains or
in R™. In contrast to this, the case thAtis nonnegative ang is identical to zero



does not guarantee the existence of positive solutions of (1.1), because every positive
solution takes its maximum o8>°€). The question is for whap does (1.1) have
positive solutions? In [4], Chen, Williams and Zhao studied it in the case Whsra
Lipschitz domain ifR™, n > 3, with compact boundary, and'(z, «)| < V(z)uP with

p > 1 andV being the Green-tight function di. They showed that i is not identical

to zero and its supremum norm is small (i.e. bounded by a constant depending only
onp, V and(), then (1.1) has at least one positive solution. However, in the singular
casep < 0, the smallness of the supremum norm¢ofloes not imply the existence

of positive solutions (see Proposition 3.1 below). In [1], Athreya studied (1.1) with
the singular nonlinearity”(z,u) = u=%, 0 < a < 1, in a bounded>?-domain in

R™, n > 3. He showed the existence of solutions, bounded below by a given positive
harmonic functiory, under the boundary condition> (1 + A)h with a constantd
depending orkg, o and2.

The purpose of this paper is to give the Chen-Williams-Zhao type theorem for a
singular nonlinear ternf’(x, u). More precisely, we shall show that (1.1) has positive
solutions whenevemfy~q, ¢ is greater than a positive quantity dependingkanWe
impose no assumptions on a domg&ther than the existence of the Green function
and being regular for the Dirichlet problem. Such a domain will be callBitiahlet
regular domain. Note that any domains possess the Green function whe. Let
Gq stand for the Green function 6f, i.e., for eachy € (Q, the functionGq(-,y) is a
distributional solution of

—AGq(-,y) =46, inQ,
Ga(,y)=0 on 9>,

whered, is the Dirac measure gt By B(x, r) we denote the open ball of centeand
radiusr. We say that a Borel measurable functipin Q belongs tog () if, for each
z € QUIN,

(s [ oGl ) o 12)

r—0 z€QNB(z,r)

and

lim (sup/ Gg(x,y)|f(y)|dy> =0 (when2isunbounded). (1.3)
R—+oo\zeQ Jo\B(0,R)

We define
1/l = sup / Galz,y)|f()|dy.
zeQ JO

Considering a finite covering d? if it is bounded (or2 N B(0, R) if unbounded),

we see that| f||go) < oo wheneverf € G(Q). Note in the case > 3 that f is a
Green-tight function if and only if it satisfies (1.2) and (1.3) with the Newtonian kernel
|z — y|>~™ instead of the Green function. Thus all Green-tight functions belong to
G(Q). Letw(x, E, D) be the harmonic measure of a detrelative toD evaluated
atz, and let us defind ! (Q) as the class of every Borel measurable functfan



satisfying
[ w0 2.0\ By < o0
Q\B(z,2r)

for eachz € Q and smalb < r < r,. Sinced < w < 1, we see thal.!(Q2) C LL(9).
See also Section 3.2.
We consider the following singular nonlinear tefijx, t) defined inQ2 x (0, +o0):

(I) F(x,t)is continuous with respect tofor eachx € Q,

I 0 # |F(z,t)] < V(z)t—> fora.e. z € Qandt > 0, wherea. > 0 and
Ve g(Q)nLL(QnN B(0,R)) for eachR > 0.

Note that| '| # 0 implies||V||gq) > 0. Our results are as follows.

Theorem 1.1. Let(2 be an arbitrary Dirichlet regular domain iiR™, n > 2. Suppose
that F' is a Borel measurable function i x (0, +oc) satisfying(l) and(ll). Then, for
every continuous functiof on 9> satisfying

. 1 + « 1/(14a)
inf 6> e IV ilge) (1.4)

the Dirichlet problenm(1.1) has at least one positive continuous solutiosuch that

infu > (@l[V[|gay)/ .

If V(z) = k, then we can estimatgs| g ).

Corollary 1.2. Suppose tha® is a Dirichlet regular domain irR™, n > 2, with the
same volume as the unit ball. Let> 0 andx > 0 be constants. Then, for every
continuous functio on 0°°€) satisfying

. 1+« K\ 1/(1+a)
jnhe> orme (3:) (L.5)

the Dirichlet problem
{Au =ku~% InQ, (1.6)

uU=¢ on g,
has at least one positiv@?-solution.

We do not know whether the bound (1.5) is sharp to guarantee the existence of
positive solutions of (1.6). However we will see that (1.6) does not have positive solu-
tions for any small boundary data(see Proposition 3.1). As another special case of
Theorem 1.1, we obtain the following.

