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Abstract

We discuss the possible removability of sets for continuous solutions of semi-
linear elliptic equations of the form Au = F(x,u). In particular, we show that
a setF in R™ is removable for-Holder continuous solutions of such equations if
and only ifn — 2 + a-dimensional Hausdorff measure Bfis zero.
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1 Introduction

Throughout this paper, l&k be a bounded domain R™ (n > 2) and letFE be a
compact subset db. By Hz(E) we denote theg-dimensional Hausdorff measure of
E. ltis well known that if the capacity of is zero, then every bounded harmonic
function on{2 \ E can be extended tQ as a harmonic function. Thef is said to be
removablefor bounded harmonic functions. In 1963, Carleson [6] have investigated
removable sets for dlder continuous harmonic functions. Namely, he proved that if
Hi—2+a(E) = 0with 0 < a < 1, thenE is removable fora-Holder continuous
harmonic functions. Moreover, #,,_2.+(E) > 0 with 0 < a < 1, then there exists
ana-Holder continuous function oft which is harmonic of? \ £, but does not have

a harmonic extension t@. Note that the last statement for the case= 1 fails to

hold in general. Indeed, Uy [18] constructed a compacEseith H,,_; (E) > 0 such
that £ is removable for Lipschitz continuous harmonic functions. After that, Ullrich
[17] considered the Zygmund class instead of the Lipschitz class to obtain a necessary
and sufficient result in the cage = 1: E is removable for harmonic functions in
the Zygmund class if and only #,,_;(E) = 0. Abidi [1] obtained a similar result

for the Zygmund class of order with 0 < o < 2. Also, removability theorems for
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subharmonic functions conditioned by the growth of mean oscillation were given by
Shapiro [16] and Kaufman and Wu [8].

Some of the above results were extendeg-tmrmonic functions (i.e., continuous
solutions of thep-Laplace equation). In this case, the size of removable sets depends
on p as well. The result that compact sets wijtttapacity zero are removable for
boundedp-harmonic functions was due to Serrin [14, 15]. Kigelen and Zhong
[9] established the removability theorem corresponding to Carleséh's:removable
for a-Holder continuoug-harmonic functions if and only iH,, 4 o p—1)(E) = 0.

See also [5, 12] for extensions to metric spaces. Recently, Ono [13] obtained a similar
result for Hblder continuous solutions of quasilinear elliptic equations with lower order
terms. The model equation i5,u = V|u|P~2u, whereA,, is thep-Laplacian and/

is nonnegative and bounded.

Also, there are investigations concerning a removable isolated singularity for semi-
linear elliptic equations with nonlinear terms. Brezis and Veron [4] proved that if
p > n/(n — 2), then any isolated point is removable for every solutionaf =
|u[P~!u, whereA is the Laplacian orR™. Lions [11] studied positive solutions of
—Au = uP and showed that the equation can be extended up to an isolated point
whenp > n/(n — 2). For the casd < p < n/(n — 2), it was also proved that
any isolated point is removable for bounded positive solutions At = «?. Baras
and Pierre [3] characterized removable sets for such equations in terms of the Sobolev
W2 -capacity, where/ = p/(p—1). See also [10, 19]. However, the Carleson type
removability theorem for Elder continuous solutions of semilinear elliptic equations
is not known. We will prove, for instance, the following theorem.

Theorem 1.1. Letp > 1 and0 < a < 1. ThenkFE is removable forr-Holder continu-
ous solutions of-Au = |u[P~tu if and only ifH,, 2,4 (E) = 0.

The size of removable sets in the above theorem is independent of nonlinear expo-
nentp. This means that results can be obtained for more general nonlinearity. Also, it
might be interesting to investigate the relation between a general modulus of continuity
and Hausdorff measure with respect to a general function. We will state general results
in the next section.

