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1 Introduction

In the study of the potential theory and its related fields, the Green function plays an
important role. However it can not be represented explicitly except for the case of balls
and the half-space, because its behavior depends on the shape of a given domain. The
local behavior of the Green function near a singularity is independent of the shape of a
domain and were investigated for general operators and domaiter@nd Widman

[9] obtained a local estimate of the Green function for uniformly elliptic operators
which are not necessarily symmetric. Serrin [14, 15] and Kichenassamy aruh V

[13] studied the local behavior of positive solutions of thkaplace equation near an
isolated singularity. In contrast to a local estimate, a global estimate is effected by the
shape of a domain. In a boundéd-!-domain in R™ (n > 3), Zhao [16] established

a global estimate of the Green function for the (classical) Laplacian. Indeed, in this
case, the Green functidhi(z, y) is estimated by using explicit functions:

G(z,y) ~ min{l,W} lz —yl>" forx,yeqQ,
r—=y

*This work was partially supported by Grant-in-Aid for Young Scientists (B) (No. 19740062), Japan
Society for the Promotion of Science.



wheredq (z) is the distance from: to the boundary)(2 and the symbok means that

the functions in the both sides are comparable. See [7] for two dimensional result. The
estimate of this kind for the Green function for the fractional Laplacian was obtained
by Chen and Song [6]. In non-smooth domains, the decay rate of the Green function
is different at each boundary point, and for this reason it is impossible to estimate the
Green function in terms of the explicit functions. To overcome this difficulty, Bogdan
[5] introduced a supplementary $8tz, y) and established the following estimate in a
bounded Lipschitz domaifi:

g(z)g(y)
2

g9(b)

whereg(x) = min{1, G(z, z¢)} with zo € Q being fixed and the definition &(z, y)

is given in the sequel. Recently, Hansen [10] obtained this estimate in a bounded
uniform domain. Actually, he discussed for a general functibsatisfying properties
stated below and the quasi-symme@yz,y) ~ G(y,x) for z,y € Q. In[12], the
author established a global estimate for the Green function in a uniform cone. In this
casey is replaced by the Martin kernel at infinity.

The purpose of this paper is to present a global estimate for non-symmetric Green
functions (of course, not quasi-symmetric). By the symiplve denote an absolute
positive constant whose value is unimportant and may change from line to line. For
two positive functionsf andg, we write f = ¢ if there exists a constamt such that
f/A < g < Af. The constantd will be called the constant of comparison. By
B(z,r), we denote the open ball of centeland radius-. First, we discuss on a pair
of a bounded domaif? in R™ (n > 2) and a functiorz :  x Q — (0, 4+o00] with the
following properties (I)-(1V) and either (V1) or (V2): Lety > 0, M > 1, Ag > 1,

A; > 1and) > 0 be fixed constants.

G(z,y) ~ |z —y>~" forz,y € Qandb € B(z,y),

(I) Interior corkscrew conditionFor eaché € 92 and0 < r < rg, there isz €
QN B(&,r) such thatig(z) > r/M.

(1) Comparison principleLet D be an open set ift and lety;, y» € Q\ D. Suppose
thatf = G(-,y2) or f = 1. If G(-,y1) < Af ondD N Q, thenG(-,y1) < Af
onD.

(1) Harnack’s inequality Let ¥ € N. There is a consta = A(k) such that for
eachy € 2, we have
G(:I;h y) < AG(m27 y)

wheneverry, zo € Q\B(y, da(y)/8) satisfy|z1 —z2| < kmin{dq(z1), 0q(z2)}.

(IV) Boundary Harnack principleFor eacht € 092 and0 < r < rg, we have

G(xlvyl) <A1G($2»y1)
G(z1,y2) —  G(x2,92)

whenever:,, zo € QN B(&,r) andyy, y2 € Q\ B(E, Aor).




(V1) Singularity of logarithmic orderFor any fixedy € €,

G(z,y) ~ log liﬂ_(y; for z € B(y, 5a(y)/2).

(V2) Singularity of finite order For any fixedy € €2,
G(r,y) = e —y|™* forz e B(y,daly)/2).
Here the constants of comparison in (V1) and (V2) are independeantyof

Remarkl.1 We do not impose the quasi-symmetry Gf G(z,y) ~ G(y,z) for
x,y € .

The setup is like stated above. In particular, werfixe Q2 and put
g(x) = min{1,G(z,z0)} and g*(z) = min{l,G(zo,z)}.

Letx > 1. Forz,y € €, we define
1
B(z,y) = {b €N Emax{kr —b,lb—yl} <|xr—y| < nég(b)} .

This simple definition is different from one defined by Bogdan [5], but they are the
same essentially. Observe from (I) and the boundedneS8stioét if « is sufficiently
large, then3(z, y) is nonempty for any pait, y. The main result is as follows.

