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Abstract

In an unbounded domaif in R™ (n > 2) with a compact boundary d2 =
R™, we investigate the existence of limits at infinity of positive superharmonic
functionsu on (2 satisfying a nonlinear inequality like as

c
_ < - p
Au(x) D u(z)? forz e Q,

where A is the Laplacian and > 0 andp > 0 are constants. The result is
applicable to positive solutions of semilinear elliptic equations of Matukuma type.
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1 Introduction

This paper is motivated by the following semilinear elliptic equation proposed by
Matukuma in 1930 to study a gravitational potentiadf a globular cluster of stars:

Au= " iR
e ’

whereA is the Laplacian angd > 0 is a constant. The equations of this kind have been
studied widely by many mathematicians. Kenig and Ni [9] proved the existence of
positive bounded solutionsof —Awu = Vu? in R™ (n > 3), whereV is a measurable
function satisfyingV' (z)| < A(1 + |z|?)~1~¢ for some constantd > 0 ande > 0.
See also the reference therein. Using techniques of the probabilistic potential theory,
Zhao [12] generalized their result and proved th&? is an unbounded domain R™
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(n > 3) with a compact Lipschitz boundary afdis a Green-tight function of?, then
there are positive bounded solutiong C(€2) of

—Au=VuP inQ, (1.1)
u=0 onon, '
satisfying
lim u(z) =« (1.2)

for a given small constant > 0. See also [3]. The corresponding result in two dimen-
sions was obtained by Ufuktepe and Zhao [11]. They actually showed the existence of
positive solutions; of (1.1) satisfying

we) _ (1.3)

1im
z—oo log |3;'|

for a given small constant > 0. In an unbounded cone, the existence of positive
solutions of (1.1) which are comparable to the Martin kernel at infinity was studied in
[7].

In this paper, we are interested in the following question:

Question. Let{2 be an unbounded domainR* (n > 2) with a compact boundary or
Q = R™ and letV” be a nonnegative measurable functiorfdwith suitable conditions.
Does every positive solutiom of —Au = VuP in Q satisfy(1.2) or (1.3) for some
a>07?

Remarkl.l Whenn > 3 andV is a negative function with suitable properties, there

is a positive solution; of —Awu = Vu? in R™ such thatu(xz) — +oo as|z| — +o0.

See [4, 6, 10] and references therein. Thus the above question is significant in the case
thatV” is nonnegative.

More generally, we shall discuss the above question for the class of positive super-
harmonic functions satisfying a certain nonlinear inequality, which includes all positive
solutions of semilinear elliptic equations of Matukuma type. Qdie a domain irR™
(n > 2). A lower semicontinuous function : Q@ — (—o0, 400}, whereu # +oo, is
calledsuperharmonion (2 if it satisfies the mean value inequality

1
>
u(z) 2 Upr™

/ u(y)dy wheneverB(z,r) C .
B(z,r)

Here B(z,r) denotes the open ball of centerand radius-, andv,, is the volume of
the unit ball inR™. It is well known that ifu is a superharmonic function dn, then
there exists a unique (Radon) measuyeon €2 such that

/¢> Vb (2 :f/ u(z)A¢(x)dz forall ¢ € C(9),

whereCg°(Q) is the collection of all infinitely differentiable functions vanishing out-
side a compact set ift (cf. [2, Section 4.3]). The measuge, is called theRiesz
measureassociated with.



Throughout the paper, we suppose thias an unbounded domain R™ (n > 2)
with a compact boundary a2 = R", and study positive superharmonic functians
on{) whose Riesz measure is absolutely continuous with respect to Lebesgue measure.
The Radon-Nikogm derivative is denoted by, . Note thatf, is nonnegative and that
fu=—Auif u € C?(Q). Our results are as follows.

Theorem 1.2. Letn > 3. Suppose that
n

If u is a positive superharmonic function éhsatisfying
fulz) < @u(m)p for almost every: € Q\ B(0, R) (1.4)

with some constants> 0 and R > 0, thenu has a finite limit at infinity.

In contrast, the following theorem shows that the above question is negative when
pis greater tham/(n — 2).