2 Notation and results

To state generalizations of Theorem 1.1, we prepare some notation. The sy¥mbol
stands for an absolute positive constant whose value is unimportant and may change
from line to line. If necessary, we use , Cs, ..., to specify them. LeWy be the

family of positive increasing functiong on (0, co) such that

(AL) 9(t) — 0 ast — +0,
and that there exists a const&nt with the following properties:

(A2) (2t) < Cyp(t) forall ¢ > 0,



(A3) forall 0 < r < 5diam €,
| B < o,
0

(A4) forallr > 0,
/ YO g < o 20
. 12 r
Also, ¥, denotes the family of positive increasing functiah®n (0, co) with (Al)—
(A3) and

(A5) forallr > 0, .
[ <020,

Fori € Wy, we denote by ¥ (Q2) the class of all continuous functiomson () such
that for allz, y € ,
u(@) —u(y)| < CP([lz = yl)-

Foriy € Wy, they-Zygmund clas€¥ (2) consists of all continuous functiomson (2
satisfying
u(z —y) = 2u(x) + u(z +y)| < Cp([lyl),

wheneverz,z + y € Q. Observe that it) € Uy, then (A4) implies (A5), and so
Uy C Uyandé¥(Q) C 2% (Q).

Recall 9-Hausdorff measure. LeB(xz,r) denote the open ball of centerand
radiusr. For a positive increasing functiafon (0, co) such thatp(t) — 0 (t — +0)
and0 < p < oo, we let

HY (B) =inf 3 o(r;),

where the infimum is taken over all possible covering&dfy a countable collection
of balls B(z;, ;) such that; < p. Since’l—[fb") (E) is decreasing as a function pfwe
define

This is called thes-Hausdorff measuref E. Wheng(t) = t°, we write Hz(E) for
Hs(F) as above. AlsoZ?((2) stands for the class of all measurable functibhen
Qwith ||V g6 ) < oo, where

1
Vlge) = sup —/ V(y)| dy.
Wisem= s o[ W)

0<r<2diam Q

As nonlinearity, we consider a measurable functiomn 2 x R for which there are
nonnegative functiong” ¢ 22%(Q) andf € %' (R) such that

|F(z,t)| < V(z)f(t) forallz € Qandt e R, (2.2)



and discuss continuous solutions of semilinear elliptic equations of the form
—Au = F(x,u), (2.2)

whereA is the Laplacian and the equation is understood in the sense of distributions.
Our results are stated as follows.

Theorem 2.1. Let ¢(t) = t"~24(t), wherey) € ¥, and let ' be a measurable
function onQ2 x R satisfying(2.1) for some nonnegative functiofs € 27¢(f2) and
f € €(R). Suppose that € 2% (Q) is a solution 0f(2.2)in Q \ E. If H4(E) = 0,
thenu satisfieq2.2)in the whole of.

Remark2.2 Observe thap is a positive increasing function satisfying (Al) and (A2)
with ¢ = ¢. Also, it follows from (A5) that for all0 < » < 1,

‘/1002/;(;)dt</roo¢t(;)dt<cl’(/}(r).

r2

Since the left hand side is positive, we hatfe< C¢(r), and SOH,,(E) < CH4(E).

A sharpness of{,(F) = 0 is shown under additional weak conditions BnNote
that #¢(Q) ¢ £1(£2). Denote by, the volume of the unit ball oR™.

Theorem 2.3. Let ¢(t) = t"24(t), wherey) € Uy, and let F be a measurable
function onQ x R satisfying(2.1) for some nonnegative functios ¢ 22¢(f2) and
f € €(R). In addition, we assume that

(i) foreachz € Q, F(x,-) is nonnegative o0, co) and F(x, ) € €(0, c0),

(i) there are numbers, > 0 ande > 0 such that for eacld < m < mg, we find

M > m with
I fll .o pm, a1 Qv < M — e, (2.3)
where
CrpWIVlize @ n IVIlz1 (n>3)
Qy = nvp n(n — 2)v, -
MHVH )
o 2¢(Q) (TL— )

If Hs(E) > 0, then there exista € 2% () which satisfie§2.2)in Q \ E, but notin
the whole of). Moreover, ify) € ¥z andH,(E) > 0, then there exists € €% (Q)
which satisfie2.2)in Q \ F, but not in the whole of2.

