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1 Introduction

In the study of the potential theory and its related fields, the Green function plays an
important role. However it can not be represented explicitly except for the case of balls
and the half-space, because its behavior depends on the shape of a given domain. The
local behavior of the Green function near a singularity is independent of the shape of a
domain and were investigated for general operators and domains. Grüter and Widman
[9] obtained a local estimate of the Green function for uniformly elliptic operators
which are not necessarily symmetric. Serrin [14, 15] and Kichenassamy and Véron
[13] studied the local behavior of positive solutions of thep-Laplace equation near an
isolated singularity. In contrast to a local estimate, a global estimate is effected by the
shape of a domain. In a boundedC1,1-domainΩ in Rn (n ≥ 3), Zhao [16] established
a global estimate of the Green function for the (classical) Laplacian. Indeed, in this
case, the Green functionG(x, y) is estimated by using explicit functions:

G(x, y) ≈ min
{

1,
δΩ(x)δΩ(y)
|x − y|2

}
|x − y|2−n for x, y ∈ Ω,
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whereδΩ(x) is the distance fromx to the boundary∂Ω and the symbol≈ means that
the functions in the both sides are comparable. See [7] for two dimensional result. The
estimate of this kind for the Green function for the fractional Laplacian was obtained
by Chen and Song [6]. In non-smooth domains, the decay rate of the Green function
is different at each boundary point, and for this reason it is impossible to estimate the
Green function in terms of the explicit functions. To overcome this difficulty, Bogdan
[5] introduced a supplementary setB(x, y) and established the following estimate in a
bounded Lipschitz domainΩ:

G(x, y) ≈ g(x)g(y)
g(b)2

|x − y|2−n for x, y ∈ Ω andb ∈ B(x, y),

whereg(x) = min{1, G(x, x0)} with x0 ∈ Ω being fixed and the definition ofB(x, y)
is given in the sequel. Recently, Hansen [10] obtained this estimate in a bounded
uniform domain. Actually, he discussed for a general functionG satisfying properties
stated below and the quasi-symmetryG(x, y) ≈ G(y, x) for x, y ∈ Ω. In [12], the
author established a global estimate for the Green function in a uniform cone. In this
case,g is replaced by the Martin kernel at infinity.

The purpose of this paper is to present a global estimate for non-symmetric Green
functions (of course, not quasi-symmetric). By the symbolA, we denote an absolute
positive constant whose value is unimportant and may change from line to line. For
two positive functionsf andg, we writef ≈ g if there exists a constantA such that
f/A ≤ g ≤ Af . The constantA will be called the constant of comparison. By
B(x, r), we denote the open ball of centerx and radiusr. First, we discuss on a pair
of a bounded domainΩ in Rn (n ≥ 2) and a functionG : Ω × Ω → (0, +∞] with the
following properties (I)–(IV) and either (V1) or (V2): Letr0 > 0, M > 1, A0 > 1,
A1 > 1 andλ > 0 be fixed constants.

(I) Interior corkscrew condition: For eachξ ∈ ∂Ω and0 < r < r0, there isz ∈
Ω ∩ B(ξ, r) such thatδΩ(z) ≥ r/M .

(II) Comparison principle: LetD be an open set inΩ and lety1, y2 ∈ Ω\D. Suppose
thatf = G(·, y2) or f = 1. If G(·, y1) ≤ Af on ∂D ∩ Ω, thenG(·, y1) ≤ Af
onD.

(III) Harnack’s inequality: Let k ∈ N. There is a constantA = A(k) such that for
eachy ∈ Ω, we have

G(x1, y) ≤ AG(x2, y)

wheneverx1, x2 ∈ Ω\B(y, δΩ(y)/8) satisfy|x1−x2| ≤ k min{δΩ(x1), δΩ(x2)}.

(IV) Boundary Harnack principle: For eachξ ∈ ∂Ω and0 < r < r0, we have

G(x1, y1)
G(x1, y2)

≤ A1
G(x2, y1)
G(x2, y2)

,

wheneverx1, x2 ∈ Ω ∩ B(ξ, r) andy1, y2 ∈ Ω \ B(ξ,A0r).
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(V1) Singularity of logarithmic order: For any fixedy ∈ Ω,

G(x, y) ≈ log
δΩ(y)
|x − y|

for x ∈ B(y, δΩ(y)/2).

(V2) Singularity of finite order: For any fixedy ∈ Ω,

G(x, y) ≈ |x − y|−λ for x ∈ B(y, δΩ(y)/2).

Here the constants of comparison in (V1) and (V2) are independent ofx, y.

Remark1.1. We do not impose the quasi-symmetry ofG: G(x, y) ≈ G(y, x) for
x, y ∈ Ω.

The setup is like stated above. In particular, we fixx0 ∈ Ω and put

g(x) = min{1, G(x, x0)} and g∗(x) = min{1, G(x0, x)}.

Let κ ≥ 1. Forx, y ∈ Ω, we define

B(x, y) =
{

b ∈ Ω :
1
κ

max{|x − b|, |b − y|} ≤ |x − y| ≤ κδΩ(b)
}

.

This simple definition is different from one defined by Bogdan [5], but they are the
same essentially. Observe from (I) and the boundedness ofΩ that if κ is sufficiently
large, thenB(x, y) is nonempty for any pairx, y. The main result is as follows.

Theorem 1.2.Suppose that a bounded domainΩ and a functionG : Ω×Ω → (0, +∞]
satisfy(I)–(IV) . Then the following statements hold:

(i) If G satisfies(V1), then we have forx, y ∈ Ω andb ∈ B(x, y),

G(x, y) ≈ g(x)g∗(y)
g(b)g∗(b)

(
1 + log+ min{δΩ(x), δΩ(y)}

|x − y|

)
, (1.1)

wherelog+ f = max{0, log f} and the constant of comparison depends only on
Ω and the constants appearing in our setting.

