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Abstract

This note presents sharp upper and lower bound estimates of the heat kernel in a bounded
Lipschitz domain. To this end, we introduce an auxiliary set which is different from Bogdan’s set
used in the study of the Green function for the Laplace operator. Also, we give global estimates
of kernel functions with pole at parabolic boundary points.
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1 Introduction

Let (x, t) denote a typical point inRn × R, wherex ∈ Rn andt ∈ R, and letγ(x, t) stand for the
fundamental solution of the heat equation given by

γ(x, t) =


1

(4πt)n/2
exp

{
−∥x∥2

4t

}
if t > 0,

0 if t ≤ 0.

(1.1)

Let Ω be a domain inRn. We denote byΓ the Green function forΩ × R and the heat operator. If
(y, s) ∈ Ω× R is fixed, then it is represented as

Γ(x, t; y, s) = γ(x− y, t− s)− h(y,s)(x, t) for all (x, t) ∈ Ω× R,

whereh(y,s) is the greatest thermic minorant ofγ(· − y, · − s) on Ω × R (see [19]). In the case
s = 0, the Green functionΓ(·, ·; y, 0) is also referred to as the heat kernel forΩ. It is well known
thatΓ(x, t; y, 0) ≤ γ(x−y, t) for all (x, t) ∈ Ω×R, and moreover that ifx andy are apart from the
boundary∂Ω and if they are close to each other, thenΓ(x, t; y, 0) ≥ (Ct)−n/2 exp(−C∥x− y∥2/t)
for some constantC > 1 (see [4, Theorem 8] for instance). But the global behavior, particularly the
boundary behavior, is not well known because it is influenced by the shape of a domain. For the last
few decades, many researchers have studied two sided global estimates of heat kernels. The large
time behavior of the heat kernel on a bounded Lipschitz domainΩ was established by Davies [8,
Theorem 4.2.5]: for anyε > 0, there existsT > 0 such that for allx, y ∈ Ω andt ≥ T ,

(1− ε)ϕ(x)ϕ(y)e−Et ≤ Γ(x, t; y, 0) ≤ (1 + ε)ϕ(x)ϕ(y)e−Et,

whereϕ is the eigenfunction corresponding to the first eigenvalueE of the minus Laplacian−∆.
The small time behavior is more delicate. For simplicity, we use the notationsa ∧ b = min{a, b},
a ∨ b = max{a, b} and

γC(x, t) =
C

tn/2
exp

{
−∥x∥2

Ct

}
.
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The symbolC stands for an absolute positive constant whose value is unimportant and may vary at
each occurrence. WritingC(a, b, . . . ) means that a constantC depends only ona, b, . . . . By δ(x),
we denote the Euclidean distance inRn from a pointx to the boundary∂Ω. Davies [7, Theorem 3]
proved that ifΩ is a bounded Lipschitz domain, then there existsC = C(n,Ω, T ) > 1 such that for
all x, y ∈ Ω and0 < t < T ,

Γ(x, t; y, 0) ≤ ϕ(x)ϕ(y)

tα
γC(x− y, t), (1.2)

whereα ≥ 1 is a constant satisfyingϕ(x) ≥ Cδ(x)α for all x ∈ Ω and someC > 0. If ∂Ω is
smooth, then we can takeα = 1. In this case, the following sharper estimate was obtained by Hui
[12, Lemma 1.3] (upper estimate) and Zhang [21, Theorem 1.1] (lower estimate):

Γ(x, t; y, 0) ≤
(
δ(x)√
t

∧ 1

)(
δ(y)√
t
∧ 1

)
γC(x− y, t), (1.3)

Γ(x, t; y, 0) ≥
(
δ(x)√
t

∧ 1

)(
δ(y)√
t
∧ 1

)
γ 1

C
(x− y, t). (1.4)

Also, Cho [6] obtained these estimates in a boundedC1,a domain with0 < a < 1.
The purpose of this note is to establish lower and upper bound estimates sharper than (1.2) when

Ω is a bounded Lipschitz domain. To this end, we introduce an auxiliary set. Letκ > 1 andT > 0.
Forx ∈ Ω and0 < t < T , we define

Bp(x, t) =

{
b ∈ Ω :

1

κ
∥b− x∥ ≤

√
t ≤ κδ(b)

}
.

Here the subscript “p” means “parabolic” in order to distinguish from the elliptic case. This set is
nonempty ifκ ≥ κ(Ω, T ) (see Lemma 2.1). We fix someκ = κ(Ω, T ) in arguments below. Letx0
be a fixed point inΩ (which is away from∂Ω) and letG(x, y) denote the Green function forΩ and
the Laplace operator. Instead of the eigenfunctionϕ, we use the truncated Green function

g(x) = G(x, x0) ∧ 1.

The main result is as follows.