Note that condition (2.3) is satisfied for many semilinear equationsidincreas-
ing, then|| f|| wec (m,ar) = f(M) for anym < M. Thus the following hold:

e The casef(t)/t — 0 (t — 40): We findmg > 0 such that fo) < ¢ < 2my,

I

1
. Qv < 3 (2.4)

Lete = mo andM = 2my. Then (2.3) is satisfied for evely € 22¢(Q).



e Other case Takemy = 1,e = 1 andM = 2 for instance. fQv < 1/f(2),
then (2.3) is satisfied.

If fis any function such thaf(¢)/t — 0 (¢ — oo), then we findm, > 0 such
that (2.4) holds for alt > my. Let0 < m < mg. TakeM > max{2,mg} with
LNl 20 m,me)@v < M — 1. Then|| f|| oo (m,amQ@v < max{M —1,M/2} = M —1.
Hence (2.3) holds for any € 22¢(Q) if we takee = 1.

Thus Theorem 2.3 is applicable to semilinear equatiefg:, = V|u[P~tu (0 <
p # 1, Vi any),—Au = Viu + ValulP~tu (p > 0, V1, Va: small), —Au = Ve
(V: small), etc. In particular, Theorem 1.1 follows from Theorems 2.1 and 2.3 because
V=1e2%9).

The plan of this paper is as follows. In Section 3, we prove Theorem 2.1 after
discussing removable sets for superharmonic functions injt@ggmund class. In
Sections 4 and 5, the proof of Theorem 2.3foe ¥, will be given separately in the
cases > 3 andn = 2. Section 6 provides the proof of Theorem 2.3foe V.

3 Proof of Theorem 2.1

In this section, we let) € VU, and¢(t) = t"~2(t). For the proof of Theorem
2.1, we first discuss removable sets for superharmonic functio€'i(f2). The word
“measure” means “nonnegative Radon measure” dgbe theGreen functiorfor €.
For a measurg on (2, we let

GQu(:L'):/QGQ(Z,Z/)dN(y)-

Whendu(y) = f(y)dy, we writeGq[f] for Gou. We say thatiou is aGreen poten-
tial of  on Q2 if it is finite at some point ir2. ThenGqu is superharmonic ofR and
harmonic outside the support pf Moreover, if€ is regular for the Dirichlet problem
and the support of. is compact inQ2, thenGgqu vanishes continuously of2. For
u € 7L .(Q), we write

1
- / u(y) dy,
UnT B(z,r)

wherev, is the volume of the unit ball dR™. The following lemma is elementary.

Aluy x,r) =

Lemma 3.1. Letr > 0 andz € R". If g is a decreasing function of), o), then

/ a(llyl) dy < / a(llyl) dy.
B(z,r) B(0,r)

Proof. Let@; = B(z,r)\ B(0,r) andQy = B(0,r)\ B(x,r). Consider the mapping
z = x — y, which mapsy € Q; ontoz € Q2. Sincel|ly| > r > |z|, we have
g9(llyll) < g(llz]l). Therefore

d 2| dz.
/ng<||y||> ys/@gm D

Thus the lemma follows. O



Lemma 3.2. If Hy(E) = 0, then there exists a Green potentialon €2, which is
harmonic orf2 \ E, such that for each € E,

v(x) = Av;z,7)

limsup ——~— 0 — o0, (3.1)
r—+0 "/}(r)
Proof. We provide a proof fon > 3. For the case = 2, we need to change only the
fundamental solution of the Laplace equation frpm||>~" to —log || - ||. Letj € N.

By H,(E) = 0 and (A2), we find finitely many pointg;;, in E and positive numbers
ik, Wherek = 1,--- | N; say, such thatl C |J, B(yjk, rjx) andd_, ¢(rj) < 477.

Define
u(x) = Z 27
j=1 k=
Observe that: is superharmonic ofR™ and harmonic outsidé&. Letz € E and
j € N be fixed. Then|z — y;z|| < r;i for somek = k(j,z). Takec > 0 with
n < 2¢"~2 (whenn = 2, this is replaced bjog ¢ > 1/2). The mean value inequality
for superharmonic functions implies that

u(@) = A(us 2, erji) > 2 ¢(rje) {lo — yinl> ™" = Al - =yl * " 2, erin) )

By Lemma 3.1,

Nj

(rjn)lle — gl
1

—n

_ _ n
Al =yellP 2, ere) < AL =yl ysms ern) = = (erjn)?

