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Abstract

This paper presents a sharp boundary growth estimate for all positive superhar-
monic functions: in a smooth domaifi in R? satisfying the nonlinear inequality

—Au(z) < coo(z)” “u(x)” forallx € Q,

wherec > 0, « € R andp > 0, andd,(z) stands for the distance from a point
x to the boundary of2. A result is applied to show the existence of nontangential
limits of such superharmonic functions.
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1 Introduction

Many elliptic equations involving nonlinear terms have been studied widely from the
viewpoint of not only the differential equation but also the (probabilistic) potential
theory. See [2, 4, 10, 11, 12] and references therein. In this paper, we present a sharp
boundary growth estimate for positive superharmonic functions satisfying a certain
nonlinear inequality in a planar smooth domain. Furthermore, we apply a result to
show the existence of nontangential limits of such superharmonic functions. Let us
start with the definition of superharmonic functions. Byz,r), we denote the open

disk of center: and radius- in R2. Let() be a domain irR2. A lower semicontinuous
functionu : Q — (—o0,+00], Whereu # +o0, is calledsuperharmonion Q if it
satisfies the mean value inequality

=
u(z) > —5 u(y) dy,
(@) 2 — o )
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whenever the closure db(z,r) is contained inf. Let A be the Laplacian ofR?.
It is well known that ifu is superharmonic of2, then there exists a unique (Radon)
measure.,, on {2 such that

[ 0@ duate) =~ [ uw)do(@)ds forallo e O (c)
Q Q

whereC§° () is the collection of all infinitely differentiable functions vanishing out-

side a compact set . The measure.,, is called theRiesz measurassociated with

u. If u, is absolutely continuous with respect to Lebesgue measureland:) =

fu(x) dz with f,, being a nonnegative locally integrable functionorthen we sayf,,

theRiesz functiorassociated with for convenience. If: € C2(1Q2), thenf, = —Au.
Throughout the paper, we suppose thais a boundedC!>'-domain inR2. By

da(z) we denote the distance from a pointo the boundary? of Q2. The symbolA

stands for an absolute positive constant whose value is unimportant and may change

from line to line. We discuss on positive superharmonic functioms €2 having an

associated Riesz functigfy and satisfying the nonlinear inequality

fulx) < cdq(z)”“u(x)? for almost everyr € Q, (1.1)
wherec > 0, « € Randp > 0. Our results are as follows.

Theorem 1.1. Letc > 0 andp > 0. Suppose that
a<3—np.

Letwu be a positive superharmonic function Bnhaving an associated Riesz function
fu Which satisfieg1.1). Then there exists a constaAtdepending only on, ¢, «, p
and such that o (2) A

Q\T

< < — . .
VB u(z) < 5a() forall x € Q 1.2)
Actually, the lower bound estimate in (1.2) is valid for all positive superharmonic

functions (see Lemma 3.2). Thus, the interesting object is the relation between the
boundary growth estimate and the range$ @nd«. The following theorem shows
that the boundv < 3 — p is sharp for the upper bound estimate in (1.2). £ar 092
andéd > 0, let

Do(§) ={z e Q:|z—¢ < (1+0)da(z)}.
Theorem 1.2. Lete > 0 andp > 0. Suppose that
a>3—p.
Let¢ € 052 Then there exists a positive?-functionu on Q satisfying
0 < —Au(z) < edg(z)“u(z)? forallz € 1.3)
such that

limsup dq(x)u(z) = +oo
Lo (§)32—¢

for anyé > 0. In particular, v does not satisfy the upper bound estimatéli2).



Higher dimensional results analogous with Theorems 1.1 and 1.2 are presented
in another paper [5]. The above results are proved using similar ideas given there.
However, the proof of Theorem 1.1 is much simpler than the higher dimensional case,
because of the higher order integrability of the logarithmic kernel. In contrast, the
proof of Theorem 1.2 requires a careful choice of sequences of balls and numbers.
Furthermore, combining Theorem 1.1 and the earlier result due to Arsove and Huber,
we will obtain a result concerning the existence of nontangential limits in the next
section.

2 Application to nontangential limits

It is well known that every positive superharmonic function in the unit disk has radial
limits almost everywhere on the boundary (see Littlewood [7]). However, nontangen-
tial limits do not necessarily exist. The existence of nontangential limits was proved by
Arsove and Huber [1] (see also reference therein).

Theorem A. Letu be a positive superharmonic function on the unit diskaving an
associated Riesz functigh. Suppose that there exists a constdrguch that

fulz) < (1_113')2 for almost every: € D.

Thenu has nontangential limits almost everywhered.