Theorem 1.1. LetΩ be a bounded Lipschitz domain inRn (n ≥ 2) and letT > 0. Then there exists
C = C(n,Ω, T ) > 1 such that for allx, y ∈ Ω and0 < t < T ,

Γ(x, t; y, 0) ≤ g(x)g(y)

g(bx)g(by)
γC(x− y, t), (1.5)

Γ(x, t; y, 0) ≥ g(x)g(y)

g(bx)g(by)
γ 1

C
(x− y, t), (1.6)

wherebx ∈ Bp(x, t) andby ∈ Bp(y, t).

Estimates of this kind in the elliptic case were given by Aikawa [1, Section 3] and Bogdan [5].
For each pair of pointsx, y ∈ Ω, we let

Be(x, y) =

{
b ∈ Ω :

1

κ
(∥b− x∥ ∨ ∥b− y∥) ≤ ∥x− y∥ ≤ κδ(b)

}
. (1.7)

Here the subscript “e” means “elliptic”. This definition is slightly different from theirs, but is es-
sentially the same (see [11]). Then there existsC = C(n,Ω) > 1 such that for eachx, y ∈ Ω and
b ∈ Be(x, y),

1

C
G(x, y) ≤ G(x, y) ≤ CG(x, y), (1.8)

where

G(x, y) =


g(x)g(y)

g(b)2

(
1 + log+

δ(x) ∧ δ(y)
∥x− y∥

)
if n = 2,

g(x)g(y)

g(b)2
∥x− y∥2−n if n ≥ 3.
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Herelog+ f = (log f) ∨ 0. Note that the auxiliary sets are quite different between the elliptic and
parabolic cases, becauseBe(x, y) is determined by two pointsx, y ∈ Ω, whereasBp(x, t) by only
one point(x, t) ∈ Ω× (0, T ).

Remark1.2. Recently, Gyrya and Saloff-Coste [16] obtained two sided estimates of heat kernels in
“unbounded” inner uniform domains. They used the quantity√∫

B(x,
√
t)∩Ω

h(z)2 dz

∫
B(y,

√
t)∩Ω

h(z)2 dz

with a harmonic profileh instead of ourtn/2g(bx)g(by). Also, this quantity is comparable to
tn/2h(bx)h(by), whereBp(x, t) is defined with respect to the internal metric. (see [16, pp. 103–
104]). Our proof is based merely on the so-called local comparison principle for temperatures and
the boundary Harnack principle for harmonic functions, and is simpler than theirs.

As a consequence of Theorem 1.1, we obtain the following improvement of (1.2).

Corollary 1.3. LetΩ be a bounded Lipschitz domain inRn (n ≥ 2) and letT > 0. Then there exist
C = C(n,Ω, T ) > 1, α = α(n,Ω) > 0 andβ = β(n,Ω) > 0 with β ≤ 1 ≤ α such that for all
x, y ∈ Ω and0 < t < T ,

Γ(x, t; y, 0) ≤
(
δ(x)√
t

∧ 1

)β(
δ(y)√
t
∧ 1

)β

γC(x− y, t), (1.9)

Γ(x, t; y, 0) ≥
(
δ(x)√
t

∧ 1

)α(
δ(y)√
t
∧ 1

)α

γ 1
C
(x− y, t). (1.10)

Moreover, ifΩ is a Liapunov-Dini domain, we can takeα = β = 1.

Remark1.4. See Widman [20] for the definition of Liapunov-Dini domains. Note that boundedC1,a

domains with0 < a ≤ 1 are Liapunov-Dini domains.

This note is organized as follows. Section 2 collects some elementary lemmas concerning the
setBp(x, t) and the functiong. Proofs of Theorem 1.1 and Corollary 1.3 are given in Sections 3 and
4, respectively. As a consequence of Theorem 1.1, we establish upper and lower bound estimates of
kernel functions with pole at parabolic boundary points in Section 5.

2 Preliminaries

A bounded domainΩ in Rn is called aLipschitz domainwith localization radiusr0 > 0 and
Lipschitz constantL > 0 if for each ξ ∈ ∂Ω there exist a local Cartesian coordinate system
(x1, . . . , xn) = (x′, xn) and a functionψ : Rn−1 → R satisfying the Lipschitz condition|ψ(x′) −
ψ(y′)| ≤ L∥x′ − y′∥ such that

Ω ∩B(ξ, r0) = {(x′, xn) : xn > ψ(x′)} ∩B(ξ, r0).

Then we see that for eachξ ∈ ∂Ω, there is a pointz ∈ Rn such that the truncated circular cone
{x : ∠xξz < θ, ∥x − ξ∥ < r0} is contained inΩ, whereθ = arctan(1/L). Therefore, if
0 < r < r0/2, then the point, denoted byξr, in the intersection of the axiszξ and∂B(ξ, r) ∩ Ω

satisfiesδ(ξr) ≥ r sin θ. Also, the notationC(Ω) (which has already used in the introduction) means
C(L, r0,diamΩ).

In the rest of this note, we suppose thatΩ is a bounded Lipschitz domain inRn (n ≥ 2) with
localization radiusr0 > 0 and Lipschitz constantL > 0 and thatδ(x0) ≥ r0/2. Also, T > 0 is
fixed. We start with some elementary lemmas.