(ii) If G satisfies(V2), then we have forx, y ∈ Ω andb ∈ B(x, y),

G(x, y) ≈ g(x)g∗(y)
g(b)g∗(b)

|x − y|−λ, (1.2)

where the constant of comparison depends only onΩ and the constants appear-
ing in our setting.

Immediately, we have the following.

Corollary 1.3. The assumption is the same as Theorem 1.2. Ifg ≈ g∗ onΩ, thenG is
quasi-symmetric:G(x, y) ≈ G(y, x) for x, y ∈ Ω.

Other applications of Theorem 1.2 to thep-Laplace equation will be stated in the
next section.
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2 Some applications and known properties ofp-harmonic
functions

In this section, we give some applications of Theorem 1.2. Let1 < p < ∞ and letΩ
be a bounded domain inRn (n ≥ 2). A functionu ∈ W 1,p

loc (Ω) is said to bep-harmonic
onΩ if it is continuous onΩ and satisfies thep-Laplace equation

∆pu := div(|∇u|p−2∇u) = 0 in Ω (2.1)

in the weak sense, that is,∫
Ω

|∇u|p−2〈∇u,∇φ〉dx = 0 for all φ ∈ C1
0 (Ω).

A lower semicontinuous functionu : Ω → (−∞, +∞], whereu 6≡ +∞, is called
p-superharmonicon Ω if for each open setD with D ⊂ Ω and each functionh p-
harmonic onD and continuous onD, the inequalityu ≥ h on ∂D impliesu ≥ h on
D. If −u is p-superharmonic onΩ, thenu is calledp-subharmoniconΩ.

Letνn be the volume of the unit ball inRn, and letcn,p = (p−1)/(n−p)(nνn)1/(p−1)

andcn = (nνn)−1/(n−1). Denote

µy(x) =

cn,p|x − y|(p−n)/(p−1) if 1 < p < n,

cn log
1

|x − y|
if p = n.

This is the fundamental solution for∆p. Let δy be the Dirac measure aty. Kichenas-
samy and V́eron [13] proved that if1 < p ≤ n andΩ is a smooth domain, then for
eachy ∈ Ω there exists a unique weak solutionu ∈ C1,α

loc (Ω \ {y}) of{
−∆pu = δy in Ω,

u = 0 on∂Ω,
(2.2)

such that|∇u|p−1 ∈ L1
loc(Ω), ∇u ∈ Lp(Ω \ B(y, r)) for eachr > 0, andu/µy ∈

L∞(Ω). This solution is often called ap-Green functionwith pole aty and denoted by
Gp(·, y). Note that the quasi-symmetry ofGp is unknown whenp 6= 2.

Now, let {yj} be a sequence inΩ converging toξ ∈ ∂Ω. Then there is a subse-
quence{yjk

} such that the ratioGp(·, yjk
)/Gp(x0, yjk

) converges locally uniformly
to a positivep-harmonic function onΩ. Such a limit function is called ap-Martin
kernelwith pole atξ and written asKp(·, ξ). Recently, Aikawa, Kilpel̈ainen, Shanmu-
galingam and Zhong [2] and Bidaut-Véron, Borghol and V́eron [4] proved indepen-
dently a boundary Harnack principle forp-harmonic functions in smooth domains and
obtained, as a consequence, that there exist constantsα > 1 andA > 1 such that

1
A

δΩ(x) ≤ Kp(x, ξ) ≤ A
δΩ(x)
|x − ξ|α

for x ∈ Ω.

We shall present some improvement.
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Next, we recall the definition ofp-harmonic measure. LetE be a subset of∂Ω and
letXE denote the characteristic function ofE. Define

ωp(x, E,Ω) = inf u(x) for x ∈ Ω,

where the infimum is taken over all nonnegativep-superharmonic functionsu on Ω
satisfying

lim inf
x→y

u(x) ≥ XE(y) for all y ∈ ∂Ω.

Thenωp(·, E, Ω) is p-harmonic onΩ and0 ≤ ωp(·, E, Ω) ≤ 1. See [11, Chapter 11]
for more informations. We sayωp(x0, E, Ω) a p-harmonic measureof E with respect
to Ω for convenience, although this is not a measure except for the casep = 2.

2.1 Known properties

The following comparison principle and Harnack inequality are found in [11].

Lemma 2.1. Suppose thatu andv are respectivelyp-superharmonic andp-subharmonic
functions onΩ satisfying

lim sup
Ω3x→ξ

v(x) ≤ lim inf
Ω3x→ξ

u(x) for eachξ ∈ ∂Ω,

where both sides are not simultaneously+∞ or −∞. Thenv ≤ u onΩ.

Lemma 2.2. There exists a constantA depending only onp andn such that

sup
B(x,r)

u ≤ A inf
B(x,r)

u

for a nonnegativep-harmonic functionu onB(x, 2r).

The quasihyperbolic metric onΩ is defined by

kΩ(x, y) =
∫

γ

ds(z)
δΩ(z)

for x, y ∈ Ω,

where the infimum is taken over all rectifiable curvesγ in Ω connectingx andy andds
is the line element onγ. Observe that ifΩ is a boundedC1,1-domain, then there exists
a constantA depending only onΩ such that

kΩ(x, y) ≤ A log+ |x − y|
min{δΩ(x), δΩ(y)}

+ A for x, y ∈ Ω. (2.3)

Actually, this holds for uniform domains (see [8]). Also, ifz ∈ Ω is fixed, then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \ B(z, δΩ(z)/2). (2.4)

See [1, Lemma 7.2]. A finite sequence of balls{B(xj , δΩ(xj)/2)}N
j=1 is called a

Harnack chainjoining x andy in Ω if x1 = x, xN = y andxj+1 ∈ B(xj , δΩ(xj)/2)
for j = 1, . . . , N−1. The numberN is called thelengthof the Harnack chain. Observe
that the shortest length of the Harnack chain joiningx andy in Ω is comparable to
kΩ(x, y) + 1. Thus the following Harnack inequality is valid.
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Lemma 2.3. There exists a constantA > 1 depending only onp andn such that

exp(−A(kΩ(x, y) + 1)) ≤ u(x)
u(y)

≤ exp(A(kΩ(x, y) + 1)) for x, y ∈ Ω,

wheneveru is a positivep-harmonic function onΩ.