Theorem 1.2. Suppose that a bounded dom&imnd a functior? : 2xQ — (0, +00]
satisfy(I)=(IV) . Then the following statements hold:

(i) If G satisfieqV1), then we have faor,y € Q andb € B(x, y),

g(x)g* (y) + min{da(r),da(y)}
4(0)g (b) P > (1)

wherelog® f = max{0, log f} and the constant of comparison depends only on
) and the constants appearing in our setting.

G(z,y) ~ <1 + log

(i) If G satisfieqV2), then we have for,y € 2 andb € B(z, y),
9(x)g* (y) Y
G(x,y) = ——F—=|x —
9= g Y

where the constant of comparison depends onl§2@nd the constants appear-
ing in our setting.

(1.2)

)

Immediately, we have the following.

Corollary 1.3. The assumption is the same as Theorem 1 2alfg* on 2, thenG is
quasi-symmetricG(z,y) ~ G(y,z) for z,y € Q.

Other applications of Theorem 1.2 to thd.aplace equation will be stated in the
next section.



2 Some applications and known properties op-harmonic
functions

In this section, we give some applications of Theorem 1.2.1Letp < oo and let2
be a bounded domain IR (n > 2). Afunctionu € W,,?(Q) is said to be-harmonic
onQ if itis continuous orf) and satisfies thg-Laplace equation

Apu = div(|[VulP2Vu) =0 inQ (2.2)

in the weak sense, that is,
/ |VuP=2(Vu, Vo)dr =0 forall ¢ € C3(9Q).
Q

A lower semicontinuous function : Q — (—o0, 400, whereu # +oo, is called
p-superharmonion  if for each open seD with D c Q and each functior p-
harmonic onD and continuous o, the inequalityw > h on 9D impliesu > h on
D. If —u is p-superharmonic of2, thenu is calledp-subharmonion €.

Letv,, be the volume of the unit ball R, and letc,, , = (p—1)/(n—p)(nw,)"/ P~V
andc, = (nv,)~ Y=, Denote

Cnplr —y|®=/ =D if 1 < p < n,
py () = 1

cn log if p=n.

[z =y
This is the fundamental solution fax,. Letd, be the Dirac measure at Kichenas-
samy and ¥ron [13] proved that it < p < n and( is a smooth domain, then for
eachy e Q there exists a unique weak solutiore C>*(Q\ {y}) of

loc

{—Apu =4, inQ, 22)

u=0 on s,

such thafVu|P~! € L} (Q), Vu € LP(Q\ B(y,r)) for eachr > 0, andu/pu, €
L°°(Q). This solution is often called g=Green functiorwith pole aty and denoted by
Gp(-,y). Note that the quasi-symmetry 6§, is unknown whem # 2.

Now, let{y;} be a sequence ift converging to € 99. Then there is a subse-
quence{y;, } such that the rati@+, (-, y;, )/Gp(x0, y;,) converges locally uniformly
to a positivep-harmonic function orf2. Such a limit function is called a-Martin
kernelwith pole at¢ and written ad¢,, (-, ¢). Recently, Aikawa, Kilpélinen, Shanmu-
galingam and Zhong [2] and Bidautévon, Borghol and ¥ron [4] proved indepen-
dently a boundary Harnack principle fptharmonic functions in smooth domains and

obtained, as a consequence, that there exist constants andA > 1 such that

%59(1’) < Kp(z,§) <A jg(?a forz € Q.

We shall present some improvement.



Next, we recall the definition gf-harmonic measure. Lét be a subset a2 and
let Xz denote the characteristic function Bf Define

wp(z, E,Q) =infu(zx) forz e Q,

where the infimum is taken over all nonnegatpssuperharmonic functions on
satisfying
liminf u(z) > Xg(y) forally € o0Q.

T—Y

Thenw,(-, E, Q) is p-harmonic or? and0 < w, (-, E,Q) < 1. See [11, Chapter 11]
for more informations. We say,, (x¢, £, Q) ap-harmonic measuref E with respect
to Q) for convenience, although this is not a measure except for thepcase

2.1 Known properties
The following comparison principle and Harnack inequality are found in [11].

Lemma 2.1. Suppose that andv are respectively-superharmonic ang-subharmonic
functions o satisfying

limsupv(z) < liminfu(xz) foreach{ € 99,
Q33 —¢ Qoz—¢€

where both sides are not simultaneouslyo or —oo. Thenv < u on (.

Lemma 2.2. There exists a constant depending only op andn such that

sup u< A inf wu
B(z,r) B(z,r)

for a nonnegative)-harmonic functiorn: on B(x, 2r).
The quasihyperbolic metric dn is defined by

ds(z)

~ 0a(2)

where the infimum is taken over all rectifiable curges 2 connectinge andy andds
is the line element on. Observe that if) is a bounded>!-'-domain, then there exists
a constantd depending only off2 such that

ka(z,y) = forz,y € Q,

|z —y|
min{dqo(), da(y)}
Actually, this holds for uniform domains (see [8]). Also.ife Q is fixed, then

ko(z,y) < Alog™ + A forx,ye Q. (2.3)

kovga1 (w,y) < Bka(z,y) +7 forz,y € Q\ B(z,6a(2)/2). (2.4)
See [1, Lemma 7.2]. A finite sequence of b&{IB(x;,da(x;)/2) j.Vzl is called a

Harnack chainjoining z andy in Q if 21 =z, 2y = y andz; 41 € B(x;,0a(z;)/2)
forj =1,..., N—1. The numbemV is called thdengthof the Harnack chain. Observe
that the shortest length of the Harnack chain joiningndy in €2 is comparable to
kq(z,y) + 1. Thus the following Harnack inequality is valid.



