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Abstract

In a uniform domain(2, we present a certain reverse mean value inequality
and a Harnack type inequality for positive superharmonic functions satisfying a
nonlinear inequality- Au(z) < cdo(z)” “u(x)? for z € Q, wherec > 0, > 0
andp > 1 anddq(z) is the distance from a point to the boundary of2. These
are established by refining a boundary growth estimate obtained in our previous
paper (2008). Also, we apply them to show the existence of nontangential limits of
quotients of such functions and to give an extension of a certain minimum principle
studied by Dahlberg (1976).
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1 Introduction

This paper is a continuation of [10, 12]. Therein we studied, from the point of view
of potential theory, positive superharmonic functiansatisfying a certain nonlinear
inequality, for example—Au < P, and presented a boundary growth estimate for
them in a bounded smooth domdnin R” (n > 2): if0 < p < (n+1)/(n — 1),

then there is a constant > 0 such thatu(z) < Cdq(z)!~" for all x € €, where
dq(x) denotes the distance from a pointo the boundary2 of Q. As an application,

we showed that if the greatest harmonic minorant ¢&f the zero function, then has
nontangential limi) almost everywhere o62. This last result was improved in the
recent paper [13], using arguments from minimal fine topology and some techniques
from [10]. It was shown, under no additional assumptionsuptthat if 0 < p <
n/(n — 2), thenu has finite nontangential limits almost everywheredsh Indeed,

*This work was partially supported by Grant-in-Aid for Young Scientists (B) (No. 19740062), Japan
Society for the Promotion of Science.



this is valid for nonsmooth domains and the range @ not affected by the shape
of a domain. Concerning this result and the FatolilN®oob theorem, we have the
following question: ifu andv are positive superharmonic functions, each satisfying
a nonlinear inequality as above, then does the quoti¢nthave finite nontangential
limits almost everywhere ofiQ2? We will see that the range pfdepends on the shape
of the domain in this case and that,{¥is a smooth domain, then this question is
answered in the affirmative for< (n + 1)/(n — 1) and that this bound is optimal.

As is well known, positive harmonic functiorishave many good properties such
as the mean value equality, the Harnack inequality, the convergence property and a
minimum principle in the sense of Beurling and Dahlberg. In particular, it is notewor-
thy that the constar@' in the Harnack inequality:(z) < Ch(y) can be taken nedr
wheneverr andy are close to each other.

The main purpose of this paper is to extend, in some sense, the above properties
for positive harmonic functions to positive superharmonic functions satisfying a non-
linear inequality. As a consequence, we give an answer to the above question about
nontangential limits. Many of our results are obtained on nonsmooth domains, after
re-studying the relation between a critical exponent of a nonlinear term and a suitable
boundary growth estimate.

2 Preliminaries

2.1 Positive superharmonic functions satisfying nonlinear inequal-
ities

Let Q be a bounded domain R™ (n > 2) and letdn(z) denote the distance from

a pointx to the boundary2 of Q2. A lower semicontinuous function on ) taking

values in(—oo, o] is calledsuperharmonion 2 if u # co andu satisfies the following
mean value inequality: for any € Q and0 < r < dq(x),

1
u(r) > —- / u(y) dy,
Vnl™ JB(a,r)

where B(x,r) denotes the open ball of centerand radius-, andv,, is the volume
of the unit ball inR™. Let A be the Laplacian ofR™. Then, for each superharmonic
functionw« on €2, there is a unique nonnegative Radon meagyreuch that—-Au =
antty, I Q in the sense of distributions, whetig = nv,, max{l,n — 2}. We callu,
theRiesz measurassociated withu. See [4, Section 4.3].

Letc > 0, > 0 andp > 1. We investigate the clas¥. , .(©2) of positive
superharmonic functiong on Q2 whose Riesz measure, is absolutely continuous
with respect to the Lebesgue measure and whose RadonMikddrivative, written
fu, satisfies the nonlinear inequality

fu(x) < cdo(x)"u(z)? fora.e.x € Q. (2.1)

In our results stated below, we need not pay attention to the constaatwe write
Fp.a(Q) = S p.o(Q) for simplicity. It is obvious that?), ., () includes all positive



continuous solutions of semilinear elliptic equations of the formAu = Vu?, where

V is any nonnegative measurable function satisflifig) < céq(z)~“ fora.e.x € Q

and the equation is understood in the sense of distributions. Also, positive continuous
solutionsu of —Awu = Uu?+ Vu? satisfyinginfo v > a > 0 belong to.), ,(£2) when

1 < ¢ < pandU andV are nonnegative measurable functions suchdfiatU (z) +

V(z) < cdq(x)~ fora.e.x € Q.

2.2 Uniform domains

Many results in this paper will be established in the setting of uniform domains. We
say that a domaif is uniformif there exists a constaft, > 1 such that any pair of
pointsz, y € €2 can be connected by a rectifiable curvin €2 satisfying

t(y) < Calz -y, (22)
min{{(y(z, 2)), £(v(z,9))} < Cada(z) forall z € ~, (2.3)

where/ denotes the length of a curve, antk, =), v(z,y) denote the subarcs ef

from z to z and fromz to y, respectively. A nontangentially accessible (abbreviated to
NTA) domain, as introduced by Jerison and Kenig, is a uniform domain satisfying the
exterior corkscrew conditiarthere exists a constant > 0 such that for eack € 09

and0 < r < rg, we find a pointr € R™ \ Q such thatx — ¢| = r anddq(x) > r/Cq.