Lemma 2.1. Let θ = arctan(1/L). If κ ≥ (r0/
√
T ) ∨ (2

√
T/r0 sin θ), then the setBp(x, t) is

nonempty for any pairx ∈ Ω and0 < t < T .
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Proof. Let x ∈ Ω and0 < t < T . Putr = (r0/2)
√
t/T . If δ(x) ≥ r, thenx ∈ Bp(x, t) whenever

κ ≥ 2
√
T/r0. Consider the caseδ(x) < r < r0/2. Let ξ ∈ ∂Ω be a point such that∥ξ−x∥ = δ(x).

As mentioned above, we findξr ∈ ∂B(ξ, r) ∩ Ω such thatδ(ξr) ≥ r sin θ. Then

∥ξr − x∥ ≤ ∥ξr − ξ∥+ ∥ξ − x∥ ≤ 2r.

Therefore, ifκ ≥ (r0/
√
T ) ∨ (2

√
T/r0 sin θ), thenξr ∈ Bp(x, t).

For two positive functionsf1 andf2, we writef1 ≈ f2 if there is a constantC ≥ 1 such that
f1/C ≤ f2 ≤ Cf1. Then the constantC is called the constant of comparison. The next lemma
follows from the Harnack inequality for the Green functionG (see [11, Lemma 3.3]).

Lemma 2.2. Letλ > 0. If x, y ∈ Ω satisfy∥x− y∥ ≤ λ(δ(x) ∧ δ(y)), then

g(x) ≈ g(y),

where the constant of comparison depends only onλ, n andΩ.

Lemma 2.3. Letλ > 0. If x ∈ Ω and0 < t < T satisfyδ(x) ≥ λ
√
t, then

g(b) ≈ g(x) for all b ∈ Bp(x, t),

where the constant of comparison depends only onλ, n, Ω andT .

Proof. Let b ∈ Bp(x, t). The assumption and the definition ofBp(x, t) imply that

∥b− x∥ ≤ κ
√
t ≤ κ

(
κ ∨ 1

λ

)
(δ(b) ∧ δ(x)).

Hence the conclusion follows from Lemma 2.2.

The following three lemmas will be used in Section 5.

Lemma 2.4. There existsC = C(n,Ω, T ) > 0 such that if0 < t < T , then

g(b) ≥ C for all b ∈ Bp(x0, t).

Proof. Let b ∈ Bp(x0, t). Then

∥b− x0∥ ≤
(
κ2 ∨ 2 diamΩ

r0

)
(δ(b) ∧ δ(x0)),

and sog(b) ≈ g(x0) = 1 by Lemma 2.2.

Lemma 2.5. There existsC = C(n,Ω, T ) > 0 such that ifx ∈ Ω and0 < t < T , then

g(b) ≥ C for all b ∈ Bp(x, T + 1− t).

Proof. This follows fromδ(b) ≥
√
T + 1− t/κ ≥ 1/κ and the Harnack inequality.

Lemma 2.6. Letx ∈ Ω and0 < t < T . Then

g(b1) ≈ g(b2) for all b1, b2 ∈ Bp(x, t),

where the constant of comparison depends only onn, Ω andT .

Proof. Since∥b1 − b2∥ ≤ ∥b1 − x∥ + ∥x − b2∥ ≤ 2κ
√
t ≤ 2κ2(δ(b1) ∧ δ(b2)), the conclusion

follows from Lemma 2.2.
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3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. A solution of the heat equation on a domain
D ⊂ Rn+1 is called atemperatureonD. The following lemma is a consequence of the parabolic
Harnack inequality established by Moser [15].

Lemma 3.1. Let λ > 0. Then there existsC = C(λ, n,Ω) > 0 such that ifu is a nonnegative
temperature onΩ× (0,∞), then

u(x, t/2) ≤ Cu(y, t) exp

{
C∥x− y∥2

t

}
(3.1)

for anyx, y ∈ Ω andt > 0 satisfyingδ(x) ∧ δ(y) ≥ λ
√
t.

Proof. For t > 0, we writer = λ
√
t. Let x, y ∈ Ω satisfyδ(x) ∧ δ(y) ≥ r. If ∥x − y∥ ≤ r/2,

then (3.1) holds by the parabolic Harnack inequality. Consider the case∥x − y∥ > r/2. Since
Ω is Lipschitz, we find a Harnack chain{B(zj , r/C)}mj=0 in Ω such thatz0 = x, zm = y and
zj−1 ∈ B(zj , r/2C) (j = 1, · · · ,m), whereC = C(Ω) ≥ 2. Moreover, the numberm satisfies

m ≤ C∥x− y∥
r

for someC = C(Ω). Let tj = (t/2)+ (jt/2m). Then, by the parabolic Harnack inequality, there is
C = C(λ, n,Ω) > 0 such that

u(zj−1, tj−1) ≤ Cmu(zj , tj) for j = 1, · · · ,m.