Now, we suppose that > 0 anda < 2 — p. Letu be a positive superharmonic
function on the unit diskD having an associated Riesz functi§nwhich satisfies

fulz) <c(1 —|z|)"%u(z)? foralmosteveryr € D. (2.1)

Then it follows from Theorem 1.1 that

u(x)P A A
Jul@) S AR os S @ = A=)

Therefore Theorem A implies that has nontangential limits almost everywhere on
0D. Thus we obtain the following result.

for almost everyr € D.

Corollary 2.1. Letec > 0 andp > 0. Suppose thatr < 2 — p. Letu be a positive
superharmonic function on the unit didk having an associated Riesz functigp
which satisfie§2.1). Thenu has nontangential limits almost everywhered.

3 Proof of Theorem 1.1

For two positive functiong andg, we write f = g if there exists a constamt > 1
such thatd—! f < g < Af. The constant will be called the constant of comparison.
Let G(z,y) and K (z, &) denote the Green function fér and the Martin kernel of2
with pole at¢ € 09, respectively. It is known that

Sa()da(y)

| 2 ) forallz,y € Q, 3.1)
r—y

G(z,y) ~ 1og(1 +
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where the constant of comparison depends onlf2dsee [3]). Letzy € Q be fixed
and let{y;} be a sequence ift converging ta € 9. Since the Martin boundary
of Q coincides with the Euclidean boundary (see [6]), the rétie, y;)/G(zo,y;)
converges td<(z, £). Therefore we can obtain

K(z,&) ~ M forallz € Q, (3.2)

|z — &J?
where the constant of comparison depends onl{2on

Lemma 3.1. If h is a positive harmonic function di, then there exists a constant
depending only o and( such that

da(z) A
QA < h(z) < 50(@)

Proof. By the Martin representation theorem, we have

forall z € Q.

ha) = [ K(z,&)dv(),

0N

wherev is a measure 08 such that/(092) = h(zo) > 0. Hence (3.2) yields that

da(x) A
< <
A h(l‘o) = h(.’l?) = (SQ(SU) h(ai‘o),
and so the lemma follows. O

Lemma 3.2. If u is a positive superharmonic function € then there exists a constant
A depending only om and{2 such that

u(z) > %59@) forall z € Q. (3.3)

Proof. Let u, be the Riesz measure associated withBy the Riesz decomposition
theorem, we have

u(x) = h(z) +/ G(z,y)duy(y) forallz e Q,
Q
whereh is a nonnegative harmonic function €n If 1, (2) = 0, thenu = h. Therefore

we obtain (3.3) from Lemma 3.1 in this case ulf(2) > 0, then we find~ > 0 such
thatu,, (F) > 0, whereE = {z €  : dq(z) > r}. It follows from (3.1) that

N3

u(x) E/EG(:E,y) dpey (y) > I w(E) whenevebg(z) <

Also, the lower semicontinuity af implies thatu has a positive minimum ofw: €  :
do(z) > 27 1r}. Hence (3.3) follows. O



In the rest of this section, we suppose thas a positive superharmonic function
on 2 having an associated Riesz functigpwhich satisfies (1.1). Then, by the Riesz
decomposition theorem, we have

u(z) = h(z) + /Q G(z,y)fu(y)dy forallz € Q, (3.4)

whereh is the greatest harmonic minorantwbn Q2. Note thath is nonnegative.

Lemma 3.3. There exists a constart depending only om and {2 such that

/Q S (y) Fuly) dy < A.

Proof. Sinceu is finite almost everywhere dn, we find a pointz; € Q with u(z;) <
oo. Observe from (3.1) thak (zy1,y) > A~ 9q(y) for all y € Q. Sincef, > 0, the
conclusion follows from (3.4). O

Lemma 3.4. Letz € Q and letd~16q(z) < p < 2718g(x). Then, for allz €
D(x,27"p),

u(z) < +A/ Ju(y) log dy,
( ) (SQ(Q?) ' D(z,p) ( ) |Z_y|

whereA; is a positive constant depending only @and 2.

Proof. Letz € Qandz € D(z,271p). By (3.1),

da(y)
552 ((L’)

Therefore, the superharmonicify > 0 and Lemma 3.3 give

G(z,y) < A forally € Q\ D(z, p).

A
[ Gewnmas;
A\D(z,p)

a(z)
Also, by (3.1),
G(z,y) < Alog | | forally € D(z,p).
)
Hence the conclusion follows from (3.4) and Lemma 3.1. O

Proof of Theorem 1.1The lower bound estimate in (1.2) has been already proved in
Lemma 3.2. We show the upper bound estimate.aLet(). By Lemma 3.3,

5a) / fuly)dy < A.
D(m,2*1552(r))

Letr = dq(z) and lety,.(¢) = r3 f.(z+r¢). For simplicity, we writeD(r) = D(0, r).
By the change of variables= z + rn andy = x + r(, we have

/ $a(€)dC < A, (3.5)
D(2-1)

5



and from Lemma 3.4

ru) < A A [ n(Qlog e (3.6)
D(4-1) IC]
ru(z 4+ rn) < U, (n) foralln e D(4™), (3.7

where

U, (n) = Ay + Ay / ¥a(0) log ac.