For¢ € 092 andd > 1, we denote a nontangential setdiy

Po(€) = {w € Q: |z — €| < 860 ()}.

If 2 is a uniform domain, then we observe from (2.3) that¢) is nonempty and that
¢ is accessible frorly (&) wheneve® > Cq,.

Convention: Throughout this paper (except for special cases), we suppose that
bounded uniform domain iR™ (n > 3) or a bounded NTA domain iR2.

2.3 Estimates for the Green function and the Martin kernel

Let us recall estimates for the Green function and the Martin kernel. The Martin bound-
ary of a bounded uniform domain coincides with its Euclidean boundary (see Aikawa
[1, Corollary 3]). LetGq(x,y) denote the Green function férand K (z, £) the Mar-

tin kernel ofQ2 with pole até € 092. In arguments below, a poiny € €2 is fixed and

is the reference point of the Martin kernel, i.&q(zo,£) = 1 for all £ € 99Q. For
convenience, we assume thdat{x,) > diam(Q2)/4Cq. By the symbolC, we denote

an absolute positive constant whose value is unimportant and may change from line to
line. Also, the notatior” = C(a, b, - - - ) means that a consta@itdepends o, b, - - - .

In particular,C(2) stands for a constant depending @n in (2.2)—(2.3) and the di-
ameter of(Q2. We say that two positive function§ and f, are comparable written

fi ~ fo, if there exists a constaidt > 1 such thatC—'f; < fo < Cfi. Then the
constan(C is called the constant of comparison. The following estimate is found in [9,
Corollary 1.5].



Lemma 2.1. Letd > Cq and¢ € 0€2. Then there exists a constatit= C(6,n, Q) >
1 such that for allz € T'y(&),

Gola, z0)Ka(z, ) > Slr — &P

Moreover, the inequalitfio (z, 2o) Kq(x, &) < Clz — &>~ holds for allz € Ty(£) N
B(¢, da(x0)/2).

To state a global estimate of the Green function for a nonsmooth domain, we need
an auxiliary set. For each pair of pointsy € (2, let

1
B(z,y) = {b eN: C—Qminﬂx —b,lb—yl} <l|x—y| < 2Cg§g(b)}.

Observe that this set is nonempty for any paiy € Q. Indeed, the midpoint of the
curvey occurring in (2.2)—(2.3) lies ilf(z, y). Let

ga(z) = min{1, Gq(z,x0)}.
The following estimates are found in [11, Theorem 1.2].

Lemma 2.2. For eachz,y € Q andb € B(x, y),

ga(@)ga(y) oot min{de (@) S}y
Go(r,y) ~ 90(b)? (1 *loe |z -yl ) =2
ga(r)ga(y) |z — y|2—n ifn >3
90(b)? T

wherelog ™ t = max{0, log ¢} and the constant of comparison depends only.@nd
Q.

Since the Martin kernel &t € 012 is given by
Kqo(z,8) = 1 —
208 = Gl Galeo.y)
we obtain the following estimate (see [11, Lemma 4.2]).
Lemma 2.3. For eachz € Q, £ € 99 andb € B(z, &),
9o () 2-n
Ko(x,&) ~ T — ,

where the constant of comparison depends only @amd (2. Here, in the case = 2,
we interpret agx — €277 = 1.

Also, we have the following.

Lemma 2.4. There exists a constad = C(n,2) such that for eachr,y € Q and
b€ B(z,y),
max{ga(z),ga(y)} < Cga(b).



Proof. It is enough to show thaj, (z) < Cgq(b). Letro > 0 andC; > 1, which are
determined by the shape 8fin the Carleson estimate for harmonic functions (cf. [1,
Theorem 1 and Remark 2]). [l — y| < C1dq(x), then the Harnack inequality shows
thatgq () =~ gq(b) since

|z — b < Clz —y| < Cmin{dq(z),da(b)}.

If |z —y| > 70, thendq(b) > |z —y|/C > ro/C, and sy (x) < 1 ~ go(b). Suppose
thatC1dq(z) < |x — y| < ro. LetZ € 99 be a point such thak — x| = dq(x). Take
z € Qwith |z — 2| = |x — y| anddq(z) > |z — y|/C1. Then the Carleson estimate
implies that

gal) < Cyal2).

Since
b—z| <|b—z|+ |z — 2| < Clz —y| < Cmin{dq(b),da(z)},

we havegq (b) =~ ga(z) by the Harnack inequality. Hengg,(z) < Cgq(b). Thus the
lemma is proved. O

3 Decay order of the Green function

The behavior of the Green function for a nonsmooth domain is complicated and its
decay rate may vary at every boundary point. Nevertheless, we introduce an important
number in our study by

T =sup{t > 0:i(t) = 0}, (3.1)
where G
i(t) = inf{fm ix € Q}

We give some elementary remarkszan
Lemma 3.1. The following statements hold:
(i) Ift <, theni(t) =0.
(i) If 7 < oo andt > 7, theni(t) > 0.
In particular, if 7 < oo, thenr = inf{¢t > 0:i(¢) > 0}.