Therefore

u(x, t/2) ≤ Cm2

u(y, t) ≤ Cu(y, t) exp

{
C∥x− y∥2

t

}
.

Thus the lemma is proved.

The following lemma is elementary and well known.

Lemma 3.2. Letλ > 0. Then there existsC = C(λ, n,Ω) > 1 such that ifx ∈ Ω andt > 0 satisfy
δ(x) ≥ λ

√
t, then

Γ(x, t;x, 0) ≥ 1

Ctn/2
. (3.2)

Proof. For the convenience sake of the reader, we give a proof. Letx ∈ Ω and t > 0 satisfy
δ(x) ≥ λ

√
t, and letϕ be a continuous function onRn such that0 ≤ ϕ ≤ 1 and

ϕ =

{
1 onB(x, λ

√
t/3),

0 onRn \B(x, λ
√
t/2).

Consider the functionu defined onΩ× R by

u(z, s) =


∫
Ω

Γ(z, s; y, t/2)ϕ(y) dy if s > t/2,

1 if s ≤ t/2.

Observe that, onB(x, λ
√
t/3)× R, it is continuous and satisfies the parabolic mean value equality,

and sou is a nonnegative temperature on there (see [18, Theorem 15]). The parabolic Harnack
inequality gives

1 = u(x, t/2) ≤ Cu(x, t).

Also, the adjoint version of the parabolic Harnack inequality gives

Γ(x, t; y, t/2) ≤ CΓ(x, t;x, 0) for all y ∈ B(x, λ
√
t/2).
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Hence

1 ≤ Cu(x, t) ≤ C

∫
B(x,λ

√
t/2)

Γ(x, t; y, t/2) dy ≤ Ctn/2Γ(x, t;x, 0),

and so (3.2) follows.

Lemma 3.3. Let λ > 0. Then there existsC = C(λ, n,Ω) > 1 such that ifx, y ∈ Ω and t > 0

satisfyδ(x) ∧ δ(y) ≥ λ
√
t, then

γ 1
C
(x− y, t) ≤ Γ(x, t; y, 0) ≤ γ4(x− y, t).

Proof. The upper bound estimate always holds. The lower bound estimate follows from Lemmas
3.1 and 3.2:

Γ(x, t; y, 0) ≥ 1

C
Γ(y, t/2; y, 0) exp

{
−C∥x− y∥2

t

}
≥ 1

Ctn/2
exp

{
−C∥x− y∥2

t

}
.

In what follows, we let

λ =
1

50

(
1 ∧ r0√

T

)
. (3.3)

By Lemmas 2.3 and 3.3, we see that (1.5) and (1.6) hold wheneverx, y ∈ Ω and0 < t < T satisfy
δ(x)∧δ(y) ≥ λ

√
t. To complete the proof of Theorem 1.1, we consider the caseδ(x)∧δ(y) < λ

√
t

in the rest of this section. We use the following local comparison estimate (see Fabes et al. [9,
Theorem 1.6]). Forξ ∈ ∂Ω, s ∈ R andr > 0, let

Ψr(ξ, s) = {(x, t) ∈ Ω× R : ∥x− ξ∥ < r, |t− s| < r2},
∆r(ξ, s) = {(x, t) ∈ ∂Ω× R : ∥x− ξ∥ < r, |t− s| < r2}.

Lemma 3.4 (Local comparison estimate). Let ξ ∈ ∂Ω, s > 0 and 0 < r < r0/2. Suppose that
u1 andu2 are positive temperatures onΨ2r(ξ, s) vanishing continuously on∆2r(ξ, s). Then there
existsC = C(n,Ω) ≥ 1 such that

u1(x, t)

u2(x, t)
≤ C

u1(ξr, s+ 2r2)

u2(ξr, s− 2r2)
for all (x, t) ∈ Ψr/8(ξ, s),

whereξr is the point stated in the first paragraph of Section 2.

Also, we recall the boundary Harnack principle for harmonic functions (see [2]).

Lemma 3.5 (Boundary Harnack principle). Let ξ ∈ ∂Ω and0 < r < r0/2. Suppose thath1 and
h2 are positive harmonic functions onΩ∩B(ξ, 2r) vanishing continuously on∂Ω∩B(ξ, 2r). Then
there existsC = C(n,Ω) ≥ 1 such that

h1(x)

h2(x)
≤ C

h1(y)

h2(y)
for all x, y ∈ Ω ∩B(ξ, r).

Lemma 3.6. There exists a constantC = C(n,Ω, T ) > 1 such that ifx, y ∈ Ω and0 < t < T

satisfyδ(x) ∧ δ(y) < λ
√
t, then the upper bound estimate(1.5)holds.