Theorem 1.3. Letn > 3 andc > 0. If

n—2’
then for eachs > 0, there exists a positive functianc C?(R") satisfying

0<-Au< —° w7 inR"
1+ [zf?

such that

lim sup @ = +o00.
S Tapp

The two dimensional result corresponding to Theorem 1.2 is stated as follows.

Theorem 1.4. Letn = 2 and letp > 0 be arbitrary constant. Ifu is a positive
superharmonic function of? satisfying

c

fulz) < )pu(as)p for almost every: € O\ B(0, R) (1.5)

|[?(log ||

with some constants> 0 and R > 1, thenu(z)/ log |x| has a finite limit at infinity.

2 Proofs of Theorems 1.2 and 1.4

We begin with some notation and terminology. The symidatands for an absolute
positive constant whose value is unimportant and may change from line to line. For

simplicity, we write B(r) = B(0,r) andD = R™\ B(1). LetGp(z,y) andKp(z,y)



denote the Green function f@» and the Martin kernel oD, respectively. Observe that
forz € D andy € 9B(1),

\JL‘I2 —1

_ Jazlog|x| (n=2),
ol {ana ~ e (n>3) @2

The reference point is taken ag = (2,0,---,0), so thata, = |zg — y|"/3, az =
(log2)~! anda, = (1 — 227")~1, In the proof below, we will use some facts con-
cerning the minimal fine topology Lét be a subset ab. By RE (00) WE denote
the lower semicontinuous regularization of the reduced functlon deflned by

R£D(~,w)(z) = 12fu(x),
where the infimum is taken over all nonnegative superharmonic functiomsD sat-
isfying Kp(-,00) < wonkE. In generaI,Rf}D(,m) < Kp(-,0). A setE is called
minimally thinat infinity (with respect tdD) if

RE (. o0)(x) < Kp(z,00) forsomer € D.

We say that a function on D hasminimal fine limit¢ at infinity if there exists a subset
E of D, which is minimally thin at infinity, such that

lim  wu(z) =2
D\E>z—c0
The following lemma is a special case of the Fatourd®oob theorem (cf. [2, Theo-
rem 9.4.6]).

Lemma 2.1. If u is a nonnegative superharmonic function Bn thenu/Kp (-, o)
has a finite minimal fine limi¢ at infinity. Moreover, ifu is a Green potential, then
£=0.

The following lemma is well known.

Lemma 2.2. Let0 < ¢ < 1 and let{z;} be a sequence i such thatr;, — oo
(i — +o00). Then the sdt), B(x;, €|z;|) is not minimally thin at infinity.

Proof. Consider the inverse and the Kelvin transform with respect to the unit sphere.
Then the inverse aB(z;, |;|) is the ball of centex /(1 — £2) and radiug |z} |/(1 —

£2), wherez* denotes the inverse of a point Since the minimal thinness is invariant
under the inversion, this lemma follows from [1, Lemma 5]. O

More detailed informations about minimal thinness and minimal fine limit are
found in [2, Chapter 9]. After showing three propositions below, we shall present
proofs of Theorems 1.2 and 1.4.



Proposition 2.3. Suppose that is a positive superharmonic function @hwhose Riesz
measure is absolutely continuous with respect to Lebesgue measuréy.say =
fo(x)dx. Let{z;} be a sequence ifd such thatz; — oo (i — +o0). If there are
constantsA > 0 and0 < p < 1/2 such that

A
fo(z) < e for almost every: € UB(zi7p|zi|),
then the following statements hold:

(i) If n > 3, thenuv(z;) has a finite limitag — +oo0.

(i) If n =2, thenv(z;)/log|z;| has a finite limit ag — +oc.
Here the value of the limit is independent{af }.

Proof. Sincef2 has a compact boundary 9r= R™, we may assume, without loss of
generality, thatD C Q. In view of (2.2), it is enough to show that

lim 71)(21)

S o) exists and its value is finite and independen{ of}. (2.3)

For0 < e < p, let
W) = | G () o (0)dy,
D\B(z,ela])

Va(z) = / G (2, 9) fo ) dy.
DnNB(z,e|z|)

By the Riesz decomposition dn, we have
v(z) = h(z) + Vi(z) + Va(z),

whereh is a nonnegative harmonic function @h Moreover, the Martin representation
gives

h(z) = o, Kp(z,00) + /63(1) Kp(z,y)dv(y),

wherev is a measure o8B(1) and

v = f _— f —_—
Q= 8 Kp(x,0) 2D Kp(z,0)