Proof. If s < ¢, then

GQ(Z‘VTO) . t— GQ(l’,l‘o)
———= < (diam 2 S 7
59(.%)3 - ( ) 5Q($)t
and soi(s) < (diam Q)*~%i(¢). Since is bounded, we have (i). Also, the definition
of 7 implies (ii). O

Lemma 3.2. We havel < 7 < oco. Moreover, ifQ2 is a bounded”!:'-domain, then
T =1andi(r) > 0.



Proof. Let us show that < co. Using the Harnack inequality, we observe that there
are constantd = A(n,Cq) > 1 andC = C(n,) > 1 such that for alk: € Q and
£ €09,

KQ(I,g) < C5Q(I)7A

See [2, (5.2) on P. 260]. Therefore, by Lemma 2.1,
1
Go(x,xz9) > Z§5Q(z)A+2*”.

Hencer < A+ 2 —n < co. The assertiorr > 1 is well known. In fact, we take a ball
Bj sothat) C B; andoQNoB; # 0. Leté € 90N IB;. If x € Ty(&) is sufficiently
close to¢, then

Ga(z,z0) < G, (2, 20) < Clz —¢| < Coa(z).

Hence it must be > 1. Moreover, ifQ2 is aC':'-domain, then for each € 99, there
is a ball B, such thatB, C Q, n € 9By and the radius of3; is independent of)
(see [3]). This implies thaig(x) < CGq(x,x) for all z € Q, and sor = 1 in this
case. 0

It is unknown whethei(7) > 0 always holds for bounded uniform domains. This
is a reason to divide the statements in Theorem 4.1 below.

4 Harmonic growth and exponent of nonlinearity

In this section, we present a boundary growth estimate for functio$ in(€2), which
generalizes results in [10, 12]. To derive potential theoretic properties, we should pay
attention to a maximal growth of positive harmonic functions near the boundary. In
view of Lemma 2.1, it is natural to think af(z) ~'dq(z)?>~" as a maximal growth.

The main result of this section is as follows.

Theorem 4.1. Let be as in(3.1). Suppose that

+7

1<p< and a<n+7—phn+71-—2). (4.2)

n+717—2
If u € 7, o(2), then there exist constants = C(c, o, p, n, 2) and

g [Bem =1 ifu(m) > 1,
|t if w(zo) < 1,

such that for allx € ,

S O
)= a7 ) @2

Moreover, ifi() > 0, then the conclusion holds in the case= n+ 7 —p(n+ 7 —2)
as well.



Remarld.2 Since(n+7)/(n+7-2) < (n+1)/(n—1)andn+71—pn+71-2) <
n+ 1 — p(n — 1), it follows from [10, Theorem 1.1] that is locally bounded. In
particular,u(xo) is finite.

By Lemma 2.1, we obtain the following corollary.

Corollary 4.3. Assumptions are the same as in Theorem 4.1¢ led$2 andd > Cg,.
Then there exists a constafit= C(0, ¢, o, p, n, Q) such that for alle € T'p(&),

u(z) < Cu(xo)ﬁKQ(x,{), 4.3)
whereg is as in Theorem 4.1.

Note that the boung < (n + 7)/(n + 7 — 2) is optimal for (4.2) to hold. See
Section 9. The proof of Theorem 4.1 is similar to that given in [10, 12], but we need
additional arguments. We start with an elementary estimate for harmonic functions.

Lemma 4.4. If h is a nonnegative harmonic function 60 then there exists a constant
C = C(n, ) such that for allz € Q,
C
hiz) < —————h(zg).
= pa@patey ")
Proof. Lemmas 2.3 and 2.4 imply that for alle © and¢ € 912,

I
ga(z)dq(z)n=2"

Therefore the conclusion follows from the Martin representation. O

Kq(z,8) <

In the rest of this section, we lete ., (). By the Riesz decomposition, every
nonnegative superharmonic function is decomposed into the sum of a nonnegative har-
monic function and a Green potential of its associated Riesz measure. Thus we have
forall x € ,

ula) = hia) + [ Golar) fu(w) o, (4.4
whereh is the greatest harmonic minorantwbn Q2. This yields the following.

Lemma 4.5. The following inequality holds:

/Q 90(u) Fu () dy < u(zo).

Lemma 4.6. Letn > 3. For eachj € N, there exists a constant = ¢(j, n, 2) such
that for anyz € Q andx € B(z,dq(z)/2/11),

wz) < ———2L — _y(x +/ ———=—dy.
(=) ga(z)da(z)"2 (o) B(zda(2)/20) 1T — Y72



Proof. Let 2 € Q andz € B(z,dq(z)/2/™!). By Lemmas 2.2 and 2.4, we have for
y € Q\ B(z,0a(2)/27),

go ()

hS Wﬂﬂ(y)a

whereC' depends orj, n and(Q. Sincego(r) ~ go(z) andGo(z,y) < |z —y|>~ ™, it
follows from Lemma 4.5 that

C / fuly)
———u(xg) + — = dy.
P O T LA RS ray o

Also, sincedqg (z) ~ dq(z) andh < u, we have by Lemmas 4.4

C
M) S Gabata )

/ ol y) faly) dy <
Q

Therefore the conclusion follows from (4.4). O

Lemma 4.7. Letn = 2. For eachj € N, there exist constants; = ¢(j,) and
Cy = C(Q) such that for any € Q andx € B(z,dq(2)/27 1),

Ci Cada(2)

u(w) < —saten) + fuly)log d
ga(z) B(z,6a(2)/27) |z —yl

Proof. Since( is a bounded NTA domain, we observe from the exterior corkscrew

condition that there exists a constant= C(2) such that for any € Q andz,y €

B(z,00(2)/2),

059(2’)
lz—yl
The rest of the proof is similar to that of Lemma 4.6. O

Ga(z,y) <log

Let z € Q be fixed. Fom € B(0, 1), we define
¥:(n) = ga(2)da(2)" fulz + da(z)n).
For simplicity, we writeB(r) = B(0,r) when the center is the origin.