This, together with (2.3) and (2.4), gives the following.

Lemma 2.4. Suppose thatΩ is a boundedC1,1-domain. Letz ∈ Ω and k ∈ N.
Then there exists a constantA depending only onk, p andΩ such that for a positive
p-harmonic functionu onΩ \ {z}, we have

u(x) ≤ Au(y),

wheneverx, y ∈ Ω \ B(z, δΩ(z)/2) satisfy|x − y| ≤ k min{δΩ(x), δΩ(y)}.

Recently, the following boundary Harnack principle was established in [2, 4]. See
also [3].

Lemma 2.5. Suppose thatΩ is a boundedC1,1-domain. Then there exists a constant
A depending only onp andΩ such that for eachξ ∈ ∂Ω and0 < r < r0, we have

u(x)
v(x)

≤ A
u(y)
v(y)

for x, y ∈ Ω ∩ B(ξ, r),

wheneveru andv are positivep-harmonic functions onΩ ∩ B(ξ, 2r) vanishing con-
tinuously on∂Ω ∩ B(ξ, 2r). Moreover,

Gp(x, x0) ≈ δΩ(x) wheneverδΩ(x) < r0.

Lemma 2.6. Suppose thatΩ is a bounded domain satisfying the exterior corkscrew
condition. Then fory ∈ Ω andx ∈ B(y, δΩ(y)/2),

Gp(x, y) ≈

|x − y|(p−n)/(p−1) if 1 < p < n,

log
δΩ(y)
|x − y|

if p = n,
(2.5)

where the constant of comparison depends only onp andΩ.

Proof. In this proof, we denote byGp,Ω(x, y) the p-Green function forΩ. Observe
that forx ∈ B(y, r),

Gp,B(y,r)(x, y) =

cn,p

(
|x − y|(p−n)/(p−1) − r(p−n)/(p−1)

)
if 1 < p < n,

cn log
r

|x − y|
if p = n.

Therefore

Gp,Ω(x, y) ≥ Gp,B(y,δΩ(y))(x, y) ≥


1
A
|x − y|(p−n)/(p−1) if 1 < p < n,

cn log
δΩ(y)
|x − y|

if p = n.
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Also, if 1 < p < n, then

Gp,Ω(x, y) ≤ cn,p|x − y|(p−n)/(p−1).

Hence (2.5) holds in the case1 < p < n.
Consider the casep = n. If δΩ(y) ≥ r0, then

Gp,Ω(x, y) ≤ Gp,B(y,diam Ω)(x, y) ≤ A log
δΩ(y)
|x − y|

.

If δΩ(y) < r0, then the exterior corkscrew condition implies that there is a pointw ∈
B(y, 2δΩ(y)) such thatB(w, δΩ(y)/A) ⊂ Rn \ Ω. Therefore

Gn,Ω(x, y) ≤ G
n,Rn\B(w,δΩ(y)/A)

(x, y) ≤ A log
δΩ(y)
|x − y|

,

where the last inequality follows from the formula ofG
n,Rn\B(w,r)

(x, y) obtained in
[2] (see (5.2) in this paper). Thus the lemma is proved.

2.2 Applications of Theorem 1.2

It is well known that ifΩ is a boundedC1,1-domain, then there existsr0 > 0 such that
for eachξ ∈ ∂Ω, there are two ballsB(zξ, r0) ⊂ Ω andB(wξ, r0) ⊂ Rn \Ω satisfying
∂B(zξ, r0) ∩ ∂B(wξ, r0) = {ξ}. In the sequel, we fixr0, zξ andwξ. By zξξ, we
denote the (open) line segment betweenzξ andξ. Lemmas 2.1, 2.4 and 2.5 imply that
G = Gp satisfies (II)–(IV). Also, we observe from Lemma 2.6 thatG = Gp satisfies
(V1) if p = n; (V2) with λ = (n − p)/(p − 1) if 1 < p < n. Applying Theorem 1.2,
we shall prove the following equivalence.

Theorem 2.7. Let Ω be a boundedC1,1-domain inRn (n ≥ 2) andx0 ∈ Ω be fixed.
Let1 < p ≤ n. The following statements are equivalent:

(a) ωp(x0, ∂Ω ∩ B(ξ, r),Ω) ≈ r(n−1)/(p−1) wheneverξ ∈ ∂Ω and0 < r < r0,

(b) Gp(x, y) ≈ Gp(y, x) for any pairx, y ∈ Ω,

(c) Gp(x0, x) ≈ δΩ(x) wheneverδΩ(x) < r0,

(d) for eachξ ∈ ∂Ω, there is a positivep-harmonic functionu on Ω vanishing
continuously on∂Ω \ {ξ} such thatu(x0) = 1 andu(x) ≈ δΩ(x)(1−n)/(p−1)

for x ∈ zξξ,

(e) for eachξ ∈ ∂Ω,

Kp(x, ξ) ≈ δΩ(x)
|x − ξ|(n+p−2)/(p−1)

for x ∈ Ω.

Whenp = n, we can prove (d) in Theorem 2.7 and obtain the following estimates.
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Corollary 2.8. Let Ω be a boundedC1,1-domain inRn (n ≥ 2), and letp = n. Then
the following estimates hold:

(i) ωn(x0, ∂Ω ∩ B(ξ, r), Ω) ≈ r wheneverξ ∈ ∂Ω and0 < r < r0,

(ii) Gn(x, y) ≈ log
(

1 +
δΩ(x)δΩ(y)
|x − y|2

)
for x, y ∈ Ω,

(iii) Kn(x, ξ) ≈ δΩ(x)
|x − ξ|2

for x ∈ Ω andξ ∈ ∂Ω,

where the constants of comparison depend only onn andΩ.

For the casep < n, we could not show any of (a)–(e) in Theorem 2.7. However,
using Theorem 1.2, we shall prove the following one-side estimate.