Lemma 2.3. There exists a constant > 1 depending only op andn such that

exp(—A(kq(z,y) + 1)) < @ <exp(A(kq(z,y)+1)) forz,ye Q,

u(y)

whenevet: is a positivep-harmonic function o).
This, together with (2.3) and (2.4), gives the following.

Lemma 2.4. Suppose thaf) is a boundedC*'-domain. Letz € Q andk € N.
Then there exists a constaAtdepending only ok, p and Q2 such that for a positive
p-harmonic function: on 2\ {z}, we have

u(z) < Auly),
whenever:,y € Q\ B(z,dq(z)/2) satisfy|xz — y| < kmin{dq(z), da(y)}.

Recently, the following boundary Harnack principle was established in [2, 4]. See
also [3].

Lemma 2.5. Suppose tha is a bounded>!-'-domain. Then there exists a constant
A depending only op and2 such that for eacly € 02 and0 < r < ro, we have

u(z)

(@) gAv(y) forz,y € QN B(,r),

wheneven: andv are positivep-harmonic functions o2 N B(&, 2r) vanishing con-
tinuously ord$2 N B(¢, 2r). Moreover,

Gp(z,z0) = éa(x) whenevebg(z) < ro.

Lemma 2.6. Suppose thaf2 is a bounded domain satisfying the exterior corkscrew
condition. Then foy € Q andx € B(y, da(y)/2),

|z — y|(p*n)/(p*1) ifl<p<n,
o ~ 2.5
W)~ 4, m if p = m, (2.5)

where the constant of comparison depends only and (2.

Proof. In this proof, we denote by, o(z,y) the p-Green function fo2. Observe
that forz € B(y,r),

Cnp (|JC —gy|p=m)/(p=1) r(p*n)/(pfl)) ifl<p<n,
Gp,B(y,r) (:Cv y) = Cn log r

Therefore

_ if p=mn.
|z —y|

1 .
|z — y‘(p—m/(p—l) ifl<p<n,

Gp,Q(x7y) > Gp,B(y,&gz(y))(x7y) > 5Q(y)
enlog |z —y|

if p=mn.



Also, if 1 < p < n, then

prﬂ(wa y) < Cn7p|l’ — y|(p7”)/(;0*1).

Hence (2.5) holds in the cage< p < n.
Consider the case= n. If do(y) > ro, then

da(y)
lz —y|’

Gp,Q (l‘, y) < Gp,B(y,diam Q) (l‘, y) < A IOg

If da(y) < ro, then the exterior corkscrew condition implies that there is a poirt
B(y,26a(y)) such thatB(w, éa(y)/A) C R™ \ Q. Therefore

da(y)
|z —y|’

Gna(@,y) <G, g\ Blasam) /(@) < Alog

where the last inequality follows from the formula Gf, R"\W(x’ y) obtained in
[2] (see (5.2) in this paper). Thus the lemma is proved. O

2.2 Applications of Theorem 1.2

It is well known that ifQ is a bounded>!:!-domain, then there existg > 0 such that
for each¢ € 99, there are two ballB(z¢, 79) C Q andB(wg, 7o) C R™\ Q satisfying
OB(z¢,1m0) N OB(we,m0) = {&}. In the sequel, we fixg, 2 andwe. By z¢£, we
denote the (open) line segment betweemand¢{. Lemmas 2.1, 2.4 and 2.5 imply that
G = G, satisfies (I)-(1V). Also, we observe from Lemma 2.6 tidat= G, satisfies
V1) if p=mn; (V2)with A = (n —p)/(p — 1) if 1 < p < n. Applying Theorem 1.2,
we shall prove the following equivalence.

Theorem 2.7. Let) be a bounded’:!-domain inR™ (n > 2) andz, €  be fixed.
Letl < p < n. The following statements are equivalent:

(@) wy(20,0Q0N B(E,7),Q) ~ r(»=1/(P=1) whenevet € 9Q and0 < r < rg,
(b) Gp(z,y) ~ Gp(y, x) for any pairz,y € Q,
(€) Gp(zo, ) = do(x) Wwhenevebq (x) < ro,

(d) for each¢ € 99, there is a positivep-harmonic functionu on 2 vanishing
continuously ordQ2 \ {¢} such thatu(z) = 1 andu(z) ~ dq(z)—"/F=D
forx € 2z,

(e) for each¢ € 99,

5Q($>

o — [ r-D/D) forz € Q.

Kp<x7£) ~

Whenp = n, we can prove (d) in Theorem 2.7 and obtain the following estimates.