Lemma 4.8. Let p and a be as in Theorem 4.1. Then there exists a constant
C(e, a,p,m, Q) such that for a.en € B(1/2),

- (n) < C{ga(2)da(2)""*ulz + a(z)n)}".
Proof. First, we consider the case thaanda satisfy (4.1). Let
n—a—pn—2)
p—1 '

t =
Thent > 7, and we therefore find a constafit= C(¢,2) > 1 such that

ga(z) > =da(2)".

1
c
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This and (2.1) imply that for a.ey € B(1/2),

V(1) = ga(2)da(2)" fulz + da(2)n)
< Cyga(2)da(2)"“u(z + da(z)n)”
< Cyga(2)! Pda(z )" P2 g (2)0a(2)"ulz + da(2)n) }F
< C{ga(2)da(2)" " 2u(z + da(2)n) }*.
If i(7) > 0, then this holds forv = n + 7 — p(n + 7 — 2) as well. O

The following lemma will play an essential role in the proof of Theorem 4.1.

Lemma 4.9. Letp anda be as in Theorem 4.1, and let

log(q/(q — 1))
log(q/p)

n+rT cq< n
n+71—2 9 n—2

andl:[ }+1.

Letx > 1. Then there exists a constafit= C(k, q, ¢, o, p, n, 2) such that for each
1<5 <],

q
/ wz(n)”q/pdn<CU(xo)”q+C< / wzm)“dn) .
B(1/2i+1) B(1/27)

Proof. We show this lemma for > 3. The case: = 2 is also proved in the same way.

Letl <j <landlet
()
U, d
3 = /13(1/21) In —¢|n—2 ¢

Making the change = z + dq(z)n andy = z + dq(z)¢ in Lemma 4.6, we have that
for anyn € B(1/27F1),

90(2)0a(2)"*u(z + da(2)n) < coulzo) + V. ;(n), (4.5)

wherecy = max{c; : 1 < j <!}. Letx > 1. Then, applying the Jensen inequality to
the probability measure

e "dc// - CPMdC onB(1/29),

we have

P ()"

U, (n)" <O dc.
1) B(1/29) Im—¢|" 2

By the Minkowski inequality for integrals angl< n/(n — 2),

1/q
( [ wz,m)%) <cf  wora .6)
B(1/29) B(1/27)



Also, it follows from Lemma 4.8 and (4.5) that for a:pe B(1/27F1),

¥=(n) < C{eoul(xo) + W 5(n)}7,

and soy, (1)~9/P < Cu(zy)" + C¥, ;(n)". Therefore, by (4.6),

/ ,wzm)“q/ﬁdnscu(xo)“qw(/ _wz@)”dc)
B(1/29+1) B(1/27)

Thus the lemma is proved. O

q

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1First, we consider the case> 3. Letz € Q be fixed and le;
and! be as in Lemma 4.9. By Lemma 4.6,

g90(2)0a(2)""*u(z) < cpru(zo) + /3(1/2z+1) |ﬁT§T_’)2 dn.

Lets = g/p > 1. Sinces!/(s! —1) < ¢ < n/(n—2), we have by the Blder inequality

, 1/s
g(2)0 (2" u(z) < crorulzo) + c( [ ey dn) .

(1/21+1)

Applying Lemma 4.9 times, we have

q
N St g1
[ e dn < Cuteo) q+c(/ 6. () dn)
B(1/2t+1) B(1/2')

ql
30U+0</ wxmmo,
B(1/2)

1—2 2 l

U — u(mo)gl—lq + U(ZL’O)S q 4+ u<x0)q .

Since Lemma 4.5 implies

where

[ wdn < Cua),
B(1/2)
we obtain

gQ(z)dg(z)”du(z) < C’u(xo)ﬁ.

Heres = ¢' if u(zo) > 1; 8 = 1if u(xg) < 1. Hence (4.2) is proved for > 3. When
n = 2, we can let = 1 in the above by taking a largg sincelog(1/|n|) € L"(B(1))
for anyr > 0. See [12]. This completes the proof of Theorem 4.1. O

10



5 Reverse mean value inequality

In Sections 5 — 8, we suppose that> 1 anda > 0 are as in Theorem 4.1, that is,

u € ¥ o(Q) satisfies (4.2). This section presents a reverse mean value inequality for
functions in.7, .(Q?). Leto, be the area of the unit spherel¥, and letv,, be the
volume of the unit ball irR™. Denote

1
Mv;x,rzi/ v(y) do(y),
e = [ oty
1
Awiar) =2 [ gy,
vpr™ B(z,r)

whereo is the surface area measure®B(z, ). By definition, every superharmonic
functionv on 2 satisfies the following mean value inequalities: for each 2 and
0<7r<idg (.’t),

v(x) > M(v;z,r) and v(z) > A(v;x,r). (5.1)
Moreover,A(v; z,r) > M(v; x,r) (see [4, Corollary 3.2.6]). We are interested in the
opposite inequalities of (5.1) in some sense.