Proposition 2.9. Let Ω be a boundedC1,1-domain inRn (n ≥ 2). There exists a
constantA ≥ 1 depending only onp andΩ such that if1 < p ≤ 2, then

Kp(x, ξ) ≥ 1
A

δΩ(x)
|x − ξ|(n+p−2)/(p−1)

for x ∈ Ω;

if 2 ≤ p < n, then

Kp(x, ξ) ≤ A
δΩ(x)

|x − ξ|(n+p−2)/(p−1)
for x ∈ Ω.

The proofs of the results in this section will be given in Sections 4 and 5.

3 Proof of Theorem 1.2

In this section, we suppose that a bounded domainΩ satisfies (I) and a functionG : Ω×
Ω → (0,+∞] satisfies (II)–(IV) and either (V1) or (V2). We need to prepare several
lemmas. ByS(x, r) we denote the sphere of centerx and radiusr. The constantsA
appearing in this section may depend on the constants in our setting (I)–(IV) and (V1)
or (V2).

Lemma 3.1. There is a constantA such that for eachξ ∈ ∂Ω and0 < r < r0, we
have

G(x1, y1)
G(x1, y2)

≤ A
G(x2, y1)
G(x2, y2)

wheneverx1, x2 ∈ Ω \ B(ξ, 3r) andy1, y2 ∈ Ω ∩ B(ξ, r).

Proof. Let y1, y2 ∈ Ω ∩ B(ξ, r) be fixed and takew ∈ Ω ∩ S(ξ, 3r) with δΩ(w) ≈ r.
We claim that

G(x, y1) ≈
G(w, y1)
G(w, y2)

G(x, y2) for x ∈ Ω ∩ S(ξ, 3r). (3.1)
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Letx ∈ Ω∩S(ξ, 3r). If δΩ(x) < r/A0, then we takez ∈ Ω∩S(η, r/A0) with δΩ(z) ≈
r, whereη ∈ ∂Ω is a point such that|η − x| = δΩ(x). ThenB(η, r) ∩ B(ξ, r) = ∅.
We apply (IV) to obtain

G(x, y1)
G(x, y2)

≈ G(z, y1)
G(z, y2)

.

Since|z − w| ≤ Amin{δΩ(z), δΩ(w)}, it follows from (III) that

G(z, y1) ≈ G(w, y1) and G(z, y2) ≈ G(w, y2).

Hence (3.1) holds for suchx. If δΩ(x) ≥ r/A0, then (III) implies thatG(x, yj) ≈
G(w, yj) for j = 1, 2, and so (3.1) holds. The lemma follows from (3.1) and (II) with
D = Ω \ B(ξ, 3r).

Lemma 3.2. Letx, y ∈ Ω satisfy|x − y| ≤ k min{δΩ(x), δΩ(y)}. Then the following
statements hold:

(i) If G satisfies(V1), then

G(x, y) ≈ 1 + log+ min{δΩ(x), δΩ(y)}
|x − y|

≈ G(y, x),

where the constant of comparison depends onk.

(ii) If G satisfies(V2), then

G(x, y) ≈ |x − y|−λ ≈ G(y, x),

where the constant of comparison depends onk.

Proof. Without loss of generality, we may assume thatδΩ(x) ≤ δΩ(y). If |x − y| <
δΩ(y)/4, theny ∈ B(x, δΩ(x)/3). Therefore

G(x, y) ≈

log
δΩ(y)
|x − y|

≈ log
δΩ(x)
|y − x|

≈ G(y, x) if G satisfies (V1),

|x − y|−λ = |y − x|−λ ≈ G(y, x) if G satisfies (V2).

Suppose|x− y| ≥ δΩ(y)/4. Let z ∈ S(x, δΩ(x)/8) andw ∈ S(y, δΩ(y)/8). Observe
that |x − w| ≤ Amin{δΩ(x), δΩ(w)} and|z − y| ≤ Amin{δΩ(z), δΩ(y)}. By (III),
we have

G(x, y) ≈ G(w, y) ≈

{
1 if G satisfies (V1),

δΩ(y)−λ if G satisfies (V2),

and

G(y, x) ≈ G(z, x) ≈

{
1 if G satisfies (V1),

δΩ(x)−λ if G satisfies (V2).

SinceδΩ(x)/4 ≤ δΩ(y)/4 ≤ |x − y| ≤ kδΩ(x) ≤ kδΩ(y), we obtain the lemma.

Lemma 3.3. The following statements hold:
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(i) LetA2 be a positive constant. IfδΩ(x) ≥ A2, then

g(x) ≈ 1 and g∗(x) ≈ 1,

where the constants of comparison depend onA2.

(ii) If x ∈ Ω \ B(x0, δΩ(x0)/2), theng(x) ≈ G(x, x0).

(iii) If x, y ∈ Ω satisfy|x − y| ≤ k min{δΩ(x), δΩ(y)}, then

g(x) ≈ g(y) and g∗(x) ≈ g∗(y),

where the constants of comparison depend onk.

Proof. We give the proof in only the case thatG satisfies (V1), because the another
case can be proved similarly.

(i) Since|x − x0| ≤ Amin{δΩ(x), δΩ(x0)}, Lemma 3.2 yields thatg(x) ≈ 1 ≈
g∗(x).

(ii) SinceG(·, x0) ≈ 1 onS(x0, δΩ(x0)/2), it follows from (II) that

G(·, x0) ≤ A onΩ \ B(x0, δΩ(x0)/2).

Henceg ≈ G(·, x0) there.
(iii) We first showg(x) ≈ g(y). If x ∈ B(x0, δΩ(x0)/2), then

δΩ(y) ≥ δΩ(x)
k + 1

≥ δΩ(x0)
2(k + 1)

.

Henceg(x) ≈ 1 ≈ g(y) by (i). If y ∈ B(x0, δΩ(x0)/2), theng(x) ≈ 1 ≈ g(y) by the
same reasoning. Ifx, y 6∈ B(x0, δΩ(x0)/2), thenG(x, x0) ≈ G(y, x0) by (III). Hence
g(x) ≈ g(y).

