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Abstract

This paper presents a sharp boundary growth estimate for all positive superhar-
monic functionsu in a smooth domainΩ in R2 satisfying the nonlinear inequality

−∆u(x) ≤ cδΩ(x)−αu(x)p for all x ∈ Ω,

wherec > 0, α ∈ R andp > 0, andδΩ(x) stands for the distance from a point
x to the boundary ofΩ. A result is applied to show the existence of nontangential
limits of such superharmonic functions.
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1 Introduction

Many elliptic equations involving nonlinear terms have been studied widely from the
viewpoint of not only the differential equation but also the (probabilistic) potential
theory. See [2, 4, 10, 11, 12] and references therein. In this paper, we present a sharp
boundary growth estimate for positive superharmonic functions satisfying a certain
nonlinear inequality in a planar smooth domain. Furthermore, we apply a result to
show the existence of nontangential limits of such superharmonic functions. Let us
start with the definition of superharmonic functions. ByD(x, r), we denote the open
disk of centerx and radiusr in R2. Let Ω be a domain inR2. A lower semicontinuous
function u : Ω → (−∞, +∞], whereu 6≡ +∞, is calledsuperharmonicon Ω if it
satisfies the mean value inequality

u(x) ≥ 1
πr2

∫
D(x,r)

u(y) dy,
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whenever the closure ofD(x, r) is contained inΩ. Let ∆ be the Laplacian onR2.
It is well known that ifu is superharmonic onΩ, then there exists a unique (Radon)
measureµu onΩ such that∫

Ω

φ(x) dµu(x) = −
∫

Ω

u(x)∆φ(x) dx for all φ ∈ C∞
0 (Ω),

whereC∞
0 (Ω) is the collection of all infinitely differentiable functions vanishing out-

side a compact set inΩ. The measureµu is called theRiesz measureassociated with
u. If µu is absolutely continuous with respect to Lebesgue measure anddµu(x) =
fu(x) dx with fu being a nonnegative locally integrable function onΩ, then we sayfu

theRiesz functionassociated withu for convenience. Ifu ∈ C2(Ω), thenfu = −∆u.
Throughout the paper, we suppose thatΩ is a boundedC1,1-domain inR2. By

δΩ(x) we denote the distance from a pointx to the boundary∂Ω of Ω. The symbolA
stands for an absolute positive constant whose value is unimportant and may change
from line to line. We discuss on positive superharmonic functionsu on Ω having an
associated Riesz functionfu and satisfying the nonlinear inequality

fu(x) ≤ cδΩ(x)−αu(x)p for almost everyx ∈ Ω, (1.1)

wherec > 0, α ∈ R andp > 0. Our results are as follows.

Theorem 1.1. Let c > 0 andp > 0. Suppose that

α ≤ 3 − p.

Let u be a positive superharmonic function onΩ having an associated Riesz function
fu which satisfies(1.1). Then there exists a constantA depending only onu, c, α, p
andΩ such that

δΩ(x)
A

≤ u(x) ≤ A

δΩ(x)
for all x ∈ Ω. (1.2)

Actually, the lower bound estimate in (1.2) is valid for all positive superharmonic
functions (see Lemma 3.2). Thus, the interesting object is the relation between the
boundary growth estimate and the ranges ofp andα. The following theorem shows
that the boundα ≤ 3 − p is sharp for the upper bound estimate in (1.2). Forξ ∈ ∂Ω
andθ > 0, let

Γθ(ξ) =
{
x ∈ Ω : |x − ξ| < (1 + θ)δΩ(x)

}
.

Theorem 1.2. Let c > 0 andp > 0. Suppose that

α > 3 − p.

Let ξ ∈ ∂Ω. Then there exists a positiveC2-functionu onΩ satisfying

0 ≤ −∆u(x) ≤ cδΩ(x)−αu(x)p for all x ∈ Ω (1.3)

such that
lim sup

Γθ(ξ)3x→ξ

δΩ(x)u(x) = +∞

for anyθ > 0. In particular,u does not satisfy the upper bound estimate in(1.2).
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Higher dimensional results analogous with Theorems 1.1 and 1.2 are presented
in another paper [5]. The above results are proved using similar ideas given there.
However, the proof of Theorem 1.1 is much simpler than the higher dimensional case,
because of the higher order integrability of the logarithmic kernel. In contrast, the
proof of Theorem 1.2 requires a careful choice of sequences of balls and numbers.
Furthermore, combining Theorem 1.1 and the earlier result due to Arsove and Huber,
we will obtain a result concerning the existence of nontangential limits in the next
section.