Proof. SinceΓ(x, t; y, 0) = Γ(y, t;x, 0), we may assume thatδ(x) ≤ δ(y). Let r = 8λ
√
t. Then

r < r0/6 andt − 4r2 > 0. Let ξ ∈ ∂Ω be a point such that∥ξ − x∥ = δ(x) < r/8. Since the
functionv(x, t) = v(x) = G(x, ξ3r) is a positive temperature onΨ2r(ξ, t) vanishing continuously
on∆2r(ξ, t), it follows from Lemmas 3.4 and 3.5 that

Γ(x, t; y, 0)

Γ(ξr, t+ 2r2; y, 0)
≤ C

v(x, t)

v(ξr, t− 2r2)
= C

G(x, ξ3r)

G(ξr, ξ3r)
≈ g(x)

g(ξr)
. (3.4)
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Let bx ∈ Bp(x, t). Then

∥ξr − bx∥ ≤ ∥ξr − x∥+ ∥x− bx∥ ≤ Cr ≤ C(δ(ξr) ∧ δ(bx)),

and so Lemma 2.2 gives
g(ξr) ≈ g(bx). (3.5)

By (3.4) and (3.5), we have

Γ(x, t; y, 0) ≤ C
g(x)

g(bx)
Γ(ξr, t+ 2r2; y, 0). (3.6)

We consider two cases:δ(y) ≥ r/16 andδ(y) < r/16.

Case 1:δ(y) ≥ r/16. Let by ∈ Bp(y, t). Then, by Lemma 2.3,

g(by) ≈ g(y).

Since

∥ξr − y∥2 ≥ 1

2
∥x− y∥2 − ∥ξr − x∥2 ≥ 1

2
∥x− y∥2 − Ct,

we have

Γ(ξr, t+ 2r2; y, 0) ≤ 1

{4π(t+ 2r2)}n/2
exp

{
− ∥ξr − y∥2

4(t+ 2r2)

}
≤ C

tn/2
exp

{
−∥x− y∥2

Ct

}
.

These, together with (3.6), yields (1.5).
Case 2: δ(y) < r/16. Let η ∈ ∂Ω be a point such that∥η − y∥ = δ(y) and letby ∈ Bp(y, t).
Applying the adjoint version of the local comparison estimate toΓ(ξr, t + 2r2; ·, ·) andG(η3r, ·),
we have by the same reasoning as for (3.6) that

Γ(ξr, t+ 2r2; y, 0)

Γ(ξr, t+ 2r2; ηr/2,−r2/2)
≤ C

G(η3r, y)

G(η3r, ηr/2)
≈ g(y)

g(ηr/2)
≈ g(y)

g(by)
. (3.7)

Since

∥ξr − ηr/2∥2 ≥ 1

2
∥x− y∥2 − ∥ξr − x+ y − ηr/2∥2 ≥ 1

2
∥x− y∥2 − Ct,

we have

Γ(ξr, t+ 2r2; ηr/2,−r2/2) ≤
C

tn/2
exp

{
−∥x− y∥2

Ct

}
. (3.8)

Hence (1.5) follows from (3.6), (3.7) and (3.8). Thus Lemma 3.6 is proved.

Lemma 3.7. There existsC = C(n,Ω, T ) > 1 such that ifx, y ∈ Ω and 0 < t < T satisfy
δ(x) ∧ δ(y) < λ

√
t, then the lower bound estimate(1.6)holds.

Proof. The proof is almost the same as that of Lemma 3.6, and we will use the same notations.
Replacing the position ofv = G(·, ξ3r) andΓ(·, ·; y, 0) in (3.4), we have

Γ(x, t; y, 0)

Γ(ξr, t− 2r2; y, 0)
≥ 1

C

G(x, ξ3r)

G(ξr, ξ3r)
≈ g(x)

g(bx)
, (3.9)

wherebx ∈ Bp(x, t). If δ(y) ≥ r/16, theng(by) ≈ g(y) for by ∈ Bp(y, t). Since∥ξr − y∥2 ≤
2∥x− y∥2 + Ct, we obtain (1.6) from (3.9) and Lemma 3.3.

If δ(y) < r/16, then we can apply the adjoint version of the local comparison estimate to
Γ(ξr, t− 2r2; ·, ·) andG(η3r, ·) becauset− 2r2 > r2. Let by ∈ Bp(y, t). Then

Γ(ξr, t− 2r2; y, 0)

Γ(ξr, t− 2r2; ηr/2, r2/2)
≥ 1

C

G(η3r, y)

G(η3r, ηr/2)
≈ g(y)

g(by)
. (3.10)

SinceΓ(ξr, t − 2r2; ηr/2, r
2/2) = Γ(ξr, t − 5r2/2; ηr/2, 0) and∥ξr − ηr/2∥2 ≤ 2∥x − y∥2 + Ct,

we obtain (1.6) from (3.9), (3.10) and Lemma 3.3.
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Proof of Theorem 1.1.Let λ be as in (3.3). As mentioned above, Lemmas 2.3 and 3.3 show that
(1.5) and (1.6) hold whenδ(x) ∧ δ(y) ≥ λ

√
t. Another case was discussed in Lemmas 3.6 and 3.7.