Corollary 2.8. Let2 be a bounded':'-domain inR™ (n > 2), and letp = n. Then
the following estimates hold:

(i) wn(wo,00QN B(E,7),Q) ~ rwheneveg € 9Q and0 < r < 7o,

da(z)da(y)

i) Gp(z,y) =log |1+
(i) Gn(z,y) g( T

)form,yEQ,

da(x)
|z — €2

where the constants of comparison depend only @and 2.

(i) Kp(z,§&) ~

forx € Qand¢ € 09,

For the case@ < n, we could not show any of (a)—(e) in Theorem 2.7. However,
using Theorem 1.2, we shall prove the following one-side estimate.

Proposition 2.9. Let Q2 be a bounded”>*'-domain inR™ (n > 2). There exists a
constantd > 1 depending only op and such that ifl < p < 2, then

Kp(w,8) 2 A |z — &|(ntp=2)/(p—1) forz € &
if 2 <p < n,then
Ky(z,§) < A %a(z) forz € Q.

lz — €| tp=2)/(r—1)

The proofs of the results in this section will be given in Sections 4 and 5.

3 Proof of Theorem 1.2

In this section, we suppose that a bounded dofiaatisfies (1) and a functiof : 2 x

Q — (0, +o0] satisfies (1)—(1V) and either (V1) or (V2). We need to prepare several
lemmas. ByS(x,r) we denote the sphere of centeand radius-. The constants!
appearing in this section may depend on the constants in our setting (I)-(1V) and (V1)
or (V2).

Lemma 3.1. There is a constantl such that for eaclf € 902 and0 < r < rg, we

have
G(xhyl) G(CL'2,2/1)
G(x1,y2) G(x2,y2)
wheneverr;, zo € Q\ B(£,3r) andy;,y, € QN B(E, ).

<A

)
Proof. Lety;,y2 € QN B(&,r) be fixed and takev € Q2 N S(&, 3r) with dq(w) =~ 7.
We claim that

G(w,
G(x,y1) ~ G(w yl)

WG(JI,:UQ) forx € QﬂS(f,ST) (31)



Letz € QNS(E, 3r). If da(z) < r/Ao, then we take € QNS (n,r/Ag) with g (z) ~
r, wheren € 99 is a point such thay — x| = dq(x). ThenB(n,r) N B(&,7) = 0.
We apply (IV) to obtain

G(r,y1) _ G(z,91)

G(z,y2) - G(2,y2)
Since|z — w| < Amin{dq(z), do(w)}, it follows from (111) that

G(zm) = G(w,y1) and G(z,92) = G(w,y2).

Hence (3.1) holds for such. If do(x) > /Ao, then (lll) implies thatG(z,y;) ~
G(w,y;) for j = 1,2, and so (3.1) holds. The lemma follows from (3.1) and (I1) with
D =Q\ B(&,3r). O

Lemma 3.2. Letz, y € Q satisfy|z — y| < kmin{dq(z),da(y)}. Then the following
statements hold:

(i) If G satisfieqV1), then

+ min{do(@). 5oW)} oy
|z — ] ,

G(z,y) =1+ log

where the constant of comparison depend#on
(i) If G satisfieqV2), then
G(z,y) =~ o —y| ™ ~ G(y, x),
where the constant of comparison dependg.on

Proof. Without loss of generality, we may assume thatz) < dq(y). If | —y| <
da(y)/4, theny € B(z, dq(x)/3). Therefore

G(z,y) ~ |z — | ly — x|

log 220 <105 920y ) if G satisfies (V1),
|z —y|™ =y —z| =~ G(y,z) if G satisfies (V2).

Supposéz —y| > da(y)/4. Letz € S(z,da(x)/8) andw € S(y, da(y)/8). Observe
that|z — w| < Amin{dg(z),dq(w)} and|z — y| < Amin{dq(2),da(y)}. By (1),
we have

1 if G satisfies (V1),

Gla,y) ~ Glu,y) ~ {(sg(y)—A if G satisfies (V2),

and
if G satisfies (V1),

1
G ~G ~
(@) ~ Gz @) {59(:5)—* if (7 satisfies (V2).
Sincedq(x)/4 < da(y)/4 < |z — y| < kda(z) < kdq(y), we obtain the lemma. O

Lemma 3.3. The following statements hold:



(i) LetAs be a positive constant. 8, (x) > A,, then
glx)~1 and g'(z)~ 1,
where the constants of comparison dependign
(i) If x € Q\ B(zg,a(x0)/2), theng(z) =~ G(z, xo).
(iii) If z,y € Q satisfy|z — y| < kmin{do(z),da(y)}, then
g(x) = g(y) and g*(x) ~g*(y),
where the constants of comparison depend:on

Proof. We give the proof in only the case thét satisfies (V1), because the another
case can be proved similarly.

(i) Since|x — zp| < Amin{dq(x),dq(zo)}, Lemma 3.2 yields thag(z) ~ 1 ~
9" (x).