We next showg∗(x) ≈ g∗(y). Without loss of generality, we may assume that
δΩ(x) ≤ δΩ(y) andδΩ(x0) ≥ 3r0. If δΩ(y) ≥ r0/(k + 1), then

δΩ(x) ≥ δΩ(y)
k + 1

≥ r0

(k + 1)2
.

Henceg∗(x) ≈ 1 ≈ g∗(y) by (i). SupposeδΩ(y) < r0/(k + 1). Takeξ ∈ ∂Ω with
|x − ξ| = δΩ(x) and letρ = (k + 1)δΩ(x). Then|y − ξ| ≤ ρ < r0. By Lemma 3.1,
we have forx1 ∈ Ω ∩ S(ξ, 3ρ) with δΩ(x1) ≈ ρ,

G(x0, x) ≈ G(x1, x)
G(x1, y)

G(x0, y).

SinceG(x1, x) ≈ G(x, x1) ≈ G(y, x1) ≈ G(x1, y) by Lemma 3.2 and (III), we obtain
g∗(x) ≈ g∗(y).

We now give the proof of Theorem 1.2.

10



Proof of Theorem 1.2(i). Let A0 andr0 be as in (IV). Let

A3 = max
{

5A0, 3κ,
3 diamΩ

r0

}
,

and letA4 be a constant such thatA4 > A3. We may assume thatδΩ(x0) ≥ A0r0. To
prove (1.1), we split the proof into several cases:

Case 1: |x − y| ≤ A4 min{δΩ(x), δΩ(y)},

Case 2: |x − y| ≥ A3 min{δΩ(x), δΩ(y)};

Subcase 2.1: δΩ(x) ≤ δΩ(y) and Subcase 2.2: δΩ(y) < δΩ(x).

Case 1.By the definition ofB(x, y),

max{|x − b|, |y − b|} ≤ κ|x − y| ≤ κ2A4 min{δΩ(x), δΩ(y), δΩ(b)}.

Thereforeg(x) ≈ g(b) andg∗(y) ≈ g∗(b) by Lemma 3.3. This and Lemma 3.2 give
(1.1).
Case 2.Since1 + log+(min{δΩ(x), δΩ(y)}/|x − y|) = 1, it is enough to show

G(x, y) ≈ g(x)g∗(y)
g(b)g∗(b)

. (3.2)

Let r = |x − y|/A3. Thenr ≤ r0/3 andδΩ(b) ≥ r.
Subcase 2.1.Note thatδΩ(x) ≤ r. Takeξ ∈ ∂Ω with |x − ξ| = δΩ(x). Then
|x0 − ξ| ≥ A0r and|y − ξ| ≥ |x − y| − |x − ξ| ≥ A0r. Let x1 ∈ Ω ∩ S(ξ, r/2) be
such thatδΩ(x1) ≈ r. Observe that|b − x1| ≤ Ar ≤ Amin{δΩ(b), δΩ(x1)}, and so

g(b) ≈ g(x1) ≈ G(x1, x0)

by Lemma 3.3. It follows from (IV) that

G(x, y) ≈ G(x1, y)
G(x1, x0)

G(x, x0) ≈
g(x)
g(b)

G(x1, y). (3.3)

We still distinguish two more cases.
Subcase 2.1.1:δΩ(y) ≥ r. Observe thatδΩ(x1) ≤ r ≈ |x1−y| ≤ A min{δΩ(x1), δΩ(y)}.
By Lemma 3.2,

G(x1, y) ≈ 1.

Also, |y − b| ≤ Ar ≤ Amin{δΩ(y), δΩ(b)} and Lemma 3.3 imply

g∗(y) ≈ g∗(b).

Hence (3.2) follows from (3.3).
Subcase 2.1.2:δΩ(y) < r. Observe that

|x1 − y| ≥ |x − y| − |x − x1| ≥ r ≥ δΩ(y),

|b − y| ≥ δΩ(b) − δΩ(y) ≥ |x − y|
κ

− δΩ(y) ≥ r ≥ δΩ(y),
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and sox1, b 6∈ B(y, δΩ(y)). Since|b − x1| ≤ Ar ≤ Amin{δΩ(b), δΩ(x1)}, it follows
from (III) that G(x1, y) ≈ G(b, y). This and (3.3) give

G(x, y) ≈ g(x)
g(b)

G(b, y). (3.4)

Takey1 ∈ Ω ∩ S(η, r) with δΩ(y1) ≈ r, whereη ∈ ∂Ω is a point such that|y − η| =
δΩ(y). Observe that|b − η| ≥ δΩ(b) ≥ |x − y|/κ ≥ 3r. Therefore Lemma 3.1 gives

G(b, y) ≈ G(b, y1)
G(x0, y1)

G(x0, y) ≈ g∗(y)
g∗(y1)

G(b, y1). (3.5)

SinceδΩ(y1) ≤ r ≈ |y1− b| ≤ Amin{δΩ(y1), δΩ(b)}, we have from Lemmas 3.2 and
3.3

G(b, y1) ≈ 1 and g∗(y1) ≈ g∗(b).

These, together with (3.4) and (3.5), yield (3.2).
Subcase 2.2.Note thatδΩ(y) ≤ r ≤ r0/3. We still distinguish two more cases.
Subcase 2.2.1:δΩ(x) ≥ r. Takey2 ∈ Ω ∩ S(η, r) with δΩ(y2) ≈ r, whereη ∈ ∂Ω is
a point such that|y − η| = δΩ(y). Observe that

|x − η| ≥ |x − y| − |y − η| ≥ 3r,

and sox, x0 6∈ B(η, 3r). Lemma 3.1 gives

G(x, y) ≈ G(x, y2)
G(x0, y2)

G(x0, y) ≈ g∗(y)
g∗(y2)

G(x, y2). (3.6)

SinceδΩ(y2) ≤ r ≈ |x − y2| ≤ Amin{δΩ(x), δΩ(y2)}, it follows from Lemma 3.2
that

G(x, y2) ≈ 1.