Theorem 5.1. Letu € ., o(€2) and letd be any function o2 such thatd(x) > 2 for
all z € Q. Then there exists a constafit= C(c, «, p, n, 2) such that if we put
Blp—1) T2—a—(p—1)(n—2)

ga(a)~Td(z)* D02

pa(z,r) = Culxo)

where is the constant in Theorem 4.1, then the following inequalities hold for any
z € Qand0 < r < dq(x)/d(x):

{1 = palz,r)}u(z) < M(u;z,r) < A(u; z, 7). (5.2)
Remarks.2 In Lemma 6.2 below, we will show that;(z, r) can be arbitrary small by

takingd(z) large enough. Thus (5.2) is meaningful.
To prove Theorem 5.1, we recall the following lemma (see [4, Corollary 4.4.4]).

Lemma5.3. Letv be a superharmonic function on an open set which cont&ips r).
Then

v(z) = M(v;z,7) +an/ ", (B, b)) dt,
0
wherea,, = max{n — 2,1} andy, is the Riesz measure associated with

Proof of Theorem 5.1Let z € Q, 0 < r < dq(z)/d(x) andy € B(x,r). Since
d(xz) > 2, we havedg(y) > da(z)/2 > d(x)r/2 andga(y) > ga(z)/C. It follows
from Theorem 4.1 that

fuly) < cday) " “uly)’uly)
_ Cu(rp)? )
= go(x)P~1(d(z T')QJF(P*I)(an)u

(y) =t a(z,r)u(y).

11



Therefore, by Lemma 5.3 and (5.1),

()<M(uzr+anxr/t1”/ y) dydt
B(z,t)

< M(u;z,r) + an a(z,r)riu(z),

and so
r2—a—(p—1)(n-2)

gao(z)P~1d(z)otP—1)(n=2) u(x).

u(z) < M(u;x, 1) + Cu(z)? @1

Thus Theorem 5.1 is proved. O

6 Harnack type inequality

As a consequence of Theorem 5.1, we obtain the following Harnack type inequality.
Theorem 6.1. Letu € .7, (2), and letd and pg be functions as in Theorem 5.1.
Then, for eachr € 2,0 < r < dq(z)/2d(z) andy € B(z,r),

(- ot < (14 E21) g,

Proof. Letx € 2,0 < r < dg(x)/2d(x) andy € B(x,r). ThenB(x,r) C B(y,r +
|z — y|) C Q. By Theorem 5.1,

{1 = pa(e, r)}u(z) < Alu; ,7)
(r+Jz—y)"

IN

Ausy,r + |z —yl).

Hence this theorem follows from (5.1). O

Lemma 6.2. Letu € .¥, (2) and letp, be a function as in Theorem 5.1. Then there
exists a constant = C(c, o, p, n, Q) with the following property: Let > 0. If a
functiond satisfies

u(xo)ﬂ(P_l)
3

d(z) > C forall z € Q,

whereg is the constant in Theorem 4.1, then for ang Q and0 < r < dq(x)/d(z),
pa(x,r) <e.

Proof. Letz € 2 and0 < r < dq(z)/d(z). Consider the case thatand« satisfy
(4.2). If we let
_n—a—p(n-—2)

= o1 ,

12



thent > 7, and sagq (z) > dq(x)!/C > (d(z)r)t/C forall z € Q. Then

2—a—(p—1)(n+t—-2) Cu(zo)PP—1)
Bp-1) " _ 0
pd(x,r) < C’u(:co) d(x)oz+(p—1)(n+t—2) - d(x)2
Thereforepq(z,r) < e wheneverd(z) > /Cu(x)?®=1 /e. Moreover, ifi(t) > 0,
then the conclusion holds for = n + 7 — p(n + 7 — 2) as well. O

Corollary 6.3. Let M > 0and0 < k < 1. Then for eacl) < ¢ < 1, there exists a
constantd, = d(e, M, ¢,a,p,n, Q) > 2 such that forany: € Q,0 < r < dq(x)/4d.
andy € B(z, kr),

1—¢ (I+x)"

() < uly) <

UT u(x),

whenever € .7, (1) satisfiesu(zy) < M.

Proof. Let d. = max{Cy/max{1, M}3®-1 /e 2}. Then Lemma 6.2 implies that
pa.(z,t) < eforall z € Qand0 < ¢t < dq(z)/d.. Letz € Q,0 < r < dq(x)/4d.
andy € B(x, k). Then, by Theorem 6.1,

(1+r)"

u(@) < 1—e¢

u(y).
Also, sincedg(z) < 20q(y), we haver < dq(y)/2d., and so

u) < S5V (),

Thus the corollary is proved. O

Recall the quasi-hyperbolic metrig,(z, y) on 2

ka(z,y) = igf/ ?28

where the infimum is taken over all rectifiable curvesonnectinge andy in Q and
ds stands for the line element on Now, letd, = 4d, /, for simplicity. A sequence
of balls { B(x;, da(x;)/do)};_, is said to be aarnack chainconnectingz andy if
x1 =, oy = yandz;_ € B(zj,da(x;)/do) for j =2,--- | N. Itis well known
that the smallest numbe&¥ among Harnack chains connectin@ndy is comparable
to kq(z,y) + 1, where the constant of comparison depends only.ofihus, by using
Corollary 6.3N — 1 times, we have the following.