(i) Since G (-, zp) =~ 1 on S(zg, da(z)/2), it follows from (I1) that

G('7$0) <A on{ \ B(.”L'O7(SQ($C())/2)

Henceg ~ G(-, x¢) there.
(iii) We first showg(x) =~ g(y). If z € B(zo,0a(z0)/2), then

ot > 1 >

Henceg(z) =~ 1 = g(y) by (i). If y € B(xo, da(z0)/2), theng(z) = 1 ~ g(y) by the
same reasoning. if, y € B(xzg, da(z0)/2), thenG(x, o) = G(y, zo) by (Ill). Hence
9(z) = g(y).

We next showg*(z) =~ ¢*(y). Without loss of generality, we may assume that
552(1’) < (552(y) and552($0) > 3ro. If (ng(y) > To/(k + 1), then

do(y) r
da(z) 2 kQ+1 = +01)2'

Henceg*(z) ~ 1 =~ ¢*(y) by (i). Suppos&q(y) < ro/(k + 1). Takef € 99 with
|z — &| = dq(x) and letp = (k + 1)dq(z). Then|y — ¢] < p < ro. By Lemma 3.1,
we have forz; € QN S(E, 3p) with dq(z1) = p,

G(x1,x)
G(xp, ) ~ G(zo,y).
(:EO 3;‘) G(.Il, y) (370 y)
SinceG(z1, ) = G(z,x1) ~ G(y,x1) ~ G(r1,y) by Lemma 3.2 and (lll), we obtain
9" (@) = g*(y). O

We now give the proof of Theorem 1.2.

10



Proof of Theorem 1(®. Let Ay andry be as in (1V). Let
3diam O }

To

Az = max {5A0,3I€,

and letA, be a constant such thdt, > A;. We may assume thag, (xq) > Agrg. TO
prove (1.1), we split the proof into several cases:
Case l |z — y| < Ay min{dq(x),da(y)},
Case 2 |z — y| > Asmin{dq(z),da(y)};
Subcase 2.15q(x) < da(y) and Subcase 2.20q(y) < da(z).
Case 1.By the definition ofB3(z, y),
max{|z —b], [y — b|} < |z — y| < x* Ay min{da (), da(y), 5o (b)}.

Thereforeg(z) ~ ¢(b) andg*(y) ~ ¢*(b) by Lemma 3.3. This and Lemma 3.2 give
(1.2).
Case 2.Sincel + log " (min{dq(x), da(y)}/|z — y|) = 1, itis enough to show

9(x)g*(y)
Glx,y) = —=2"—==. (3.2)
9= 50 )
Letr = |x — y|/As. Thenr < ry/3 anddq(b) > r.
Subcase 2.1.Note thatig(x) < r. Take{ € 99 with |z — & = dq(x). Then
|zo —&| > Agrandly — &| > |z —y| — |z — &] > Apr. Letz; € QN S(&,r/2) be
such thabg(z1) ~ r. Observe thah — 21| < Ar < Amin{dq(b),dq(z1)}, and so
9(b) = g(z1) = G(z1,20)
by Lemma 3.3. It follows from (IV) that

G(xlvy)
G(l’l, xo)

G(x,x0) = @G(xl,y). 3.3)

Glory) ~ g(b)

We still distinguish two more cases.
Subcase 2.1.16q(y) > r. Observe thadg (z1) < r = |z1—y| < Amin{dq(x1),da(y)}.
By Lemma 3.2,

G(z1,y) ~ 1.

Also, |y — b] < Ar < Amin{dq(y),da(b)} and Lemma 3.3 imply

Hence (3.2) follows from (3.3).
Subcase 2.1.26(y) < r. Observe that

o1 —y| > |z =yl — |z — 21| > 7 > da(y),

b3 > o) ~ s = ZU sofy) 2 v > dalw),

11



and sax1,b € B(y,da(y)). Sincelb — z1| < Ar < Amin{dq(b), da(x1)}, it follows
from (lll) that G(x1,y) ~ G(b,y). This and (3.3) give

9(x)
G(x,y) = ==G(b,y). 3.4
(2,9) o) (0,y) (3.4)
Takey, € QN S(n,r) with 6o (y1) = r, wheren € 99 is a point such thaty — n| =
da(y). Observe thath — n| > dq(b) > |z — y|/kx > 3r. Therefore Lemma 3.1 gives
G(b,y1) 9" ()
— 22 G(xo,y) = G(b,y1). 3.5
Glro 1) (20,y) 7 () (b, 1) (3.5)

Sincedq(y1) < r = |y1 —b| < Amin{dq(y1),0a(b)}, we have from Lemmas 3.2 and
3.3

G(b,y) =

G(b,y1)~1 and g*(y1) =~ g"(b).

These, together with (3.4) and (3.5), yield (3.2).