Thus the proof is complete.

SinceΓ(x, t; y, s) = Γ(x, t− s; y, 0), we obtain the following corollary.

Corollary 3.8. There existsC = C(n,Ω, T ) > 1 such that the following lower and upper bound
estimates hold for allx, y ∈ Ω and0 < s < t < T :

Γ(x, t; y, s) ≤ g(x)g(y)

g(bx)g(by)
γC(x− y, t− s),

Γ(x, t; y, s) ≥ g(x)g(y)

g(bx)g(by)
γ 1

C
(x− y, t− s),

wherebx ∈ Bp(x, t− s) andby ∈ Bp(y, t− s).

4 Proof of Corollary 1.3

As stated in Section 2, we observe that for eachξ ∈ ∂Ω there are circular conesV1 andV2 with
vertexξ and apertureθ andπ − θ, respectively, such that

V1 ∩B(ξ, r0) ⊂ Ω ∩B(ξ, r0) ⊂ V2.

The both ofV1 andV2 have the same axis. It is well known that there exists a unique positive
harmonic functionhi on Vi with pole at∞ which vanishes continuously on∂Vi andhi(ξ1) = 1,
whereξr is the point in the intersection of the axis ofV1 and∂B(ξ, r) ∩ Ω. This function has the
form

hi(x) = ∥x− ξ∥τifi(ξ +
x− ξ

∥x− ξ∥
) for all x ∈ Vi, (4.1)

wherefi is a positive function on∂B(ξ, 1) ∩ Vi satisfyingfi(z) ≈ dist(z, ∂Vi) andτi > 0 is a
constant depending only onθ andn. Note thatτ2 ≤ 1 ≤ τ1. It is well known that

1

C
δ(x)τ1 ≤ g(x) ≤ Cδ(x)τ2 for all x ∈ Ω,

and so
1

C

δ(x)τ1

δ(y)τ2
≤ g(x)

g(y)
≤ C

δ(x)τ2

δ(y)τ1
for all x, y ∈ Ω.

Properties ofτi and the above estimate ofg can be found in [14]. We need the following sharper
estimate, which is also known as a consequence of the boundary Harnack principle.

Lemma 4.1. Let ξ ∈ ∂Ω and0 < r < r0/6. Then there existC = C(n,Ω) ≥ 1, α = α(n,Ω) > 0

andβ = β(n,Ω) > 0 with τ2 ≤ β ≤ 1 ≤ α ≤ τ1 such that

1

C

(
t

r

)α

≤ g(ξt)

g(ξr)
≤ C

(
t

r

)β

for all 0 < t < r.

Proof. For the convenience sake of the reader, we give a proof. We use a reduced function of a
nonnegative superharmonic functionu onD relative to a setE ⊂ D defined by

DRE
u (x) = inf{v(x)},

where the infimum is taken over all nonnegative superharmonic functionsv onD such thatv ≥ u

onE. Note thatDRE
u ≤ u onD. See [3, Section 5.3] for details.
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Let ξ ∈ ∂Ω and0 < r < r0/6. Now, we adoptD = V1 ∩ B(ξ, r0), E = B(ξ3r, r sin θ) and
u = g/g(ξr). ThenDRE

u is a positive harmonic function onD \ E vanishing continuously on∂D
such thatDRE

u (ξr) ≈ 1. The boundary Harnack principle implies that

h1(ξt)

h1(ξr)
≤ C

DRE
u (ξt)

DRE
u (ξr)

≤ CDRE
u (ξt) ≤ Cu(ξt) for all 0 < t < r.

Using (4.1), we can estimate the left hand side from below by a constant multiple of(t/r)τ1 . Thus
the lower bound estimate follows.

To prove the upper bound estimate, we substituteD = Ω ∩ B(ξ, r0) andu = h2/h2(ξr) in the
above. Then the boundary Harnack principle gives

g(ξt)

g(ξr)
≤ C

DRE
u (ξt)

DRE
u (ξr)

≤ CDRE
u (ξt) ≤ Cu(ξt) ≤ C

(
t

r

)τ2

.

Thus the lemma is proved.

Remark4.2. If Ω is a Liapunov-Dini domain, then we can takeα = β = 1 in Lemma 4.1. Indeed,
we know from [17] that the Poisson kernel satisfies

P (x, ξ) ≈ δ(x)

∥x− ξ∥n
for all x ∈ Ω andξ ∈ ∂Ω.

Let x ∈ Ω and letξ ∈ ∂Ω be a point such that∥ξ − x∥ = δ(x). Sinceg(x)P (x, ξ) ≈ δ(x)2−n (see
[10, Theorems 1.3 and 1.6]), we have

g(x) ≈ δ(x) for all x ∈ Ω.

Hence we can takeα = β = 1. Also, whenΩ is a bounded Lipschitz domain, there may exist
noncircular conesW1 andW2 with vertexξ, whose shapes are independent ofξ, such that

V1 ∩B(ξ, r0) ⊂W1 ∩B(ξ, r0) ⊂ Ω ∩B(ξ, r0) ⊂W2 ∩B(ξ, r0) ⊂ V2.