Also, max{|x − b|, |y2 − b|} ≤ Ar ≤ A min{δΩ(x), δΩ(y2), δΩ(b)} and Lemma 3.3
imply

g(x) ≈ g(b) and g∗(y2) ≈ g∗(b).

Thus (3.2) follows.
Subcase 2.2.2:δΩ(x) < r. Let x2 ∈ Ω ∩ B(ξ, δΩ(y)), whereξ ∈ ∂Ω is a point such
that|x − ξ| = δΩ(x). It follows from (IV) and Subcase 2.1 that

G(x, y) ≈ G(x, x0)
G(x2, x0)

G(x2, y) ≈ g(x)
g(x2)

g(x2)g∗(y)
g(bx2,y)g∗(bx2,y)

, (3.7)

wherebx2,y ∈ B(x2, y). Since|bx2,y − b| ≤ Ar ≤ Amin{δΩ(bx2,y), δΩ(b)}, Lemma
3.3 gives

g(bx2,y) ≈ g(b) and g∗(bx2,y) ≈ g∗(b).

Hence (1.1) follows. The proof of Theorem 1.2(i) is complete.
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Proof of Theorem 1.2(ii) . The proof of (ii) is similar to (i), so we give only a sketch.
Case 1.The same reasoning as in (i) gives (1.1).
Subcase 2.1.1.By Lemma 3.2,G(x1, y) ≈ |x1 − y|−λ ≈ |x − y|−λ. Sinceg∗(y) ≈
g∗(b), we obtain (1.2) from (3.3).
Subcase 2.1.2.Lemmas 3.2 and 3.3 giveG(b, y1) ≈ |b − y1|−λ ≈ |x − y|−λ and
g∗(y1) ≈ g∗(b). Hence (3.4) and (3.5) yield (1.2).
Subcase 2.2.1.By Lemma 3.2,G(x, y2) ≈ |x−y2|−λ ≈ |x−y|−λ. Sinceg(x) ≈ g(b)
andg∗(y2) ≈ g∗(b), we obtain (1.2) from (3.6).
Subcase 2.2.2.Since|x2 − y| ≈ r ≈ |x− y|, it follows from (IV) and Subcase 2.1 that

G(x, y) ≈ g(x)
g(x2)

g(x2)g∗(y)
g(bx2,y)g∗(bx2,y)

|x − y|−λ.

See (3.7). Sinceg(bx2,y) ≈ g(b) andg∗(bx2,y) ≈ g∗(b), we obtain (1.2).

4 Proof of Theorem 2.7

In this section, we suppose thatΩ is a boundedC1,1-domain inRn (n ≥ 2). Let

γp(x, y) =

|x − y|(p−n)/(p−1) if 1 < p < n,

1 + log+ min{δΩ(x), δΩ(y)}
|x − y|

if p = n.

Applying Theorem 1.2 and Lemma 3.3 toG = Gp, we have the following.

Lemma 4.1. For x, y ∈ Ω andb ∈ B(x, y),

Gp(x, y) ≈ g(x)g∗(y)
g(b)g∗(b)

γp(x, y), (4.1)

where the constant of comparison depends only onp andΩ. Moreover, if|x − y| ≤
k min{δΩ(x), δΩ(y)}, then

Gp(x, y) ≈ γp(x, y),

where the constant of comparison depends only onk, p andΩ.

Lemma 4.1 yields the following estimate forKp.

Lemma 4.2. For x ∈ Ω, ξ ∈ ∂Ω andb ∈ B(x, ξ),

Kp(x, ξ) ≈ g(x)
g(b)g∗(b)

|x − ξ|(p−n)/(p−1),

where the constant of comparison depends only onp andΩ.

Proof. We find a sequence{yj} in Ω converging toξ such that{Gp(·, yj)/Gp(x0, yj)}
converges toKp(·, ξ) on Ω. Let x ∈ Ω be fixed. Without loss of generality, we may
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assume that allyj satisfy|yj−ξ| ≤ |y1−ξ| ≤ δΩ(x)/(2κ2+2) and4|yj−ξ| ≤ |x−yj |.
Let b ∈ Bκ(x, y1) andj ∈ N. Since

|x − yj | ≤ |x − y1| + |y1 − ξ| + |ξ − yj | ≤
5
4
|x − y1| +

1
4
|x − yj |,

we have
|x − yj | ≤ 2|x − y1| ≤ 2κδΩ(b). (4.2)

Also, since|x − y1| ≤ 2|x − yj | by the same reasoning as above, we have

|x − b| ≤ κ|x − y1| ≤ 2κ|x − yj |,
|b − yj | ≤ |b − x| + |x − yj | ≤ (2κ + 1)|x − yj |.

(4.3)

Henceb ∈
∩

j B2κ+1(x, yj). Let us apply Lemma 4.1. SinceδΩ(bj) ≥ δΩ(x0)/(κ2 +
1) for bj ∈ B(x0, yj), it follows from Lemma 3.3 thatg(bj) ≈ 1 ≈ g∗(bj), and so

Gp(x, yj)
Gp(x0, yj)

≈ g(x)
g(b)g∗(b)

γp(x, yj)
γp(x0, yj)

for x ∈ Ω.

Letting j → ∞, we obtain

Kp(x, ξ) ≈ g(x)
g(b)g∗(b)

|x − ξ|(p−n)/(p−1). (4.4)

Also, lettingj → ∞ in (4.2) and (4.3), we haveb ∈ B2κ+1(x, ξ). From Lemma 3.3,
we see that (4.4) holds for allb ∈ Bκ(x, ξ). This completes the proof.

Also, we need the following relationship between thep-harmonic measure and the
p-Green function.

Lemma 4.3. Let ξ ∈ ∂Ω and0 < r < r0. Let x ∈ Ω satisfy|x − ξ| = δΩ(x) = r.
Then

ωp(y, ∂Ω ∩ B(ξ, r), Ω) ≈ r(n−p)/(p−1)Gp(y, x) for y ∈ Ω \ B(ξ, 2r),

where the constant of comparison depends only onp andΩ.