[\

Therefore, by (A2),

j —n n —n 2j1/)(CT k)
u(z) — Ausz, erjp) 2 2%(717%){7”;2-;@ - 5(0717%)2 } > TJ
This shows that (3.1) holds far = u. Observe that the Green potentiahppearing
in the Riesz decomposition af on (2 satisfies (3.1) and is harmonic éh\ E. This
completes the proof. O

A functionn onR"™ is said to besymmetriawith respect tacg € R™ if n(xg —y) =
n(zo + y) for everyy € R™,

Lemma 3.3. Letn be bounded and symmetric with respectgce 2 and letB(z,r) C
Q. lfu e Z¢(Q), then

L A w0 dy| £ CY e ey @D

Proof. Making a change of variables and splittifitf 0, ) into the upper half and the
lower half, we have

/B(’ .)n(y){U(y)—U(wo)}dy

1

= 5 /B(O)T) 7](1'0 + y){u(xo — y) — 2u(1~0) + U(iL’O + y)}dy

Sinceu € 2°¥(Q) andy is increasing, this yields (3.2). O



Letu : Q — (—o0, 0] be a function which is locally bounded below. Then the
réduiteof v on Q2 is defined by

R“(z) = infv(x),

where the infimum is taken over all superharmonic functioo® (2 satisfyingv > u
on 2. Let R* stand for the lower semicontinuous regularizatiod?df which is called
the balayageof v on Q2. Then R* is superharmonic o2 (see [7, Theorem 8.1]).
Also, if u € (), thenu < R* on {2 and R* is continuous orf2 and harmonic on
{z € Q: R*(z) > u(x)}. See [7, Theorem 8.14].

Lemma 3.4. Letu € Z¥(Q) be superharmonic of? \ E and letv be a Green
potential on(2 satisfying(3.1) for eachz € E. Thenu — R* + v is superharmonic on
D={zeQ: R%x)>u(x)}.

Proof. Letw = u — R" 4 v. Thenw is superharmonic oM \ E and lower semicon-
tinuous onD. To show thatw is superharmonic o, it suffices to prove that for each
re END,

Jim sup w(z) — A(w; z, 1)

> 0. (3.3)
r——+0 r2

Letz € EN D and letr > 0 be such thaB(z,r) C D. Then, by Lemma 3.3 with
n=1,
u(z) = Alw; z,r)| < Cp(r).

SinceRY is harmonic onD, we have

w(x) — A(w;z,r)  u(z) — Alu;z,r) n v(x) — A(v;x,r)
¥(r) (8

Therefore (3.1) implies
w(z) — Alw; z, 1)

lim sup = 00,
r—+0 ’(/)(7“)
and so (3.3) holds. Henae is superharmonic o®. O

Lemma 3.5. Letu € Z7¥(Q) be superharmonic of \ E. If H,(E) = 0, thenu is
superharmonic of).

Proof. Letu € 2% () be superharmonic oft \ E. Without loss of generality, we
may assume tha? is regular for the Dirichlet problem and thatce € (R™). Then, by
[7, Theorem 9.26], R

R* =wu o0noq. (3.4)

Let D = {z € Q: R*(z) > u(x)}. We claim thatD = (. If this is true, then, = R*
on (2, and sou is superharmonic of2. To prove the claim, we suppose to the contrary



thatD # (. Letv be a Green potential ail obtained in Lemma 3.2. Far > 0, we
define

us(z) = u(z) — R*(z) + dv(z).
Thenus is superharmonic o by Lemma 3.4, ands > 0 on 9D in view of (3.4).
The minimum principle shows that; > 0 on D. As¢é — 0, we haveR* < wonD\ E
because is finite there. Hence = R* on D \ E. Since#,(E) = 0 by Remark 2.2,
the continuity implies that: = R*onD. This is a contradiction. Hend® = (. [

We are now ready to prove Theorem 2.1. For a signed measwre write |v| for
the total variational measure of

Proof of Theorem 2.1Letu € 2°¥(Q) be a solution of (2.2) i \ E. Thenf(u) €
% (€2). Considering a bounded open sewith £ C w andw C Q instead of(2, we
may assume th& < f(u) < Cy on Q. Then, by (2.1),

—CoV(z) < ;relsfl F(z,u(x)).