2 Application to nontangential limits

It is well known that every positive superharmonic function in the unit disk has radial
limits almost everywhere on the boundary (see Littlewood [7]). However, nontangen-
tial limits do not necessarily exist. The existence of nontangential limits was proved by
Arsove and Huber [1] (see also reference therein).

Theorem A. Letu be a positive superharmonic function on the unit diskD having an
associated Riesz functionfu. Suppose that there exists a constantA such that

fu(x) ≤ A

(1 − |x|)2
for almost everyx ∈ D.

Thenu has nontangential limits almost everywhere on∂D.

Now, we suppose thatp > 0 andα ≤ 2 − p. Let u be a positive superharmonic
function on the unit diskD having an associated Riesz functionfu which satisfies

fu(x) ≤ c(1 − |x|)−αu(x)p for almost everyx ∈ D. (2.1)

Then it follows from Theorem 1.1 that

fu(x) ≤ A
u(x)p

(1 − |x|)α
≤ A

(1 − |x|)α+p
≤ A

(1 − |x|)2
for almost everyx ∈ D.

Therefore Theorem A implies thatu has nontangential limits almost everywhere on
∂D. Thus we obtain the following result.

Corollary 2.1. Let c > 0 andp > 0. Suppose thatα ≤ 2 − p. Let u be a positive
superharmonic function on the unit diskD having an associated Riesz functionfu

which satisfies(2.1). Thenu has nontangential limits almost everywhere on∂D.

3 Proof of Theorem 1.1

For two positive functionsf andg, we writef ≈ g if there exists a constantA > 1
such thatA−1f ≤ g ≤ Af . The constantA will be called the constant of comparison.
Let G(x, y) andK(x, ξ) denote the Green function forΩ and the Martin kernel ofΩ
with pole atξ ∈ ∂Ω, respectively. It is known that

G(x, y) ≈ log
(

1 +
δΩ(x)δΩ(y)
|x − y|2

)
for all x, y ∈ Ω, (3.1)
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where the constant of comparison depends only onΩ (see [3]). Letx0 ∈ Ω be fixed
and let{yj} be a sequence inΩ converging toξ ∈ ∂Ω. Since the Martin boundary
of Ω coincides with the Euclidean boundary (see [6]), the ratioG(x, yj)/G(x0, yj)
converges toK(x, ξ). Therefore we can obtain

K(x, ξ) ≈ δΩ(x)
|x − ξ|2

for all x ∈ Ω, (3.2)

where the constant of comparison depends only onΩ.

Lemma 3.1. If h is a positive harmonic function onΩ, then there exists a constantA
depending only onh andΩ such that

δΩ(x)
A

≤ h(x) ≤ A

δΩ(x)
for all x ∈ Ω.

Proof. By the Martin representation theorem, we have

h(x) =
∫

∂Ω

K(x, ξ) dν(ξ),

whereν is a measure on∂Ω such thatν(∂Ω) = h(x0) > 0. Hence (3.2) yields that

δΩ(x)
A

h(x0) ≤ h(x) ≤ A

δΩ(x)
h(x0),

and so the lemma follows.

Lemma 3.2. If u is a positive superharmonic function onΩ, then there exists a constant
A depending only onu andΩ such that

u(x) ≥ 1
A

δΩ(x) for all x ∈ Ω. (3.3)

Proof. Let µu be the Riesz measure associated withu. By the Riesz decomposition
theorem, we have

u(x) = h(x) +
∫

Ω

G(x, y) dµu(y) for all x ∈ Ω,

whereh is a nonnegative harmonic function onΩ. If µu(Ω) = 0, thenu = h. Therefore
we obtain (3.3) from Lemma 3.1 in this case. Ifµu(Ω) > 0, then we findr > 0 such
thatµu(E) > 0, whereE = {x ∈ Ω : δΩ(x) ≥ r}. It follows from (3.1) that

u(x) ≥
∫

E

G(x, y) dµu(y) ≥ δΩ(x)
A

µu(E) wheneverδΩ(x) <
r

2
.