Proof. Let z ∈ Ω ∩ S(ξ, 2r) be a point such thatδΩ(z) ≈ r. By the similar way to the
proof of Lemma 3.1, we have

Gp(y, x)
Gp(z, x)

≈ ωp(y, ∂Ω ∩ B(ξ, r), Ω)
ωp(z, ∂Ω ∩ B(ξ, r), Ω)

for y ∈ Ω \ B(ξ, 2r). (4.5)

In view of Lemma 4.1, we have

Gp(z, x) ≈

{
1 if p = n,

|x − z|(p−n)/(p−1) ≈ r(p−n)/(p−1) if 1 < p < n.
(4.6)
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Let Γ = {x ∈ B(wξ, r0) : ∠xξwξ < π/4}, wherewξ is a point inRn \Ω stated before
Theorem 2.7. SinceΓ ⊂ Rn \ Ω, it follows from Lemma 2.1 that

ωp(x, ∂Ω ∩ B(ξ, r),Ω) ≥ ωp(x, S(ξ, r) ∩ Γ, B(ξ, r)) for x ∈ Ω ∩ B(ξ, r).

Note that the value

A5 = inf
B(ξ,r/2)

ωp(·, S(ξ, r) ∩ Γ, B(ξ, r)) > 0

is invariant under dilation. Thereforeωp(·, ∂Ω ∩ B(ξ, r), Ω) ≥ A5 onΩ ∩ B(ξ, r/2),
and soωp(z, ∂Ω ∩ B(ξ, r), Ω) ≈ 1 by Lemma 2.4. This, together with (4.5) and (4.6),
yields that

ωp(y, ∂Ω ∩ B(ξ, r), Ω) ≈ r(n−p)/(p−1)Gp(y, x) for y ∈ Ω \ B(ξ, 2r).

Thus the lemma is proved.

Proof of Theorem 2.7.(e)⇒ (d). SinceδΩ(x) = |x − ξ| for x ∈ zξξ, this implication
is clear.

(d) ⇒ (c). Let x ∈ Ω satisfyδΩ(x) < r0 and letξ ∈ ∂Ω be a point such that
|x − ξ| = δΩ(x). Thenx ∈ zξξ. Suppose thatu is a positivep-harmonic function on
Ω satisfying the properties in (d). Lety ∈ zξξ be a point such thatδΩ(y) = δΩ(x)/2.
Using Lemmas 2.5 and 4.1, we observe that

u(x) =
u(x)
u(x0)

≈ Gp(x, y)
Gp(x0, y)

≈ δΩ(x)(p−n)/(p−1)

Gp(x0, y)
.

Sinceu(x) ≈ δΩ(x)(1−n)/(p−1), we haveGp(x0, y) ≈ δΩ(x). Therefore Lemma 3.3
yields

Gp(x0, x) ≈ Gp(x0, y) ≈ δΩ(x).

(c) ⇒ (b). Letx ∈ Ω. If δΩ(x) ≥ r0, then|x − x0| ≤ Amin{δΩ(x), δΩ(x0)}. It
follows from Lemma 4.1 that

Gp(x, x0) ≈ γp(x, x0) = γp(x0, x) ≈ Gp(x0, x).

If δΩ(x) < r0, thenGp(x, x0) ≈ δΩ(x), and soGp(x, x0) ≈ Gp(x0, x) by assumption.
Hence, in any case,

g ≈ g∗ onΩ.

This and Lemma 4.1 give thatGp(x, y) ≈ Gp(y, x) for all x, y ∈ Ω.
(b) ⇒ (a). Letx ∈ zξξ be a point such thatδΩ(x) = r < r0. Since

Gp(x0, x) ≈ Gp(x, x0) ≈ δΩ(x) = r,

it follows from Lemma 4.3 withy = x0 that

ωp(x0, ∂Ω ∩ B(ξ, r), Ω) ≈ r(n−p)/(p−1)Gp(x0, x) ≈ r(n−1)/(p−1).
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(a)⇒ (c). LetδΩ(x) < r0. Then Lemma 4.3 gives

Gp(x0, x) ≈ δΩ(x).

(c) ⇒ (e). By Lemma 4.2, we have

Kp(x, ξ) ≈ δΩ(x)
δΩ(b)2

|x − ξ|(p−n)/(p−1) for x ∈ Ω andb ∈ B(x, ξ).

SinceδΩ(b) ≈ |x − ξ|, we obtain the required estimate. The proof of Theorem 2.7 is
complete.

5 Proofs of Corollary 2.8 and Proposition 2.9

In this section, we prove Corollary 2.8 by showing the existence of a positivep-
harmonic function with the properties in Theorem 2.7(d). Lety∗ denote the inverse
of y with respect toS(z, r):

y∗ = z +
r2

|y − z|2
(y − z).

We observe that then-Green functions forB(z, r) andRn \ B(z, r) are given respec-
tively by

Gn,B(z,r)(x, y) =


1

(nνn)1/(n−1)
log

r

|x − y|
if y = z,

1
(nνn)1/(n−1)

log
|y − z||x − y∗|

r|x − y|
if y 6= z,

(5.1)

and

G
n,Rn\B(z,r)

(x, y) =
1

(nνn)1/(n−1)
log

|y − z||x − y∗|
r|x − y|

. (5.2)

See [2] for example.

Lemma 5.1. Let ξ ∈ ∂Ω. Then there is ann-Martin kernel with pole atξ such that

Kn(x, ξ) ≈ 1
δΩ(x)

for x ∈ zξξ,

where the constant of comparison depends only onn andΩ.

Proof. Let r > 0 be small and let{yj} be a sequence inzξξ converging toξ such that

lim
j→∞

Gn(x, yj)
Gn(x0, yj)

= Kn(x, ξ) and lim
j→∞

Gn,B(zξ,r0)(x, yj)
Gn,B(zξ,r0)(zξ, yj)

= Kn,B(zξ,r0)(x, ξ).