We can find a solution € 2°%(2) of —Av = G,V in Q (distribution). Letw = u+v.
Thenw € Z¥(Q) and—Aw = F(x,u) + C5V in Q\ E (distribution). Thusw is
superharmonic of2\ E. Lemma 3.5 shows thait is superharmonic oft, and so there
is a unique measuneon 2 such that-Aw = p in Q (distribution). Let

dv(z) = du(z) — {F(z,u(z)) + CoV(z)} dx.

By the uniqueness qf, we havelv|(©2 \ E) = 0. We need to show thar|(E) = 0.
For arbitrary fixedrg € F and0 < r < dist(E,9Q)/2, we write B, = B(xg, 7).
Letn € €5°(B2,) be a radial function with respect tg such that; = 1 on B, and
0 < n < 1and|An| < C/r? on B,,.. Note thatAn is symmetric with respect to
xg. Since—A(w — w(zp)) = p in Q (distribution), it follows from (2.1), Lemma 3.3,
V € 22¢(Q) and (A2) that

WI(B,) < n(B,) + /B (|F(u)| + oV} da
< /BQTndqu/Br{f(UHC’z}de

< /BQT(—AU)(UJ —w(zg)) dz + 2Cy /BT Vdx

< Or"2(2r) 4 2C: ||V || o () 8(r)
< Co(r).

Lete > 0. By H4(E) = 0 and (A2), we find sequences of pointsin E and positive
numbers-; such thatt! C (J; B(z;,r;) andy_; ¢(r;) <e. Then

AA(E) < S Wl(Blayr) < €3 o(ry) < Ce.

*v is given by the Newtonian (or logarithmic) potential of the densiyV. Thenv € Z¥(Q) by
Lemma 4.5 (or Lemma 5.2).



Ase — 0, we have|v|(E) = 0. Hence|v|(A) = 0 for any Borel measurable seit
in Q, which concludes that Au = F(z,u) in Q (distribution). This completes the
proof. O

4 Proof of Theorem 2.3 inthe case) € ¥, andn > 3

Lety € Uz andg(t) = t"~2¢)(¢). For a measurg on ), we let

_ p(B(z,r)N Q)
lullps@) = sup O

0<r<2diam Q
Then the following lemma holds.

Lemma 4.1. Let be a measure of® with ||| ¢ ) < oo. Then

#(9) < B(diam Q) 1] oy < 0.

Lemma 4.2. Let u be a measure of with ||u|| »¢ ) < oo, and lety* be a mea-
sure onR"” defined byu*(A) = u(A N Q) for Borel measurable setd in R™. Then
M| 2o @ny = [l 226 (02)-

Proof. By definition, u(B(z,r) N Q) = p*(B(z,r)) for z € R™ andr > 0. Dividing

the both sides by(r) and taking the supremum, we haye s o) < [|[1*|| 26 @n)-

We need to check the converse inequality. et R™ andr > 0. If r < 2diam €,

then “(Blz.r))
o) z,r
. L .
o(r) > HMHW»(Q)
If r > 2diam Q, theng(diam Q) < ¢(r), and so

M*(B(‘Tv 7“))
o(r)

wherey is a point inQ2. These implies thaty* || segn) < |1l 2o q)- O

(2N B(y, diam Q)) <1l
(diam Q) = IHllze @),

IN

In the rest of this section, we suppase> 3. For simplicity, we write

1 —n
Gu(w) = Ginpla) = - [l = yl* " duty),
Qp R™
wherea,, = v,n(n — 2). Also, let

o, _ Crot)

Ny
where( is the constant in (A3).

Lemma 4.3. If ;1 is a finite measure oR™ with ||z1[| g4 gny < 00, then

N R'Il
Gl ey < Ol roqamy + ) @)

n




Proof. Letz € R™. Sinceu(B(z,r)) < ||pl| z¢ ®ny¢(r) for r > 0, we have

1

Gute) = = [ o=yl autn) = - [T B

L {/Olrln,u(B(:c,r))err /100 TlnM(B(x,T))dT}

Upm
1 ! ¢(T n > 1—n
< W{Mngtp(n@n)/o rni_lerru(R )/1 " dr .