Also, the lower semicontinuity ofu implies thatu has a positive minimum on{x ∈ Ω :
δΩ(x) ≥ 2−1r}. Hence (3.3) follows.
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In the rest of this section, we suppose thatu is a positive superharmonic function
on Ω having an associated Riesz functionfu which satisfies (1.1). Then, by the Riesz
decomposition theorem, we have

u(x) = h(x) +
∫

Ω

G(x, y)fu(y) dy for all x ∈ Ω, (3.4)

whereh is the greatest harmonic minorant ofu onΩ. Note thath is nonnegative.

Lemma 3.3. There exists a constantA depending only onu andΩ such that∫
Ω

δΩ(y)fu(y) dy ≤ A.

Proof. Sinceu is finite almost everywhere onΩ, we find a pointx1 ∈ Ω with u(x1) <
∞. Observe from (3.1) thatG(x1, y) ≥ A−1δΩ(y) for all y ∈ Ω. Sincefu ≥ 0, the
conclusion follows from (3.4).

Lemma 3.4. Let x ∈ Ω and let 4−1δΩ(x) ≤ ρ ≤ 2−1δΩ(x). Then, for allz ∈
D(x, 2−1ρ),

u(z) ≤ A1

δΩ(x)
+ A1

∫
D(x,ρ)

fu(y) log
3δΩ(x)
|z − y|

dy,

whereA1 is a positive constant depending only onu andΩ.

Proof. Let x ∈ Ω andz ∈ D(x, 2−1ρ). By (3.1),

G(z, y) ≤ A
δΩ(y)
δΩ(x)

for all y ∈ Ω \ D(x, ρ).

Therefore, the superharmonicityfu ≥ 0 and Lemma 3.3 give∫
Ω\D(x,ρ)

G(z, y)fu(y) dy ≤ A

δΩ(x)
.

Also, by (3.1),

G(z, y) ≤ A log
3δΩ(x)
|z − y|

for all y ∈ D(x, ρ).

Hence the conclusion follows from (3.4) and Lemma 3.1.

Proof of Theorem 1.1.The lower bound estimate in (1.2) has been already proved in
Lemma 3.2. We show the upper bound estimate. Letx ∈ Ω. By Lemma 3.3,

δΩ(x)
∫

D(x,2−1δΩ(x))

fu(y) dy ≤ A.

Let r = δΩ(x) and letψx(ζ) = r3fu(x+rζ). For simplicity, we writeD(r) = D(0, r).
By the change of variablesz = x + rη andy = x + rζ, we have∫

D(2−1)

ψx(ζ) dζ ≤ A, (3.5)
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and from Lemma 3.4

ru(x) ≤ A1 + A1

∫
D(4−1)

ψx(ζ) log
3
|ζ|

dζ, (3.6)

ru(x + rη) ≤ Ψx(η) for all η ∈ D(4−1), (3.7)

where

Ψx(η) = A1 + A1

∫
D(2−1)

ψx(ζ) log
3

|η − ζ|
dζ.

Suppose thatp > 0 andα ≤ 3− p. Let q > max{1, p} ands = q/p > 1. By (3.6) and
the Hölder inequality,

ru(x) ≤ A1 + A

(∫
D(4−1)

ψx(ζ)s dζ

)1/s

.

Therefore, in order to show the upper bound estimate in (1.2), it suffices to prove that
there exists a constantA independent ofx such that∫

D(4−1)

ψx(ζ)s dζ ≤ A. (3.8)

Using the inequality(a + b)t ≤ 2t(at + bt) for a, b, t ≥ 0, we have(∫
D(2−1)

Ψx(η)q dη

)1/q

≤ A+A

(∫
D(2−1)

(∫
D(2−1)

ψx(ζ) log
3

|η − ζ|
dζ

)q

dη

)1/q

.

By the Minkowski inequality, the right hand side is bounded from above by

A + A

∫
D(2−1)

(∫
D(2−1)

(
log

3
|η − ζ|

)q

dη

)1/q

ψx(ζ) dζ.