Corollary 1.3. Let B be the unit ball ofR™, n > 2, anda > 0. Then, for every
continuous functiomw on 9B satisfying

inf o> LT gi/ata)

oB ao/(+e) ’



the Dirichlet problem
1
Au(z) = —————— in B,
@)= T eluter
U= ¢ onoB,

has at least one positiv@?-solution.

2 Proofs of Theorem 1.1 and Corollary 1.2

In the proof, we note that < ||[V||gq) < oc. LetC(Q2) denote the Banach space of
all bounded continuous functionsih= QU 9> equipped with the supremum norm
Il [|oo- We define

- 1/(1+a) 1\ e
U=3ueC@): (a|V]gw) <u< |9l + (a> Vilggy ™ ¢

Sincea!/(1) < q=/(+) for 0 < « < 1, we see thal/ is non-empty bounded
closed convex subset 6f(€2). Let 7 be the operator o defined by

Tula) = How) ~ [ Gale.n)Fly.utw)iy 2.)
whereH, is the unique (Perron-Wiener-Brelot) solution of
{Ah =0 inQ,
h=¢ 0onog>Q.
Write 7 (U) = {7 u : v € U}. Note from (II) that

—a/(1+a
IF(y,u(y))] < V() (@ Vige) " foraeyeq, 2.2)
whenevemn € U.

Lemma 2.1. The family7 (i) is equicontinuous if2. Moreover, ifu € U, then
Tu=¢onog>Q.

Proof. Letz € Q and letzy,z2 € QN B(z,r/2). By (2.2),
[ Tu(z1) = Tu(wz)| < [Hg(z1) — Ho(22)]

—a/(14+«
1 (a][Vlggay) ~2/4F /Q|Gn<a:1,y> ~ Galwa )|V (y)dy.

If » > 0is sufficiently small, then it follows from (1.2) and (1.3) that

/ Galar,y) — Gales 1)V (y)dy

@ (2.3)

<eqt / Goler, ) — Golws, )|V (y)dy.
QNB(0,1/r)\B(z,2r)
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SinceGy, is continuous of2 N B(z,7/2)) x (ANIB(z,)), it takes the maximum/

on there. By the maximum principl€io (z;,y) < Mw(y, 0B(z,7) N Q,Q\ B(z,7))
fori = 1,2 andy € Q\ B(z,r). Therefore the integrand of the right hand side in
(2.3) is bounded by a constant multiple 6f € L. (2 N B(0,1/r)). The Lebesgue
convergence theorem implies thif [Go(x1,y) — Ga(z2,y)|V(y)dy — 0 as|z; —

x9] — 0. HenceTw is continuous at uniformly for u € U. SinceGq(-,y) = 0
andH, = ¢ on 0>, the similar argument shows thai(x) — ¢(z) uniformly for

u € U asx — 9°°N. O

Lemma 2.2. The operator7 is a continuous mapping fro@ into itself such that
T (U) is relatively compact iC'(2).

Proof. We first show thaf (/) C U. Letu € U. Then, by (1.4) and (2.2),

14+« 1/(1+a) 1 o/ (1+a)
Tu(z) > ———||V a—) Gal(z,y)V(y)d
(@) = e Vllge) (a”V”g(Q) ; a(z,y)V(y)dy

> (af| Vi)

i

and

. a/(1+a)
Tu(z) < |Blloe + () / Gale,y)V (y)dy
al|[Vllg) Q

1 a/(1+a) /(1 4a)
< |¢|loo — Vv .
<lole+(5)  IVIES

SinceTu € C(Q) by Lemma 2.1, we obtaiff (/) C U. Moreover, the Ascoli-Arzél
theorem yields thaf (/) is relatively compact i0'(9).

We next show thaf is continuous oid{. Let {u;} be a sequence W converging
tou € U with respecttd| - || . Then

Tuj(z) = Tu(z)] < LGQ(I,y)lF(y,Uj(y)) — F(y, u(y))ldy.