Therefore it follows from (2.1) and (2.2) that

. h(zx)
1 _— =
mLH;o Kp (;1;7 OQ)

To show (2.3), it suffices to prove that

lim Vi (z)

—— =0 2.4
i—+00 KD(ZZ‘, OO) ’ ( )
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and

. Va(zi) 2
limsup ————— < Ag”. 2.5
i~>+oop KD(ZZ', OO) o ( )
First, we show (2.4). Observe from Lemma 2.1 th&} + V3)/Kp(-,00) has
minimal fine limit0 at infinity. Since Lemma 2.2 implies that the §¢t B(z;, €|2;|/2)
is not minimally thin at infinity, we find a sequeneg € B(z;, £|z;|/2) such that

lim Vi(w) + Vo(wy)

=0.
i—too  Kp(x;,00)

If |z;] > 10, then the Harnack inequality givé§ (z;) < A{Vi(z;) + Va(z;)} and
Kp(x;,00) < AKp(z;,00). Therefore

lim Vi (z)

A
i—+00 KD(ZZ‘, OO) ’

and so (2.4) holds.
Next, we show (2.5). Since

foly) < A

<SPS fora.e.y € B(z;, plzil),

it follows that for allz,
A
V() < / G (20,y)dy.
"Z’L| B(zi,e|zil)
Using

|z

|z -y
lz —y*™  (n>3)

Alog (n=2

Gp(z,y) < { fory € B(z, |x|/2),

we obtain

2 >
Va(z) < A52 (n>3),
Ae?(1 +log |zi| —loge) (n=2).

Therefore (2.5) follows from (2.2). Thus Proposition 2.3 is proved. O

Also, we obtain the following proposition, using a technique in our previous paper
(8].
Proposition 2.4. Letn > 3. Suppose that

n
0< p < m,
and thatu is a positive superharmonic function éhsatisfying(1.4). Let{z;} be a
sequence i such thatz; — oo (i — +00). Then there eixst a constant and
19, £ € N such that
u<A on | B(z,27 ).

i>ig



Proof. Without loss of generality, we may assume tiat 1 andD C Q. As in the
proof of Proposition 2.3, we have

uw(z) = ayKp(z,0) +/

Kp(z,y)du(y) + / Gol(e.9)fu(y)dy,  (2.6)
aB(1) D

wherep is a measure o B(1). Therefore, by (2.1) and (2.2),

u(z) <A+ /D Go(w,y)fuly)dy forz e D\ B(2), @2.7)

whereA depends only on. Let{ be a positive integer determined in the sequel. Since
u/Kp(-,00) has minimal fine limite, at infinity and the set, B(z;,2773|z]) is
not minimally thin at infinity, we can find a sequeneog € B(z;, 27°3|2|) with

u(w;)

u(w;) < AiKD(wi, 50)

< A, (2.8)

wheneveri is sufficiently large.
Fix a sufficiently large and letz € B(z;,27¢73|z|) and1 < j < 4. Since

|z —w;| <z — 2| + |20 —wi| < 27272|zi| < 27€71|z| <2797y,

it follows from the Harnack inequality, (2.6) and (2.8) that foe B(z,27771|z]),

/  Goley)fuly)y < A  Golwiy) fuly)dy
D\B(z,277z) D\B(z,27i|z]) (2.9)
< Au(w;) < A.

This and (2.7) yield that

u(z) < Ag —I—/ %dy forz € B(z,27771z|), (2.10)
B(z2-9]z)) [T —y["

whereA, is a constant depending only an Also, since
1
Gp(wiy) = 7|2 fory e B(z27'|z]).
we have by (2.6) and (2.8)

|z\2—"/ fuly)dy < A/ Gp(wi,y) fuly)dy
B(2,271|z]) B(z,271z|)

< Au(w;) < A.

(2.11)

Letr = |z| and lety, (¢) = r?f.(z + r¢). Making the change of variables=
z + rnandy = z + ¢, we have from (2.10) and (2.11) that

/ $o(Q)dC < A, (2.12)
B(1/2)
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and ,
u(z+rn) <V, ;(n) forne B2™7Y), (2.13)

where

V(¢
\I]z,j(n):A0+/Jg(2 5 In— ég 2 dg.