Sinceg(r) = r"~2y(r), we see from (A3) that the brackets in the last is estimated by
p(R™)

n—2"

Hence (4.1) follows. O

1

Upn

A

Cillull g0 mmy (1) +

Lemma 4.4. If y is a finite measure oR™ with || u|| 54 (gny < 00, thenGu € €' (R™).

Proof. Letzy, € R™ andp > 0. Write B, = B(xy, p). Observe from (A3) that

J

oo =" () = (o= 2{ [ B ) [
< C||M|5«>¢(Rn){/0p @ dr + w(p)}

< Cllull oo mmy? (p)-
Letx € B, 5. SinceB, C B(x,2p), we have by (A2)
|Gu(x) — Gu(zo)|
1

< Cllpll o mny¥(p) + */ [z = ylI>7™ = llzo — yl*~"| du(y)-
Qp Rn\B

P

P

By the Lebesgue convergence theorem, the last integral teridase — xy. There-
fore (A1) concludes thak . is continuous at. O

Lemma 4.5. If . is a finite measure oR™ with || || 56 (&) < oo, thenGu € 2% (Q).
Moreover, there exists a constafit> 0 depending only od’; andn such that for all
x,y € €,

|Gu(z —y) = 2Gu(z) + Gu(z +y)| < Cllpll 26 @ny Y ([yll)- (4.2)

Proof. For arbitrary fixedr € Q, let ju,.(A) = u({x — 2 : z € A}) for Borel measur-
able setsA in R™. Then|| .|| 56 ®ny = ||ptll 20 (rn). Therefore we may prove (4.2) by

assumingr = 0 € Q. For simplicity, we writeB(r) = B(0,7). Lety € Q. By [1,
Lemme 1], we have for € R™ \ B(4||y|]),

S R Iyl
ly=2= " =2 " Ty 22| = Cpel

10



Observe from (A2) and (A5) that

dp(z)

/ ’ 1 2 n 1
re\By | Iy — 2772 z["=2  [ly + 2|2

2 oo B
<cf W duie) <y [~ 18D o,
r\B(|yl) |12l Ayl T
< ah(r)

3
llyll "

< Cllpll o ey 19112 dr < Cllpll g @ P(llyll)-

Also, since

1
B
/B<5|y|> [Iz]"~2

Myl *
— (-2 = u(B(r)) dr + u(B(5 r' " dr
= [ ey i) [ e
Sl g
< Clulgoge{ [ W ar+ s6olul) |
< Cllpllze@myp Yl

we observe that

1 2 1
- + dp(z) < Cllpll ze @y (llyll)-
/B<4|y|> ly —zl"=2 =" lly +2["~2 &
Hence (4.2) follows. O

Lemma 4.6. Let ' be a measurable function o x R, satisfying(2.1) for some
nonnegative functions’ € 92¢(Q2) and f € ¢'(R), such that for each € Q, F(x,-)
is nonnegative orf0, c0) and F'(z,) € €(0,00). Letu be a measure of? with
0 < ||pll ¢ q) < oo. Putm = mingo Gu. Assume that there is a constant > m
such that

V]2 o Q
11t CollV oty + )t (Calal ooy + 250 ) < 2. (4.3
Then there exists a positive solutiore 2°%(Q) of
—Au= F(z,u)+p inQ (distribution) (4.4)

Proof. The proof is based on the Schauder fixed point theorem. Instedioand,
we considelr™* defined byF™* = F onQ2 xR, F* = 0on (R™\ Q) x R andV* defined
by V*=VonQ, V* =00onR"\ Q andy* defined byu*(A) = (AN Q) for Borel
measurable setd in R™. Note from Lemma 4.2 thgtV*|| 56 (zn) = [|V|| 24 () and
1% || 0y = ||1tl] 224 () IN @rguments below, we writ€, V and . for %, V* and
w*, respectively. Letn = mingg G and letM be a constant satisfying (4.3). Then
m > 0 because{y[| »¢ ) > 0. Let