Let j ∈ N be sufficiently large so thatyj ∈ B(ξ, r/2). Then, by (5.1) and (5.2), we
have forx ∈ zξξ \ B(ξ, r),

Gn,B(zξ,r0)(x, yj) ≤ Gn(x, yj) ≤ G
n,Rn\B(wξ,r0)

(x, yj) ≤ AGn,B(zξ,r0)(x, yj).
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Therefore, by Lemma 2.4,

Gn(x, yj)
Gn(x0, yj)

≈ Gn(x, yj)
Gn(zξ, yj)

≈
Gn,B(zξ,r0)(x, yj)
Gn,B(zξ,r0)(zξ, yj)

for x ∈ zξξ \ B(ξ, r).

Letting j → ∞ andr → 0, we obtain

Kn(x, ξ) ≈ Kn,B(zξ,r0)(x, ξ) =
r2
0 − |x − zξ|2

|x − ξ|2
for x ∈ zξξ.

Here the last equality follows from (5.1) and direct computations (see [2]). Thus the
lemma is proved.

Proof of Corollary 2.8.Let ξ ∈ ∂Ω and letKn(·, ξ) be ann-Martin kernel with pole
at ξ obtained in Lemma 5.1. Observe thatKn(·, ξ) vanishes continuously on∂Ω \ {ξ}
andKn(x0, ξ) = 1. Hence (i) and (iii) follow from Theorem 2.7.

We show (ii). By Theorem 2.7, we haveg ≈ g∗. It follows from Lemma 4.1 that

Gn(x, y) ≈ g(x)g(y)
g(b)2

(
1 + log+ min{δΩ(x), δΩ(y)}

|x − y|

)
for x, y ∈ Ω andb ∈ B(x, y).

Without loss of generality, we may assume thatδΩ(x) ≤ δΩ(y).
Case 1: |x − y| ≤ δΩ(y)/4. Observe that(3/4)δΩ(y) ≤ δΩ(x), |x − y| ≤ δΩ(x)/3
andg(b) ≈ g(x) ≈ g(y). Therefore

Gn(x, y) ≈ 1 + log
δΩ(x)
|x − y|

≈ log
(

1 +
δΩ(x)δΩ(y)
|x − y|2

)
.

Case 2:δΩ(y)/4 < |x − y|. Observe that1 + log+(δΩ(x)/|x − y|) ≈ 1 and

g(x)g(y)
g(b)2

≈ δΩ(x)δΩ(y)
δΩ(b)2

.

SinceδΩ(b) ≈ |x − y|, we obtain

Gn(x, y) ≈ δΩ(x)δΩ(y)
|x − y|2

≈ log
(

1 +
δΩ(x)δΩ(y)
|x − y|2

)
.

Thus (ii) is proved.

Let z ∈ Rn andr > 0. Forx ∈ Rn andy ∈ Rn \ {z}, we define

gp,z,r(x, y) = |x − y|(p−n)/(p−1) −
(
|y − z||x − y∗|

r

)(p−n)/(p−1)

,

wherey∗ is the inverse ofy with respect toS(z, r). Note thatgp,z,r(·, y) is not annihi-
lated by∆p onRn \ {y} whenp 6= 2.

Lemma 5.2. Letx 6= y. If 1 < p ≤ 2 andx, y ∈ Rn\B(z, r), then∆pgp,z,r(x, y) ≤ 0.
If 2 ≤ p < n andx, y ∈ B(z, r), then∆pgp,z,r(x, y) ≥ 0.

17



Proof. Since the sign of∆p is invariant under dilation and translation, it suffices to
show the lemma forg = gp,0,1(·, y). By direct computations, we have

∆pg = |∇g|p−4

(p − 2)
∑
j,k

∂g

∂xj

∂g

∂xk

∂2g

∂xj∂xk
+ |∇g|2

∑
j

∂2g

∂x2
j


= |∇g|p−4 (n − p)3

(p − 1)4
(p + n − 2)(p − 2)|y|2

(|y||x − y||x − y∗|)(n−p)/(p−1)+2

× gp,0,1(x, y)

(
1 −

〈
x − y

|x − y|
,

x − y∗

|x − y∗|

〉2
)

.

Note thatgp,0,1(x, y) ≥ 0 if x, y ∈ B(0, 1) or x, y ∈ Rn \ B(0, 1). Hence we can
obtain the lemma.

Proof of Proposition 2.9.Let δΩ(y) < r0/2 and letξ ∈ ∂Ω be a point such that|y −
ξ| = δΩ(y).
Case 1:1 < p ≤ 2. Observe that

gp,wξ,r0(·, y) ≈ δΩ(y)(p−n)/(p−1) ≈ Gp(·, y) onS(y, δΩ(y)/2).

In view of Lemma 5.2, we obtain from the Harnack inequality and Lemma 2.1 that

Gp(x0, y) ≈ Gp(zξ, y) ≤ Agp,wξ,r0(zξ, y) ≈ δΩ(y).

Henceg∗(y) ≤ AδΩ(y). This, together withg(x) ≈ δΩ(x) and Lemma 4.2, yields that

Kp(x, ξ) ≥ 1
A

δΩ(x)
δΩ(b)2

|x − ξ|(p−n)/(p−1) for x ∈ Ω andb ∈ B(x, ξ).

SinceδΩ(b) ≈ |x − ξ|, we obtain the required estimate.
Case 2:2 ≤ p < n. The proof is similar to Case 1. Observe that

gp,zξ,r0(·, y) ≈ δΩ(y)(p−n)/(p−1) ≈ Gp(·, y) onS(y, δΩ(y)/2).

ThereforeδΩ(y) ≈ gp,zξ,r0(zξ, y) ≤ AGp(zξ, y) ≈ Gp(x0, y), and sog∗(y) ≥
δΩ(y)/A. Hence we obtain

Kp(x, ξ) ≤ A
δΩ(x)

|x − ξ|2+(n−p)/(p−1)
for x ∈ Ω.

Thus Proposition 2.9 is proved.
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