Suppose that < p < n/(n —2). Let

max{l,p} < ¢ < % and /= {

log(q/(q —1))
log(q/p) } b

Puts = ¢/p > 1. We claim that for< > 1 there exists a constardt depending only on
K, ¢, D, q, Ag andn such that

q
| wz@)“dcsuA( / wz(owc). (2.14)
B(2-i-1) B(2-7)

Indeed, by the Jensen inequality for the probability measure

ln — ¢IP~"d¢
fB(z—j) In — ¢>~nd¢

onB(279),

we have

¥=(¢) >
d A dc f
(/Bm -qr) = /Mn <|n2C orn € B

Using the inequalitya + b)* < 2!(a’ + b) for a,b,t > 0, we have

K q
/ W, i)™ dn < A+ A </ e _2d§> d
B(2-9) B2-) \JB(2-3) In —¢|"

The Minkowski inequality angd(n — 2) < n imply that the integral of the right hand
side is bounded by

Ay N >q ( . >q
</B(2j)(/13(2:‘) |77—C|Q("_2)) vAOTC ) <4 /B(zj)wZ(Q ac) -

Therefore .
[ wsorazasa([ )
B(2-7) B(2-9)

Sincer? = |z]2 < Alz + rn|? for n € B(1/2), it follows from (1.4) and (2.13) that

P, (n) = r2fu(z +rn) < Au(z 4+ rn)?
< AV, ;(n)? fora.eme B(2777h).

Hence .
[ i< A+ A< / wxoﬁdc) |
B(2-i-1) B(2-7)

8



and so (2.14) holds.
Our choice of implies thats’ > ¢/(q—1), equivalent tas* < (s°—1)q. Therefore

st

m(n -2)<q(n—-2)<n.

By the Holder inequality,

. 1/s*
v <ara([ o wofac)

(2761

Using (2.14) times, we have

4 £—1 4
/ %@f%<A+A(/ (0 «)
B(2=¢1) B(2-Y)

qI/.
<A+A(/ w@wg .
B(1/2)

Hence we conclude from (2.13) and (2.12) that
u(z) < ¥, 41(0) < A
This completes the proof of Proposition 2.4. O

The two dimensional analogue of Proposition 2.4 is stated as follows.

Proposition 2.5. Letn = 2 and letp > 0 be arbitrary constant. Suppose thais a
positive superharmonic function édhsatisfying

ful) < ‘

22 (log [ep1 )" or@ Q\B 2.1
—|x‘2(10g|x‘)p,1“(3«") or almost every: € O\ B(0, R) (2.15)

with some constants> 0 andR > 1. Let{z;} be a sequence ift such thatz; — oo
(i — +00). Then there eixst a constaAtandi, € N such that

u() -5

<A f B(z;,2 ).

Tog [a] = orx € y (2,27°|2:])

1210

Proof. The proof is similar to that of Proposition 2.4, so we give only an outline. We
may assume tha® = 1 andD C Q. The Riesz decomposition (2.6) and (2.2) yield
that

u(z) < Alog |x| + /D Gp(z,y)fu(y)dy forxz e D\ B(2).

Fix a sufficiently large and letz € B(z;,27°|z;]|). As in the proof of Proposition 2.4,
we can findw € B(z,273|z]) with

u(w) < Alog|w| < Alog|z|.



Therefore, ifj = 1,2, then the Harnack inequality gives that foe B(z,27771|z|),

/ Gy fu(y)dy < A  Gp(w ) fuly)dy
D\B(z,277|z|) D\B(z,277|z|)

< Au(w) < Alog|z|.