Subcase 2.2Note thatd, (y) < r < ro/3. We still distinguish two more cases.
Subcase 2.2.16q(x) > r. Takeyy € QN .S(n,r) with dq(y2) ~ r, wheren € 9Q is
a point such thaly — n| = dq(y). Observe that

|z —n| > |z —y| = |y —n| > 3r,

and saz, xg ¢ B(n,3r). Lemma 3.1 gives

G(z,y2) 9" ()

——=G(xo,y) = G(x,y2). 3.6
G(z0,y2) (@0, ) g*(y2) (.92) (2.6)

Sincedq(y2) < r = |z — y2| < Amin{dq(z),da(y2)}, it follows from Lemma 3.2
that

G(z,y) ~

G(I,yg) ~ 1.

Also, max{|z — b, |ys — b|} < Ar < Amin{dq(z),da(y2), da(b)} and Lemma 3.3
imply

g(x) ~g(b) and g"(y2) ~ g"(b).
Thus (3.2) follows.

Subcase 2.2.20q(x) < r. Letay € QN B(&,0a(y)), whereg € 9 is a point such
that|z — &| = dq(x). It follows from (V) and Subcase 2.1 that

G(z,xo)

_g9(x)  g(z2)g*(y)
m (w2,y) ~ (3.7

G(z,y) = g(x2) g(bzz,y)g*(bwmy)’

whereb,, , € B(z2,y). Since|b,, , —b] < Ar < Amin{dqn(by, ), da(b)}, Lemma
3.3 gives
9(basy) = g(b) and g"(bs, ) ~ g"(b).

Hence (1.1) follows. The proof of Theorem 1.2(i) is complete. O
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Proof of Theorem 1(#). The proof of (ii) is similar to (i), so we give only a sketch.
Case 1.The same reasoning as in (i) gives (1.1).

Subcase 2.1.1By Lemma 3.2G(z1,y) ~ |z1 — y| > ~ |z — y|~*. Sinceg*(y) ~
g*(b), we obtain (1.2) from (3.3).

Subcase 2.1.2Lemmas 3.2 and 3.3 giv€'(b,y1) ~ |b — | * = |z — y|~* and
g*(y1) =~ ¢g*(b). Hence (3.4) and (3.5) yield (1.2).

Subcase 2.2.1By Lemma 3.2(G(x, yo) = |z — | ~ |z —y|~*. Sinceg(x) ~ g(b)
andg*(ys) = ¢g*(b), we obtain (1.2) from (3.6).

Subcase 2.2.2Since|xo — y| = r & |z — y|, it follows from (IV) and Subcase 2.1 that

g(x)  g(z2)g*(v)
9(1'2) g(bmz-,y)g* (bmz,y)

G(.Z‘,y) ~ |$—y‘_)\.

See (3.7). Sincg(b,, ) ~ g(b) andg*(bg, ) ~ g*(b), we obtain (1.2). O

4 Proof of Theorem 2.7

In this section, we suppose tHatis a bounded’-!-domain inR™ (n > 2). Let

|z — y| P~/ (=) if 1 <p<mn,
|z =y '

Applying Theorem 1.2 and Lemma 3.3@= G, we have the following.

Lemmad4.l. For z,y € Q andb € B(z,y),

Gp(r,y) ~ WVP(%M’ (4.1)

where the constant of comparison depends only amd 2. Moreover, if|lz — y| <
kmin{dq(x),da(y)}, then
Gp(2,y) = (2, 9),

where the constant of comparison depends onlj,gnand (.
Lemma 4.1 yields the following estimate féf,,.

Lemma4.2. Forz € Q, £ € 9Q andb € B(z,£),

o 9@ een)e-)
Kp(l‘,f) ~ g(b)g*(b) |aj §| P P )

where the constant of comparison depends only and ).

Proof. We find a sequencfy; } in ©2 converging t& such thaf Gy, (-, y;)/Gp(zo,y;)}
converges td<,(-,£) on Q. Letx € Q be fixed. Without loss of generality, we may
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assume that all; satisfy|y; —¢| < |y1 —¢€| < da(z)/(262+2) andd|y; —¢| < [z —y;].
Letdb € B (z,y1) andj € N. Since
) 1
v =yl < e =yl +ly =&+ 1€ —ysl < Jle —wl+ Flz —yl,

we have

|z — y;| < 2|z — y1| < 2600(D). (4.2)

Also, since|lz — y1| < 2|z — y;| by the same reasoning as above, we have
|z — b < Klz —y1| < 26|z — 5,

4.3)
b=yl < [b—a|+]r—y| < 2+ Dz —y;l.

Henceb € ; Bayt1(2,y;). Letus apply Lemma 4.1. Sinde (b;) > Sa(z0)/ (K% +
1) for b; € B(xo,y,), it follows from Lemma 3.3 thag(b;) ~ 1 ~ g*(b;), and so

Gp(w,y;)  glx) (o, y))

~ forz € Q.
Gp(@o,y;) — 9(b)g*(b) p(z0,y;)
Letting j — oo, we obtain
9(z) (p=m)/(p—1)
Kp(z,8) = —22 |z — ¢|p—m)/(p=1) 4.4
Also, lettingj — oo in (4.2) and (4.3), we have € Bs,.11(z,£). From Lemma 3.3,
we see that (4.4) holds for dlle B, (z, £). This completes the proof. O

Also, we need the following relationship between thlbarmonic measure and the
p-Green function.