W ={weeEQ):m<w< M}

11



This is a nonempty bounded closed convex subset of the Banach&pageConsider
the operatoff on #: for x € R",

Tw(x) = GIF(-, w)](z) + Gu().
Let7T(#) = {Tw:w e #}. Note thatifw € #, then

IEC,w)ll e @mny < NV (W)l 2o @mny < N fllzotmanllV e @) < o0,
[F(w) |21 @y < [V F(w)ll2r@n) < | fllzoeimanllV Iz @) < oo

From the proof of Lemma 4.4, we observe tiigt# ) is equicontinuous of2. Also,
Lemma 4.3 implies

VI @ Q
Tw(@) < [l CllVlwior + T ) 4 Callull ooy + 20

an
< M.

By F(-,w) > 0 and the minimum principle]w > Gu > m on Q. HenceT (#) C
# . The Arzeb-Ascoli theorem implies that (%) is relatively compact irg’(€2).

We show thaf"is continuous or¢’. Takew;, w € #" such thatjw; —w|| o ) —
0asj — oco. Letz € R™. SinceF(z,-) € €(0,0), it follows from the Lebesgue
convergence theorem that s+ oo,

[ Tw;j(z) = Tw(x)] < GIF (-, w;) = F(,w)[(x) = 0.

The relatively compactness 8f(#) implies that| Tw; — T w|| ¢ ) — 0@sj — o0.
HenceT is continuous orY'.

Applying the Schauder fixed point theorem, we find % such that7 v = u on
Q. Using the Fubini theorem, we observe thatatisfies (4.4). Also, it follows from
Lemma 4.5 that: € 2°¥(Q). This completes the proof. O

Proof of Theorem 2.3If #,(E) > 0, then there exists a measyresupported orE
such thafu(E) > 0 and||p|| 54 (o) < oo (see [2, Theorem 5.1.12]). Multiplying by
a small constant if necessary, we may assumerthat mingg G < mg and

p(§2)

n

Csllull 26 0) + <e.

Let M be a constant satisfying (2.3). Thén f and fulfill (4.3). By Lemma 4.6,
there is a positive solution € Z¥(Q) of (4.4). Observe that satisfies—Au =
F(z,u)inQ\ E (distribution), but does not satisfy it in the whole©f O

5 Proof of Theorem 2.3 in the case) € ¥, andn = 2

In this section, we suppose that= 2, R = diam (2, By is a disk of radiusi? with
Q) C By, and¢ = ¢ € ¥4. The proof of Theorem 2.3 far = 2 is similar to that
given in the previous section, but we need to consider

1 5R
log ——— d. .
Gu(z) /B log [ di(y)

T o
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If 11 is a finite measure 0By, thenGy is superharmonic oR? and positive oy

Lemma 5.1. If 1 is a measure o, With ||| 54 (p,) < oo, then

C1¢(5R)
|Gl 20y < =5 llill o)

Proof. By Lemma 4.2, we may assume thais a measure oiR? supported on3,
With |||l 2o (m2y = || 11ll 20 (B,) < 00. Letz € By. By the change of variable = 5Rt
and (A3), we have

1 [t
< _
Gulz) < 5 ; - 1(B(z,5Rt)) dt
el e Boy [PF ¥(r) C19(5R)
< e [T ar < A g
Thus the lemma follows. O

Lemma 5.2. If 1. is a measure orBy with ||l »s(5,) < oo, thenGp € 2% (By).
Moreover, there exists a constafit> 0 depending only od’; such that for allx,y €
By with z + Yy e By,

Gz —y) = 2Gu(x) + Gulz + y)| < Cllpllzo sy v (lyl)- (6.1)

Proof. It suffices to prove (5.1) withe = 0. We write B(r) for B(0,r) and identify
R? with C. If z € C\ B(2|y|), then|log | =% || < C]£|?, and so

/ = u(B(r))
C\B(2ly))

du2) < Ol [ D dr < Ol s o).
If 2 € B([y|/2), then|log | == || < C + 2log | £| which gives
O t

2|y
/B(|y|/2)
< Ollpll 24 oy (1Y)

If z € B(y, [y[/2), then|y|/2 < [z] < 3|y|/2and3|z| > [z+y| = 2ly|— |z —y| = |2|.
Thereforel < |¥||2£%| <6, and so