Corollary 6.4. Let M > 0. Then there exists a constafit= C(M, ¢, a,p,n,Q) > 1
such that for anyt, y € Q,

~

u(x

exp{—C(ka(z,y) + 1)} < < exp{C(ka(z,y) + 1)},

~—

u(y
whenevew € .7, ,(Q) satisfiesu(zo) < M.
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In Sections 7 and 8, we present three applications of Corollary 6.3: the existence
of nontangential limits for quotients of two functions i, . (€2), an extension of a
minimum principle for positive harmonic functions due to Dahlberg to functions in
Zp.o(€), and a Harnack type convergence theorem for a class of solutions of a certain
semilinear elliptic equation.

7 The existence of nontangential limits and a minimum
principle

The boundary behavior of superharmonic functions in a very general setting was stud-
ied by Nam [15] and Doob [7]. Nowadays, their results are known as the Fatdom-Na
Doob theorem. In our situation, it asserts that for two positive superharmonic functions
uw andv on €, the quotient:/v has finite minimal fine limits,-almost everywhere on
0f), wherer is a measure o062 appearing in the Martin representation of the greatest
harmonic minorant of. For the definition of minimal fine limits and further details,
see [4, Section 9]. Note that the approach regions are not defined geometrically and
practically impossible to visualise. Applying their results, we give a nontangential limit
theorem for functions it¥”, ,(€2). Afunction f onQ2 is said to haveontangential limit
aaté € oN if

i SO

for eachd > Cq.

Theorem 7.1. Letu,v € .7, (2) and letr be a measure on$) appearing in the
Martin representation of the greatest harmonic minoranwofThenw /v has finite
nontangential limits,-almost everywhere obX2.

Proof. By the Fatou-Nan-Doob theorem, we find a subsBtof 992 with v(E) = 0
such thatu/v has finite minimal fine limit,a say, at eacly € 0Q \ E. Let0 <

e < 1,0 < Kk <1,0 > Cgq, and letd. be the constant in Corollary 6.3, where
M = max{u(zg),v(z0)}. Take an arbitrary sequende;} in I'y(£) converging to
€. Since the set); B(z;, kdo(z;)/4d.) is not minimally thin at{ (see [1, Lemma
5)]), there isz; € B(z;, kdq(z;)/4d.) such that(z;)/v(z;) — aasj — oco. Then
Corollary 6.3 yields that

(- ) o u(ry) (LR
—  — a<] f <1 <
A+ )2 " =00 ) = el u(zy) = (1—e)?

Lettingx — 0 ande — 0, we obtain

e

lim (wj)

= Q.
Jj—o0 U(IL']‘

~—

This completes the proof. O

The following is a special case of Theorem 7.1.
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Corollary 7.2. Letu € .7, () and¢ € 99 Thenu/Kq(-,£) has a finite nontan-
gential limit at¢.

Remark?.3. If p > (n+7)/(n+7—2) ora > n+7—p(n+7—2), then we can construct
a functionu € %, () such that the upper limit af/ Ko (-, ) along a nontangential
set at¢ is infinite. See Section 9. Hence the boupds. (n + 7)/(n + 7 — 2) and
a <n+ 71— p(n+7—2)are optimal to obtain the results in Sections 6 and 7.

Next, we mention an extension of a certain minimum principle for positive har-
monic functions studied by Dahlberg [6]. See also Beurling [5]. [Edie some class
of positive functions oif2 and let{ € 9€2. We say that a subsét of 2 is equivalentat

¢ for F if the equality
f@) o f@) 1)

inf = inf

;IGIE KQ(Z'7£) ;IEIQ KQ(JE,&)
holds for all functionsf € F. Dahlberg gave characterizations for a geto satisfy
(7.1) for the classF of all positive harmonic functions. Indeed, he proved the equiva-
lence of (ii)—(v) in Theorem 7.4 below. We assert that his result can be extended to the
wider class?, o (2).

Theorem 7.4. Let D be a bounded>!:!-domain inR™ (n > 3) and letE C D and
£ € 0D. Suppose that

1
1<p§n7+1 and a<n+1-pn-1).
n

Then the following statements are equivalent:
(i) Eisequivalent at for .#, o (D);
(ii) E is equivalent at for the class of all positive harmonic functions 6n

(iii) there exists a numbér< a < 1 such that

/ |z — &7 da = oo, (7.2)

a

whereE, =, B(z,adp(z));

(iv) (7.2)holds foranyd < a < 1;

zeE

(v) there exist a number > 0 and a sequencéz; } in E converging te such that
|z; — zx| > adp(x;) wheneverj # k, and that

> (7524) -

Jj=1

Proof. We will show that (iv) implies (i). Indeed, the proof follows the argument in [6,
P. 249], because we have Corollary 6.3. Suppose to the contrary that (i) fails to hold.
Then we findu € 7, (D) with



Letv(z) = u(z) — sKp(z,€). Then

: o(z)
llng m =0. (7.3)

Let C3 > 1 be a constant satisfying./C3 > s. By Corollary 6.3, we find a constant
a > 0 such that for al: € D andy € B(z,adp(z)),

u(z) < Csu(y) and Kp(y,&) < CsKp(zx,§).