Lemma 4.3. Let¢ € 9Q and0 < r < ro. Letz € Q satisfy|z — &| = da(x) = 7.
Then

wp(y, 02N B(E,r),Q) ~ r(”_p)/(p_l)Gp(y, xz) fory e Q\ B(E, 2r),
where the constant of comparison depends only and (2.

Proof. Letz € QN S(&, 2r) be a point such thai, (=) ~ r. By the similar way to the
proof of Lemma 3.1, we have

Gply,z) _ wy(y, 000 B(E,r),Q)
Gp(z,2)  wy(z,00N B(E,7),Q)

fory € Q\ B(&,2r). (4.5)

In view of Lemma 4.1, we have

1 if p=n,

Gp(z,2) ~ {|3j — |/ 1) g ) /01 ] < p < (4.6)
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LetT’ = {z € B(we,70) : Zz&we < m/4}, wherew is a point inR™ \ (2 stated before
Theorem 2.7. SincE C R™ \ , it follows from Lemma 2.1 that

wp(z, 00N B, 1), Q) > wy(x, S r)NT, B¢, r)) forze QnBE,r).
Note that the value

As = inf . ,B
5 B(1§{17"/2)wp( ,S(f,r)ﬁ ) (577")) > 0
is invariant under dilation. Therefoteg, (-, 0Q N B(&,r), Q) > As onQ N B(€,r/2),
and saw,(z,0Q N B(¢,r),Q) ~ 1 by Lemma 2.4. This, together with (4.5) and (4.6),
yields that

wp(y, QN B(&,7), Q) ~ rP/P=DqG (y 2) fory e Q\ B(E,2r).
Thus the lemma is proved. O

Proof of Theorem 2.7(e) = (d). Sincedn(z) = |z — | for = € z¢£, this implication
is clear.

(d) = (c). Letx € Q satisfydg(z) < ro and let{ € 99 be a point such that
|z — &] = da(z). Thenz € z:£. Suppose that is a positivep-harmonic function on
Q) satisfying the properties in (d). Lete z:£ be a point such thal, (y) = do(z)/2.
Using Lemmas 2.5 and 4.1, we observe that

@) Gyle,y) | Sa(x)@/@-D)
u(zo)  Gp(zo,y) G, (20, 7)

Sinceu(r) = do(x)1 /P~ we haveG,(zo,y) ~ do(x). Therefore Lemma 3.3
yields
Gp(xOPr) ~ GP(any) ~ 55?(1.)‘

(c) = (b). Letx € Q. If dq(x) > ro, then|z — 2] < Amin{dq(z), da(xo)}. It
follows from Lemma 4.1 that

Gp(x7x0) ~ 7p($7x0) = ’yp(x()vx) . Gp(x()vx)'

If da(x) < ro, thenG,(z, zo) = da(x), and sa&,(z, o) = G, (zo, x) by assumption.
Hence, in any case,
g~g* onQ.

This and Lemma 4.1 give thél,(z,y) ~ G, (y,z) forall =,y € €.
(b) = (a). Letx € z:£ be a point such thai, (z) = r < r¢. Since

Gp(@o,2) = Gp(,20) = bo(z) =T,
it follows from Lemma 4.3 withy = z( that

wy (20,002 N B(E,7),Q) = =P/ PG (24, 2) ~ p(=1/ (=1,
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(a)= (c). Letdq(x) < rg. Then Lemma 4.3 gives
Gp(zo, x) = do(z).
(c) = (e). By Lemma 4.2, we have

K,(z,6) ~ ;;’((;)2 |z — &|P=/(=1) forz € Qandb € Bz, €).

Sincedq (b) ~ |z — &|, we obtain the required estimate. The proof of Theorem 2.7 is
complete. O

5 Proofs of Corollary 2.8 and Proposition 2.9

In this section, we prove Corollary 2.8 by showing the existence of a pogitive
harmonic function with the properties in Theorem 2.7(d). {&tdenote the inverse
of y with respect to5(z, r):

2
% r

y=z4+ ——(y—2).
ly — 2|2

We observe that the-Green functions foB3(z,r) andR™ \ B(z,r) are given respec-
tively by

L g " if
(0] Yy ==z,
1/(n-1) —
Gn,B(z.,r) (z,y) = (’nVn)l Ix _ y‘|| — (5.1)
log LY 1 ify 2 2
(Tan)l/("_l) ’f‘|l’ _ y| )
e 1 | I |
y—zllz -y
G\ B (&) = () 1/ (=1) log . (5.2)

rlz =yl
See [2] for example.

Lemma55.1. Leté € 09. Then there is am-Martin kernel with pole at such that

1 -
K ~—— f
n(xvf) 5{2(55) orzr e zf&a

where the constant of comparison depends only and .