22y

log o

222

22

log aul2) < CuBy) +2 [ LD g

2

2
| s e
z z z

Y
2=y

log

‘<C’+log

Yy
z—yl|

By the similar way to the above, we obtain

~/B(y,|y|/2)

222
22

log dp(z) < Cllpll e o) ¥(ly])-
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Also, we observe that

/B(y,|y|/2)

If y € A:= Bly)\(B(lyl/2)UB(y,|yl/2)UB(~y, |y]/2)), then| log |5 || < C,

and so
/,

Combining these yields (5.1). O

2 2

=Y

;2 dp(z) < Cllpll 2o o) ¥ (1y])-

log

222
22

log du(z) < Cllull g6 (o) (|Y])-

Lemmab5.3. For0 < r < 1, we have

1
Y(r) log - < 2C19(Vr).
Proof. Let0 < r < 1. Sinceyy > 0 is increasing, it follows from (A3) that

\/;
C1y(Vr) > / @ dt > (r) - %log %

T

Lemma 5.4. If ;1 is a measure oy with ||| g4 (5,) < o0, thenG € €' (By).

Proof. Let zo € By and letp > 0 be small enough so thd, := B(zo,p) C Bo.
Then

5R "1
1og7duy:/ -u(B,NB dt
/Bp [zo — yll ) ot (B, 1 Brr)

PSR (5 Rt LS|
< |u||w<30>{ [ g ) | dt}
0 t o/5R L

5R
< |u||m<30>{clw<p> (o) log p}.

Letx € B,/;. ThenB, C B(x,2p). Therefore
Gu(z) — Gu(zo)|

5R
< 2|u||w<30>{olw<2p> () log 2p} + /B

O\BP

Since the last integral tends icasxz — x, it follows from (A1) and Lemma 5.3 that
G is continuous atk. O

Repeating arguments similar to Lemma 4.6, we obtain the following lemma.

14



Lemma 5.5. Let ' be a measurable function i x R, satisfying(2.1) for some
nonnegative functiong € 22¢(Q) and f € ¢(R), such that for each € , F(z,-)
is nonnegative or{0, c0) and F'(x,) € ¥(0,00). Letu be a measure of2 with
0 < ||l 20y < o0. Putm = mingn Gu. Assume that there is a constant > m
such that

TLYGR) (1L~ pm a0 IV ooy + 1l oen) < M.
Then there exists a positive solutiare 2% (Q2) of
—Au= F(z,u)+p inQ (distribution)
The rest of the proof of Theorem 2.3 for= 2 is the same as that fer > 3.

6 Proof of Theorem 2.3 in the case) € Uy

In this section, we let) € Uz andé(t) = "2 (t).

Lemma 6.1. Let G denote a potential in Section 4 or 5. Ifis a measure o with
14l 226 (@) < o0, thenGu € EO(Q).

Proof. Let us prove this lemma foz > 3. The proof forn = 2 is similar. We may
assume| | go (gny < 0o. Letz, o € Q and letr = ||z — z||. Then

1
(I1 + I2),

)

Gu(z) — Gulxo) =

where
2r 2r
b= [ e uB )i [0 Be) dr
0 0

Ig/:Otl”,u(B(x,t))dt/ootlnﬂ(B(T/o,t))dt-

r 2r

Observe from (A2) and (A3) that

2r
L < 2||M\|§«>¢(Rn)/ () dt < Cllpll gro@ny¥o(r).
0
Asin [6, p.16], we have
B [ {0 ) (B o) .

Sincet! =" — (t + 7)™ < Cr/t", this and (A4) give

= o)
Iy < Cl|pll 26 wn)r o dt < Cllpll o @nyt(r).

Combining these yield&/u(x) — Gu(zo) < Cf|pl| z¢@n)¥(r). Sincexr andzy can
be interchanged, it follows thaty € €% (Q). O

Proof of Thgorem 2.3 inthe cagec V. Observe from Lemma 6.1 that we can find
u € €%¥(Q) in Lemma 4.6 and 5.5. Repeating the same arguments completes the
proof of Theorem 2.3. O
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