Note that forz, y € B(z,271z|),

2
Gp(a,y) < Alog 22
lz —yl
Hence we obtain
5|Z|2 —j—1
u(z) < Alog|z| + A fu(y)log dy forz e B(z,27777|z|).
B(z,279]z|) |z — y
(2.16)
Also, since )
Gp(w,y) > Zlog |z| forye B(z:,2_1|z|)7
we obtain
log |2 fwdy <A [ G (w,9) fuly)dy
B(z,271z|) B(z,271z])
< Au(w) < Alog |z,
and so
/ Fuly)dy < A (2.17)
B(z,271z])

Letr = |z| and let
%(C) = @fu(z +r§)

Making the change of variables= z + rn andy = z + ¢, we have from (2.16) and
(2.17) that

/ ¥ (Q)d¢ < A < A, (2.18)
B(1/2) log r
and forn € B(27771),
M) cavaf waoos o
logr B(2-7) |n — (| (2.19)
. :
§A+A3@ﬂ@@mgmfa@:wm@y

Here the second inequality follows by (2.18). ket max{1, p} and puts = ¢/p > 1.
Using the Minkowski inequality, we have

1/q
< / %,ﬂn)%n) <A+ A / (0.
B(1/2) B(1/2)

10



Since

r2 A
< = — < - P
0 <:(n) 1ogrf“(z +rn) < (log T)pu(z + )
< AV, (n)? fora.e.n e B(1/4)

by (2.15) and (2.19), we have

[ wtrasaca(f )
B(1/4) B(1/2)
By (2.19) and the @lder inequality,

u(z)
log r

q

<U.L(0) <A+ A( / m(OSdc) v

(1/4)

P

§A+A</ ¢z(<>d<) .
B(1/2)

Hence (2.18) yields(z)/log |z| < A. This completes the proof. O

Now, Theorems 1.2 and 1.4 are proved immediately.{kg} be arbitrary sequence
in Q such thatz; — oo (i — +00). If n > 3, then we have by (1.4) and Proposition
24
iu(m)p < A fora.e.x € U B(2,2773| i)
P S e ht

fulz) <
iZio
If n = 2, then we have by (1.5) and Proposition 2.5
c A
2

fulz) < u(z) < =5 foraew e () B(z,27°zl).

~ |z[*(log|z]) ||

i>i0

Hence Theorems 1.2 and 1.4 follow from Proposition 2.3.

3 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Suppose ghat n/(n — 2). Let
6> 0and let

y=1—-0(p—-1) and A=2pp—2.
Thenvy < 1 and

A—n+24+ny=0(2—-n)p+n)<0. (3.1)
Forj € N, letz; = (27,0,...,0) andr; = 27773, Observe tha{B(z;,2r;)}; is
mutually disjoint. Let4; > 0 be a constant such that

P
cvk

o(nt4)p+a AT > Ay, (3.2)

11



wherev,, is the volume of the unit ball iilR". Let f; be a nonnegative smooth function
onR" such that _
fj < A12>\j on Rn,

and
f' . A12>‘j onB(mj,rj),
700 onR™ \ B(z;,2r;).

Definef =377, f;. Since
L+ |2 > 1+ 2| — |o — x| > 2771 forx € B(z;,2r)),
it follows from (3.1) that

@S N
/R" (1_|_ |x|)n—2 &z /B(ﬂfj,27‘j) (1—|— |.13D7L—2 x

j=1

(]

A 2N
2(i—1)(n—2)

e

vn(2r;)"

J

< AIVn
— 2n+2

Il
-

Z2j(k—n+2+n7) < +o0.
j=1

ul(z) = /IR fy) dy

n |z —y|n2

Thus the function

is positive and superharmonic @i*. Since f is bounded and Lipschitz continuous
on each compact subset Bf*, it follows from [5, Lemma 4.2] that: € C?(R")
and—Au = f in R™. Also, we observe from the mean value property thatfor
8B(:vj7 27’j),

u(x) > / Mdy _ A12)‘j UnT'; > Ay, 9 (A+27)
~ By [T —yIn |z — z;[n=2 = 2n+d

By the minimum principle,

Aan .
u(zx) > WW(A””) for x € B(xj,2r;). (3.3)

Since\ + 2y = 27, it follows that

U\xj
j:+m HE]|JB) = +o0.
Let us show that .
f(z) < T ‘x|2u(:c)p forz € R™.
If z ¢ U; B(z;,2r;), then
@ 2 0= 1@



Letx € B(xj,2r;). Then
L+ (22 < (1 [2])? < (14 |ay] + o — 2y])? < 259+,
Sincep(\ + 27) — 2 = A, we have by (3.3) and (3.2)

c c Aoy,
711,(1’)1) >
1+ |x\2 92j+4 \ 9n+4

2j(A+2v>>p > A12M > fi(x) = f(a).

Thus Theorem 1.3 is proved.
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