Therefore we may takeα ≤ τ1 andβ ≥ τ2.

Lemma 4.3. Letα andβ be as in Lemma 4.1. Then there existsC = C(n,Ω, T ) ≥ 1 such that if
x ∈ Ω and0 < t < T satisfyδ(x) ≤

√
t, then

1

C

(
δ(x)√
t

)α

≤ g(x)

g(b)
≤ C

(
δ(x)√
t

)β

, (4.2)

whereb ∈ Bp(x, t). Moreover, there existsC = C(n,Ω) ≥ 1 such that

1

C
δ(x)α ≤ g(x) ≤ Cδ(x)β for all x ∈ Ω. (4.3)

Proof. Let r =
√
t andb ∈ Bp(x, t). Thenδ(b) ≥ r/κ. Takeξ ∈ ∂Ω with ∥ξ − x∥ = δ(x) ≤ r.

If r < r0/6, then we have by Lemma 4.1

1

C

(
δ(x)

r

)α

≤ g(x)

g(ξr)
≤ C

(
δ(x)

r

)β

.

Since
∥ξr − b∥ ≤ ∥ξr − ξ∥+ ∥ξ − x∥+ ∥x− b∥ ≤ Cr ≤ C(δ(ξr) ∧ δ(b)),

it follows from Lemma 2.2 thatg(ξr) ≈ g(b). Thus (4.2) holds in this case.
If δ(x) < r0/6 ≤ r, then Lemma 4.1 gives

1

C
δ(x)α ≤ g(x)

g(ξr0/6)
≤ Cδ(x)β .

Sinceδ(b) ≥ r0/6κ, we haveg(ξr0/6) ≈ 1 ≈ g(b), and so (4.2) follows.
If δ(x) ≥ r0/6, theng(x) ≈ 1 ≈ g(b). Therefore we can obtain (4.2) easily.
Also, the similar consideration to the last two cases yields (4.3). Thus the lemma is proved.
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Proof of Corollary 1.3.Let x, y ∈ Ω and0 < t < T . Consider four cases:δ(x) ∨ δ(y) ≤
√
t;

δ(x) ≤
√
t < δ(y); δ(y) ≤

√
t < δ(x); δ(x) ∧ δ(y) >

√
t. Then (1.9) and (1.10) follows from

Theorem 1.1 and Lemmas 2.3 and 4.3.

5 Global estimates for kernel functions with pole at boundary
points

This section presents global estimates of kernel functions with pole at parabolic boundary points.
We writeΩT = Ω× (0, T ) and∂pΩT = (∂Ω× [0, T )) ∪ (Ω× {0}) the parabolic boundary ofΩT .
Let (y, s) ∈ ∂pΩ∞. We say that a nonnegative functionK(·, ·; y, s) onΩ∞ is akernel functionat
(y, s) normalized at(x0, T0) if the following conditions are fulfilled:

(i) K(·, ·; y, s) is temperature onΩ∞;

(ii) for each(z, q) ∈ ∂pΩ∞ \ {(y, s)},

lim
Ω∞∋(x,t)→(z,q)

K(x, t; y, s) = 0;

(iii) K(x0, T0; y, s) = 1.

In arguments below, we letT0 = T+1. As shown in [9, 13], there exists a unique kernel function
at each point of∂pΩT if Ω is a bounded Lipschitz domain. Also, in these papers, the kernel function
was obtained by considering quotients of caloric measures. The following lemma shows that the
kernel function can be obtained as a limit function of quotients of the Green functions.

Lemma 5.1. Let y ∈ ∂Ω and0 ≤ s < T . Then there exists a sequence{yj} in Ω converging toy
such that

K(x, t; y, s) = lim
j→∞

Γ(x, t; yj , s)

Γ(x0, T0; yj , s)
. (5.1)

Proof. Let y ∈ ∂Ω and0 ≤ s < T . In view of [19, Theorem 6], we find a sequence{yj} in Ω

converging toy such that the ratioΓ(x, t; yj , s)/Γ(x0, T0; yj , s) converges to a nonnegative temper-
atureh(x, t) in Ω∞ with h(x0, T0) = 1. If t ≤ s, thenh(x, t) = 0 for all x ∈ Ω. We show thath
vanishes continuously at(z, q) ∈ ∂pΩ∞ \ {(y, s)}, whereq ≥ s. Let r > 0 be sufficiently small
such that(z, q) ̸∈ Ψ10r(y, s) and let(x, t) ∈ Ψr(z, q). The adjoint version of the local comparison
estimate implies that for sufficiently largej,

Γ(x, t; yj , s)

Γ(x0, T0; yj , s)
≤ C

Γ(x, t; yr, s− 2r2)

Γ(x0, T0; yr, s+ 2r2)
.