Therefore (∫
D(2−1)

Ψx(η)q dη

)1/q

≤ A + A

∫
D(2−1)

ψx(ζ) dζ. (3.9)

Since2−1r ≤ δΩ(x + rη) ≤ 2r for all η ∈ D(2−1) andr ≤ diamΩ, it follows from
(1.1), (3.7) andα ≤ 3 − p that

0 ≤ ψx(η) = r3fu(x + rη) ≤ cr3δΩ(x + rη)−αu(x + rη)p ≤ AΨx(η)p

for almost everyη ∈ D(4−1). This and (3.9) give(∫
D(4−1)

ψx(ζ)s dζ

)1/q

≤ A + A

∫
D(2−1)

ψx(ζ) dζ,

because ofs = q/p. Hence (3.5) yields (3.8). This completes the proof.
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4 Proof of Theorem 1.2

Proof of Theorem 1.2.Suppose thatp > 0 andα > 3 − p. Let

λ = p + α and γ =
λ − 1

2
.

Thenγ > 1 and
λ − 2γ = 1. (4.1)

Let ξ ∈ ∂Ω. SinceΩ is aC1,1-domain, there is a diskD(z, r) contained inΩ such that
ξ ∈ ∂D(z, r). Without loss of generality, we may assume thatξ = (0, 0), z = (10, 0)
andr = 10. For eachj ∈ N, letxj = (e−j3+3, 0) andrj = e−γj3

. ThenD(xj , 8rj) ⊂
Ω andD(xj , 2rj) ∩ D(xk, 2rk) = ∅ if j 6= k. Let A2 be a constant to be determined
in argument below and letfj be a nonnegative smooth function onΩ such that

fj ≤ A2
eλj3

j2
onΩ and fj =

A2
eλj3

j2
onD(xj , rj),

0 onΩ \ D(xj , 2rj).

Let A3 be the constant of comparison in (3.1) and letj0 be a natural number such that

c

e3α

(
2πA2(γ − 1)

A3

)p
jp+2
0

A2
≥ 1. (4.2)

Definef =
∑∞

j=j0
fj . Then, by (4.1),∫

Ω

δΩ(y)f(y) dy =
∞∑

j=j0

∫
D(xj ,2rj)

δΩ(y)fj(y) dy

≤
∞∑

j=j0

2δΩ(xj)A2
eλj3

j2
π(2rj)2

= 8e3πA2

∞∑
j=j0

e(−1+λ−2γ)j3

j2
< ∞.

Henceu :=
∫
Ω

G(·, y)f(y) dy is well defined onΩ. Sincef is locally Hölder contin-
uous onΩ, it follows from [9, Theorem 6.6] thatu ∈ C2(Ω) andu satisfies−∆u = f
in Ω. For a moment, letx ∈ ∂D(xj , 2rj). By (3.1),

G(x, xj) ≥
1

A3
log

δΩ(x)δΩ(xj)
|x − xj |2

≥ 1
A3

log
2−1δΩ(xj)2

(2rj)2

=
1

A3
log

e6

8
e2(γ−1)j3

≥ 2(γ − 1)
A3

j3.

Therefore the mean value equality and (4.1) give

u(x) ≥
∫

D(xj ,rj)

G(x, y)fj(y) dy = A2
eλj3

j2

∫
D(xj ,rj)

G(x, y) dy

= A2
eλj3

j2
πr2

j G(x, xj) ≥
2πA2(γ − 1)

A3
jej3

.

7



By the minimum principle,

u(x) ≥ 2πA2(γ − 1)
A3

jej3
for all x ∈ D(xj , 2rj). (4.3)

Hence

u(xj) ≥
2e3πA2(γ − 1)

A3
jδΩ(xj)−1,

and so
lim

j→+∞
δΩ(xj)u(xj) = +∞.

Finally, we show that−∆u ≤ cδΩ(x)−αup in Ω. If x 6∈
∪

j≥j0
D(xj , 2rj), then

cδΩ(x)−αu(x)p ≥ 0 = f(x) = −∆u(x).

Let x ∈ D(xj , 2rj), wherej ≥ j0. Then, by (4.2) and (4.3),

cδΩ(x)−αu(x)p ≥ c

e3α

(
2πA2(γ − 1)

A3

)p

jpe(p+α)j3

≥ fj(x) = f(x) = −∆u(x).

This completes the proof.
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