Lety € E,. Theny € B(z,adp(x)) for somez € E. Sinceu(x) > mKp(x,§), it
follows that

ﬁ[(D(:lfa§)7

uy) 2 goule) = &Kl >

Z 0
and so

Then assumption (iv) and [6, Theorem 2] imply that the last inequality holds on the
whole of D. This contradicts (7.3). O

Remark7.5. Of course, the above result holds for a bounded Liapunov-Dini domain as
well (see [6] for the definition of a Liapunov-Dini domain).

8 Harnack type convergence theorem

Let M > 0 be a constant and I&f be a nonnegative measurable functionfbsuch
thatV (z) < cdq(x)~* for a.e.z € Q. In this section, we suppose thaanda satisfy
(4.1);ifi(7) > 0, then we permite = n+7 — p(n+7 —2). Let.#,(Q) be the class
of all positive continuous solutionsof

—Au=VuP inQ (inthe sense of distributions)

such thatu(zg) < M. Note that\{,(Q) C .7}, .(€2). Also, it is not difficult to see
that.7 M, () # 0.

Lemma 8.1. Yp]f{,(Q) is locally uniformly bounded and locally uniformly equicontin-
uous or).

Proof. The local boundedness GPP%(Q) follows from Theorem 4.1. Let us show
the local uniform equicontinuity QVP%(Q). Let F be a compact subset 6fand let
n > 0. Write
My = sup u(z) < 0o,
z€Eue M, (Q)

and consider a constant functidrsatisfying

B(p—1)
dlz)=d > max{2,C’ Z\M(Io)}’

Ui
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whereC and 3 are constants in Lemma 6.2 and Theorem 4.1, respectively. Apply
Theorem 6.1 witle = /M, andr = dist(E, 9Q)/2d. Then

|2 = wl

(1—e)ulz) < <1 + )nu(w)7 (8.1)

r

wheneverz, w € E satisfy|z — w| < r. Take0 < § < r with

5 n 7’]
1+ - -1 < —.
< + 7”) - .Z\/_[()
Then (8.1) implies that for any, y € E with |z — y| < 4,

u(z) —uly) < eu(z) + {(1 + i) — 1}u(y) < 2n.
Interchanging the roles af andy, we havelu(z) — u(y)| < 27. Henceﬂp%(ﬁ) is
locally uniformly equicontinuous ofl. O

Lemma 8.2. If {u,} is a sequence irf”p%(Q) converging pointwisely to a functian
on {2, then the convergence is locally uniform Qrandu € fp%(ﬁ) U {0}.

Proof. Lete > 0 and letE be a compact set if2. Since{u;} is locally uniformly
equicontinuous o2, there is§ > 0 such thatju;(z) — u;(y)| < eforall j € N

andz,y € E with [z — y| < §. Thenju(z) — u(y)| < e andE C U}, B(z,d)

for somem € N, wherex,,--- ,x,, € E. By assumption, there i € N such that
luj(zr) — u(zx)|] < eforallj > joandl < k < m. For anyz € E, we find
1 <k <mwith |z — x| < §. Therefore

Juj(2) = w(@)] < Juj (@) = uj(@p)] + [uj(zx) —wzp)| + |ulzr) — ()] < 3e.

Hence the convergence is locally uniform@nAlso, for¢ € C5°(2),

—/uAgbd:E:— lim /uqude: lim Vu?qﬁdx:/Vupq’)dx.
Q i—oo Jo Q Q

J—0o0
Henceu € YP%(Q) U {0} by the minimum principle. O

Theorem 8.3. Let {u;} be a sequence iﬁ”p]f/{,(Q). Then there exists a subsequence
of {u; } which converges locally uniformly dn to a function in%(Q) U {0}.

Proof. This follows from the Ascoli-Arzéd theorem together with Lemmas 8.1 and
8.2. O

9 On the boundsp < (n+7)/(n + 7 —2) and o <
n+1—pn+T1—2)

This section shows that the bounds. (n+7)/(n+7—-2) anda < n+7—p(n+7-2)
are optimal to obtain (4.2) and the results in Sections 5-7.
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Theorem 9.1. Letn > 3, ¢ > 0, andr be as in(3.1). Suppose that either
(i) p>(n+7)/(n+7—-2)anda > 0, or
(i) p>landa>n+717—pn+7-2)

holds. Lets be a number such that

21 +a(n—2) . n
— ifp< ——,
n+7-2< k<K= n—(n—2)p nEZ
00 ifp>——.
n—2

Then there exist € .7, ,,.»(Q) N C?%(Q2) and a sequencér; } in  with no limit point
in 2 such that
lim dq(x;) u(z;) = oo.
J—00
Proof. A proof is similar to that given in [10], but we need additional arguments. For
the convenience sake of the reader, we provide a proof. Agkeith k < ko < Kp,

and let

-1
7= 2P =D and A=t o,

Theny > 1. In fact, if p anda satisfy (i), then

>n+7’—2 n+rT 1) = 1.
" 2 n+71—2 o

if p anda satisfy (i), then
1
v > §{n+7—p(n+7—2)+(n+T—2)(p—1)}=1.