Letting j → ∞, we have

h(x, t) ≤ C
Γ(x, t; yr, s− 2r2)

Γ(x0, T0; yr, s+ 2r2)
.

If (x, t) → (z, q), thenΓ(x, t; yr, s−2r2) → 0, and soh(x, t) → 0. Thereforeh is a kernel function
at (y, s) normalized at(x0, T0). The uniqueness implies thath = K(·, ·; y, s). Thus the lemma is
proved.

As a consequence of Corollary 3.8, we obtain the following estimates.

Theorem 5.2. There existsC = C(n,Ω, T ) > 1 such that for all(y, s) ∈ ∂pΩT and (x, t) ∈ ΩT

with t > s,

K(x, t; y, s) ≤ g(x)

g(bx)g(by)
γC(x− y, t− s), (5.2)

K(x, t; y, s) ≥ g(x)

g(bx)g(by)
γ 1

C
(x− y, t− s), (5.3)

wherebx ∈ Bp(x, t− s) andby ∈ Bp(y, t− s).
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Proof. We show (5.2) only, because the proof of (5.3) is similar. We first consider the casey ∈ ∂Ω

and0 ≤ s < T . Let (x, t) ∈ ΩT with t > s and let{yj} be a sequence inΩ converging toy such
that (5.1) holds. Observe from Corollary 3.8 that the ratioΓ(x, t; yj , s)/Γ(x0, T0; yj , s) is bounded
above by

C
g(x)

g(bx)

g(b0)

g(x0)

g(b0j )

g(bj)

(
T0 − s

t− s

)n/2

exp

{
−∥x− yj∥2

C(t− s)
+
C∥x0 − yj∥2

T0 − s

}
≤ C

g(x)

g(bx)g(bj)

1

(t− s)n/2
exp

{
−∥x− yj∥2

C(t− s)

}
,

wherebx ∈ Bp(x, t− s), b0 ∈ Bp(x0, T0 − s), b0j ∈ Bp(yj , T0 − s) andbj ∈ Bp(yj , t− s). Here the
last inequality follows by Lemmas 2.4, 2.5 and∥x0 − yj∥ ≤ diamΩ. Since there is a subsequence
of {bj} converging to someby ∈ Bp(y, t− s), we obtain from (5.1) that

K(x, t; y, s) ≤ C
g(x)

g(bx)g(by)

1

(t− s)n/2
exp

{
−∥x− y∥2

C(t− s)

}
.

Note from Lemma 2.6 that this inequality is valid for anyby ∈ Bp(y, t− s). Hence (5.2) holds when
y ∈ ∂Ω and0 ≤ s < T . If y ∈ Ω ands = 0, then

K(x, t; y, 0) =
Γ(x, t; y, 0)

Γ(x0, T0; y, 0)
,

and so (5.2) follows from Theorem 1.1.

Corollary 5.3. There existsC = C(n,Ω, T ) > 1 such that for all(y, s) ∈ ∂pΩT and(x, t) ∈ ΩT

with t > s,

K(x, t; y, s) ≤
(

δ(x)√
t− s

∧ 1

)β
1

(δ(y) ∨
√
t− s)α

γC(x− y; t− s),

K(x, t; y, s) ≥
(

δ(x)√
t− s

∧ 1

)α
1

(δ(y) ∨
√
t− s)β

γ 1
C
(x− y; t− s),

whereα andβ are the constants given in Lemma 4.1. Moreover, ifΩ is a Liapunov-Dini domain, we
can takeα = β = 1.

Proof. Let (y, s) ∈ ∂pΩT and let(x, t) ∈ ΩT with t > s. Let bx ∈ Bp(x, t − s). By Lemma 2.3
and (4.2), we have

1

C

(
δ(x)√
t− s

∧ 1

)α

≤ g(x)

g(bx)
≤ C

(
δ(x)√
t− s

∧ 1

)β

. (5.4)

Let by ∈ Bp(y, t− s). If y ∈ ∂Ω, then

δ(by) ≤ ∥by − y∥ ≤ κ
√
t− s ≤ κ2δ(by),

and so (4.3) gives

1

C
(t− s)α/2 ≤ 1

C
δ(by)

α ≤ g(by) ≤ Cδ(by)
β ≤ C(t− s)β/2.

Consider the casey ∈ Ω. Thens = 0. If δ(y) ≤
√
t, then

1

κ

√
t ≤ δ(by) ≤ δ(y) + ∥y − by∥ ≤ (1 + κ)

√
t,

and so
1

C
tα/2 ≤ g(by) ≤ Ctβ/2.
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If δ(y) >
√
t, theng(by) ≈ g(y) by Lemma 2.3, and so

1

C
δ(y)α ≤ g(by) ≤ Cδ(y)β .

Therefore, combining all cases gives

1

C
(δ(y) ∨

√
t− s)α ≤ g(by) ≤ C(δ(y) ∨

√
t− s)β . (5.5)

Hence the corollary follows from Theorem 5.2, (5.4) and (5.5).
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