In view of () and (2.2), it follows from the Lebesgue convergence theorentthatx)
converges pointwisely td u(z) asj — co. Hence the relative compactnessofi/)
concludes thaf7u; — Tu||oc — 0 asj — oc. O

Proof of Theorem 1.1By the Schauder fixed point theorem, there exists ¢/ such
that7 u = u. We see from the Fubini theorem that

/Q u(a) A () e = / Fly.uly)yb(y)dy for € C(Q),

Q

so thatu is a distributional solution ahu = F(z,u) in Q satisfyingu > (a||V||g(a))* t+).
Also, we have by Lemma 2.1 that= ¢ on 0°°€). This completes the proof of Theo-
rem1.1. O



Proof of Corollary 1.2. Suppose that the volume €fis same as the unit bal. Then
the following isoperimetric inequality for the Green function holds (see [3, p. 61]):

1
Sup/ Go(z,y)dy < / Gp(0,y)dy = o
zeQ JQ B n

Hence||x|lgo) < x/2n. Therefore, if (1.5) is satisfied, then Theorem 1.1 shows that
there exists, € C(€2) such that: > (al|x|/g(q))"/*T*) and

u(z) = Hy(z) — & / Galz, y)uly)~*dy.

Sinceu~® is bounded ir?, it follows from [10, Theorem 6.6] that € C'(Q2), and so
u™® € C1(Q). In particularu= is locally Holder continuous if2, which concludes
thatu € C?(Q) andAu = ku~% in Q. Thus Corollary 1.2 is proved. O

3 Remarks and Proof of Corollary 1.3

3.1 Nonexistence of positive solutions

The following proposition shows that any small boundary data do not guarantee posi-
tive solutions of (1.6).

Proposition 3.1. Suppose tha® is a Dirichlet regular domain ilR™, n > 2, contain-
ing the unit ballB. Leta > 0 andx > 0 be constants. Then, for every continuous
functiong on 9> satisfying

K\ 1/(14a)
up < (2)00
XY 2n

the Dirichlet problen(1.6) has no positive solutions.

Proof. Suppose to the contrary that (1.6) has a positive solutioThen the Riesz
decomposition theorem for a subharmonic function yields that

0 < u(0) = Hy(0) — ”/Q Ga(0,y)u(y) “dy,

whereH  is the harmonic function if2 determined byp. Observe from the maximum
principle thatu < H, < (x/2n)"/ (%) in Q. Therefore

/(14a)
omn . Kk \1/(1+a)
K () / Gp(0,y)dy < fe/ Ga(0,y)uly) *dy < (*2 ) ,
B Q n

K

and so

1 1
— = [ Gp(0,y)dy < —.
5 /B B(,y)y<2n

This is a contradiction. O



3.2 Remarks onG(Q) and L1 ()

Let dq(z) denote the distance fromto the boundary of2. For two positive functions
fandg in Q, we write f ~ g if there exists a constant depending only of such that
f/A < g < Af. Note that ifQ2 is a bounded Lipschitz domain, théii2) C L1 (Q).
Indeed, letz € Q andr > 0 be small. The boundary Harnack principle (cf. [2]) yields
that there is a constarit(r, 2) such that

w(y,aB(z,r) N0\ B(z,r)) < A(r,Q)Gq(xo,y) fory e Q\ B(z,2r),

wherex € Q is fixed. Therefore, iff € G(2), then
/Q\B( : |f(W)|w(y, 0B (z,r) NQ,Q\ B(z,1))dy < Al fllg) < o,
2,27

and sof € LL(€). Also, G(9) is strictly bigger than the Green-tight class.

Example 3.2. LetQ be a bounded>!:'-domain inR", n > 2. Thend,, belongs to
G(€2), but not in the Green-tight class.

Proof. It is known from [5, 12] that

m{l,W} |z —y[>™™ ifn>3,
|z -yl

Ga(z,y) = (3.1)
10g<1—|—69<x>69(y)> if n=2.

|z —y[?

Letz € Q andr > 0. Whenn > 3, we have forr € QN B(z,r),

/ Galz, y)0a(y)'dy
QNB(z,r)

/ Adq(x)~tdy N / Ady
B(z,2r)NB(z,8q(x)/2) |z —y[n—2 B(z,2r)\B(z,00(x)/2) |z —y|"—t
< Ar,

<

and so (1.2) is satisfied. Similarly, we obtain this for= 2. Hences,,! € G(Q2). On
the other hand, it is not difficult to see that the Green-tight class is a subsé{of,
and thav,' ¢ L'(). O

Let us give a proof of Corollary 1.3.

Proof of Corollary 1.3.Instead of (3.1), we use

1 .
Gp(z,y) < mbﬁ —y>™™ ifn>3andy € B(z,dp(x)/2),
1 553((1,‘) . o
(7210g(2|x—y|) if n =2andy € B(x,dp(x)/2),



wherec,, denotes the surface area of the unit sphef@"ofIn the same way as above,
we obtain||6;'[|g«) < 8. Hence the conclusion follows from Theorem 1.1. O
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