D(2-1) In— |

Suppose that > 0 anda < 3 —p. Letq > max{1,p} ands = ¢/p > 1. By (3.6) and
the Holder inequality,

1/s
<A [ vrac)

Therefore, in order to show the upper bound estimate in (1.2), it suffices to prove that
there exists a constadtindependent of such that

/ $a(€)° dC < AL (3.8)
D(4-1)

Using the inequalitya + b)* < 2!(a’ + b') for a,b,t > 0, we have

1/q 3 q 1/q
v, (n)?d < A+A = (0)1 d d .
(o eran) = <aea(f, ([ vetomoetgac) an)

By the Minkowski inequality, the right hand side is bounded from above by
3 q 1/q
A+ A </ <log> d77> Y, (¢) dC.
D(2-1) \JD(2-1) In — (|

1/q
( [ v dn) <ataf w©d (3.9)
D(2-1) D(2-1)

Therefore

Since2~!r < dq(x +rn) < 2rforalln € D(271) andr < diam €2, it follows from
(1.1), (3.7) andx < 3 — p that

0 < ,(n) = fulz + ) < er’do(z +rn) “u(z +rn)? < AT, (n)?

for almost every; € D(471). This and (3.9) give

1/q
( / ww(C)st) <A+ 4 / a(0) e,
D(4-1) D21

because of = ¢/p. Hence (3.5) yields (3.8). This completes the proof. O



4 Proof of Theorem 1.2

Proof of Theorem 1.2Suppose thagt > 0 anda > 3 — p. Let

A—1
A=p+a and T=—
Theny > 1 and
A—2y=1. (4.1)
Let¢ € 99. SinceQ is aC*-domain, there is a disk(z, r) contained irf2 such that
& € 9D(z,r). Without loss of generality, we may assume that (0,0), z = (10,0)
andr = 10. For eachj € N, letz; = (e7"+3,0) andr; = e 7", ThenD(z;, 8r;) C
QandD(z;,2r;) N D(zk,2r,) = 0if j # k. Let A, be a constant to be determined
in argument below and let; be a nonnegative smooth function Qrsuch that

oNi® A e’ 0D
fj < AQT on{) and fj = 2 j2 0 ($],T]>7
| J

0 OnQ\D(xj,er).
Let A5 be the constant of comparison in (3.1) andjlebe a natural number such that
¢ (2mAy(y —1)\P ot
— > 1. .
i ( A, 4 2 1 (4.2)

Definef = 3772, f;. Then, by (4.1),

[ s ay - Z/ f3(w) dy

J=Jo (‘TJ’%]
32
< Z 2(59 .7,‘7 (27" )
J=jo

, 00 o(—14+A=27);°
_getra, 3 C
J=jo
Henceu := fQ G(-,y)f(y) dy is well defined o). Sincef is locally Holder contin-
uous ont, it follows from [9, Theorem 6.6] that € C2(Q2) andu satisfies—Au = f
in Q2. For a moment, let € 0D(x;,2r;). By (3.1),
1, So@da(z;) 27100 (x)?
) > —log ————~7~ log ——*
G(ﬂ?,l']) - Ag i) |£C — $j|2 - A3 (27"j)2
1 e s L 20y —1) .
1 2(—1)3" > 2T ) 43
) = A,
Therefore the mean value equallty and (4.1) give

- < 0.
32

)\3

ulx T : = Ay—— x
( >z/Dm>G< D)y = A G(a,y)dy

D(Ij 7””]‘)
eM’® 2nAy(y—1)

— A5 2G 7 _>7‘j3
> mriG(z,z;) > i, je



By the minimum principle,

2mAs(y —1) | s
u(z) > %je] forallz € D(zj,2r;). (4.3)
3
Hence 54 ( )
2e’m —-1) . _
u(w;) > z—JﬂQ(Ij) L
and so

dim o (zj)u(z;) = +oc.
Jj—-+oo

Finally, we show that-Au < ¢dq(z) " *uP in Q. If z ¢ | D(zj,2r;), then

coa(z) “u(z)? > 0= f(x) = —Au(z).

Letz € D(z;,2r;), wherej > jo. Then, by (4.2) and (4.3),

—a ¢ (27Ax(y — 1)\’ ., (piayi®
cdo(x) " “u(z)P > 63a<143 Jpe(p )i

> fi(x) = f(x) = —Au(z).

This completes the proof. O
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