Proof. Letr > 0 be small and lefy; } be a sequence ir: converging tct such that
n,B(z¢,r0) (l’, yj)

- Ga(w,y5) .G
lim =222 — K, (z,6) and lim = K, B(s. ro)(,§).
j—o0 G”(l‘(hyj) ( ) Jj—oo n7B(z5,To)(Z§7yj) 7B( & 0)( )

Letj € N be sufficiently large so that; € B(¢,r/2). Then, by (5.1) and (5.2), we
have forz € z:£ \ B(€,r),

Gn,B(z§,'r'o)(‘Ta yj) < Gn(xayj) < Gn,R"\m(x’yj) < AG'rL,B(ZgJ‘g)(za yj)'
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Therefore, by Lemma 2.4,

Gn<x7yj) ~ Gn<x7yj) ~ Gn,B(z5,r0)(x,yj)

~

~ forz € z:£\ B(,r).
Gn(fl?o,yj) G71,(Z£7yj) Gn,B(25,T'0)(Z§ayj) ¢ \ (

Lettingj — oo andr — 0, we obtain

g — o — 2|

Kn($7£) ~ Kn,B(zE,ro)(l',f) = |1’ — §|2 fOI‘ S E
Here the last equality follows from (5.1) and direct computations (see [2]). Thus the
lemma is proved. O

Proof of Corollary 2.8.Let ¢ € 99 and letK, (-, &) be ann-Martin kernel with pole
at¢ obtained in Lemma 5.1. Observe tH&}, (-, £) vanishes continuously o902 \ {¢}
and K, (zo,€&) = 1. Hence (i) and (iii) follow from Theorem 2.7.

We show (ii). By Theorem 2.7, we hayex g*. It follows from Lemma 4.1 that

oy J@a) (1 min{da(2). 00w} o, .
Gn(z,y) FOE (1+1 o P ) forz,y € Qandb € B(z,y).

Without loss of generality, we may assume thafz) < dq(y).
Case 1:|z — y| < da(y)/4. Observe that3/4)dq(y) < da(z), |z —y| < Ja(x)/3
andg(b) ~ g(z) = g(y). Therefore

) g (14 S0}

|z — 9 |z —yl?

Gn(z,y) = 1+log

Case 2:6g(y)/4 < |z — y|. Observe that + log™ (dq(z)/|z — y|) ~ 1 and

g9(@)g(y) _ do(r)da(y)
g(b)? da(b)?

Sincedq (b) ~ |z — y|, we obtain

Gn(z, )Naﬂ(x)(sg(y)%log<1+59(x)59(y)>'

Tz —yf? |z — y|?

Thus (i) is proved. O

Letz € R™ andr > 0. Forz € R™ andy € R™ \ {z}, we define

b

r

= — p— p —Zz * (p—n)/(p—1)
g n — Yy T—y p
p,z,r(xay) ‘.’L’ y|( )/ ( 1) <|||)

wherey* is the inverse of with respect taS(z, ). Note thatg,, . (-, y) is not annihi-
lated byA, onR™ \ {y} whenp # 2.

Lemmab.2. Letx # y. If1 < p < 2andx,y € R"\B(z,r),thenA,g, . »(x,y) <O0.
If 2 <p<mnandz,y € B(z,r), thenA,g, . .(z,y) > 0.
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Proof. Since the sign of\,, is invariant under dilation and translation, it suffices to
show the lemma fog = g, 0.1 (-, ). By direct computations, we have

_ dg dg 9d%g ?%g
— 4 2
gk J

Vgt (n—p)?  (p+n-2)p—2)yP
(= 1* (jyllz — yllz — y*|)(n=p)/p=1)+2

2
T—y T—y"
X g ,0,1(%9) 1_< * > :
: < 2=yl |z — 7|

Note thatg, o.1(z,y) > 0if z,y € B(0,1) orz,y € R™\ B(0,1). Hence we can
obtain the lemma. O

Proof of Proposition 2.9Let dq(y) < 79/2 and let{ € 99 be a point such thgy —

&l =daly).
Case 1:1 < p < 2. Observe that

Ipawe,ro (1Y) = 0o (y) P/ P = Gy (y)  onS(y, daly)/2).
In view of Lemma 5.2, we obtain from the Harnack inequality and Lemma 2.1 that
Gp(xOv y) ~ Gp(ZEa y) < Agp,wg,’r‘o (Zg, y) ~ 0n (y)
Henceg* (y) < Adq(y). This, together withy(x) =~ do(x) and Lemma 4.2, yields that

K (2 1 dq(x)

p(@)_zé(mﬂx—a@ﬂW@*>fmeraMbeB@@y
Q

Sinced, (b) ~ |z — £|, we obtain the required estimate.
Case 2:2 < p < n. The proof is similar to Case 1. Observe that

Ipzeiro (4 y) & 8o (y) P/ P = GL(y) onS(y,da(y)/2).

Thereforeda(y) ~ gp.zero(2e,y) < AGp(ze,y) = Gp(xo,y), and sog*(y) >
da(y)/A. Hence we obtain

7 e P /D) forz € Q.

Kyp(w,6) < A

Thus Proposition 2.9 is proved. O
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