Lett < 7 be taken so that

Then, in any case,
1
A—ny= 5{(2 —n)a+ (n—(n—2)p)ko} < t.

Also,t < 7 impliesi(t) = 0, so that there is a sequenge; } in © with no limit point
in €2 such thatg(x;) < 1 and

B(xj,00(x;)7/4) 0 B(ay, 6o (x)Y /4) =0 if j #Fk, (9.1)
ga(z;) < (SQ(l'j)t for all 7, 9.2)
iaﬂ(mj)t—“m < 0. (9.3)
j=1

18



Note that there exists a constarit > 1 such that

1 1
Ga(r,y) > 6|$ —y[*~" whenevelz — y| < 559(%) (9.4)
4
Let C5 > 0 be a constant such that
c v, Cs \?
2704 <27L+4C4> = 057 (95)

wherev,, is the volume of the unit ball iflR™, and letf; be a nonnegative smooth
function on2 such thatf; < C5/dq(z;)* and

da(z)*

P {Q on B(z;,da(x;)7/8),
’ 0 onQ\ B(xj,0a(x;)7/4).

Definef = E;’;l f;. Since (9.2) and the Harnack inequality imply

ga(y) < Coa(x;)" forally € B(zj,da(x;)7/4),

we have by (9.3)

oo

3 / Saay)! () dy
B(xj,00(x;)7/4)

j=1

/Qgsz(y)f(y) dy <C
< C’icsg(zj)t*)‘%m < 00.
j=1

Thereforeu = [, Ga(-,y)f(y)dy is positive and superharmonic 6h Moreover, the
local Holder continuity off yields thatu € C?(2) and—Au = f in Q (see [16, Theo-
rem 6.6]). By the mean value property and (9.4), we haveferoB(xz;, da(x;)7/4),

05 I/,ﬁg(l‘j)ﬂm
u(x) > Gal(x, (y)dy = Gao(x,x;
()_/Bm,an(mm/s) ale9)fsy) dy do(z;)r 8" (7))

VnCS

Here we usedy — A\ = —xq. By the minimum principle,
VnCS —Ko
u(x) > m&g(%—) forallx € B(z;,d0(x;)7/4). (9.6)
Therefore

1
da(xj) u(x;) > 559(903-)'“_“0 — 00 asj — oo.

To complete the proof, we have to show thahu(z) < cdq(z)*u(z)? for all
z € Q. Ifx & J; B(xj,da(z;)7/4), then

coq(x) %u(x)? > 0= f(z) = —Au(x).
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If there is;j such thate € B(z;, dq(z;)7/4), then we have by (9.6), (9.5) and (9.1)

—« c VTLC P —pko—Q
coa(z)” “u(x)’ > <2n+4g4> ba(a;) P

Cs
da(wy)

Thus Theorem 8.3 is proved. O

>

s 2 Ji(@) = f(z) = —Au(z).

Two dimensional case is stated as follows.
Theorem 9.2. Letn = 2, ¢ > 0, andr be as in(3.1). Suppose that either
() p>(2+7)/randa >0, or
(i) p>landa>2+71—pr

holds. Assume that there are a constént- 1 and a sequencgr; } in Q with no limit
point in © such thatdq(z;)7/C < ga(z;) < Cda(z;)” for all j. Then there exists
u € S pa(f2) NC?(Q) such that

limsup go(z;)u(z;) = co. 9.7)

Jj—00

Proof. Let A = a+7p andy = (A —7)/2. Taking a subsequence ff; } if necessary,
we may assume thdtr;} satisfies (9.1) and

So(z;) < e forallj.
LetCs > 0 be sufficiently large and lef; be a nonnegative smooth function@rsuch

thatfj < C6/j2(5g($j))\ and

7*0a(z;)
0 OnQ\B(xj,(SQ(xj)'V/él).

f— {06 on B(z;, 6a(x;)7/8),

Define f = Z;ﬁl f;andu = [, Ga(-,y)f(y)dy. Then the similar arguments to the
proof of Theorem 9.1 shows thate .7, ,, ,(Q2) N C?(2) andu satisfies (9.7). See
also [12, Proof of Theorem 1.2]. O

Remark9.3 The bound® < (n+7)/(n+7—2)anda < n+7—pn+717—2)
are optimal to obtain the results in Sections 5-7. In fact, we may consider a uniform
domain( such that there arg € 012, 6 > Cq andC' > 1 such that for any: € T'y(§)
nearg¢,

do(x)”

C

Then we can choosfr; }, satisfying (9.1)—(9.3), frory (¢). Hence, ifp anda satisfy
(i) or (i), then we can construet € ., ,, ,(€2) such that the upper limit af/ K (-, £)
alongT'y(&) is infinite.

< ga(z) < Cog(z)". (9.8)
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Elementary bounded domains satisfying (9.8) @fe'-domains ¢ = 1), unions
of open balls with fixed sizer(= 1), and polygonal uniform domains. Here we say
that a bounded domaift is polygonalif there are finitely many conek,,--- ,T',,
with the following property: for eaclj € 09, there are- > 0 and1 < j < m such
thatQ N B(§,r) = I'; N B(§,r). In fact, the Martin kernels of uniform cones are
homogeneous (see [8, 14]). Hence, in view of the boundary Harnack principle and
Lemma 2.1, we see that polygonal uniform domains satisfy (9.8) for somel and
& e 0.
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