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The possibility of a new first-order phase transition between solid states with different stiffnesses but
the same crystal symmetry is shown. The transition is not accompanied by spontaneous symmetry
breaking, analogously to the liquid–gas transition. However, it is different from the liquid–gas transition
in the aspect that it occurs between ordered phases. An ionic crystal that has two possible states with
different ionic charges and close cohesive energies is a candidate in which such a transition is realized.
We propose a simple model to describe such a transition, and examine the thermodynamic property in
one, two and three dimensions. Expressions of the transition temperatures, the specific heats, and the
latent heats are derived for a limiting case. We briefly discuss the possible relevance of the present
mechanism of the phase transition to that observed in a biferrocene–fluorotetracyanoquinodimethane
(F1TCNQ) complex.
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The equilibrium state of a many-body system in a heat
bath of temperature T has the minimum free energy F ¼
E � TS, where E and S denote the total energy and the
entropy of the system.1) Therefore, the energy E tends to be
low, and the entropy S tends to be large. Because of the
factor T in the second term of the definition of F, the former
tendency is dominant over the latter at low temperatures,
whereas the latter is dominant over the former at high
temperatures. Hence, in many systems, the phase transition
occurs between the low-temperature ordered phase with a
low energy E and the high-temperature disordered phase
with a large entropy S. Since the disordered state has a
higher symmetry than the ordered state, the phase transitions
in those systems are accompanied by spontaneous symmetry
breaking. For example, the ferromagnetic transition is
accompanied by symmetry breaking in the spin space, while
the superconducting transition is accompanied by that in the
gauge space.

In contrast, the liquid–gas transition is not accompanied
by symmetry breaking, since both of phases have transla-
tional symmetry. In this letter, we demonstrate that the first-
order phase transition without any symmetry breaking can
also occur between two solid states with different stiffnesses.
We refer to those states as the hard and soft states in this
letter. The present transition is a new transition without
symmetry breaking, in the aspect that it occurs between
ordered phases. One of the necessary conditions for the
occurrence of such a phase transition is that the cohesive
energies of those solid states be similar. It is also essential
for the occurrence of the transition that the cohesive energy
be lower and the excitation energies of phonons be higher in
the hard state than in the soft state. This condition is
physically reasonable. For example, it is known that the
sound velocity of longitudinal acoustic phonons is propor-
tional to the inverse of the square root of compressibility.
The symmetries of the hard and soft states can be the same in
the present mechanism of the phase transition. An ionic
crystal with two possible states of ionic charges would be an

example of the system in which such a transition occurs, if
the above conditions are satisfied.

This study was motivated by the recent discovery of a
first-order phase transition in a biferrocene–fluorotetracya-
noquinodimethane (F1TCNQ) complex near 100–150K.2)

This complex has the crystal structure of the CsCl type, and
each biferrocene cation has one FeIII and one FeII ion in the
high-temperature phase, while it has two FeIII ions in the
low-temperature phase.2,3) Hence, it has been argued that the
high- and low-temperature states are ionic crystals with ionic
charges of �1 and �2, respectively. The magnitudes of the
Curie constants in the high- and low-temperature phases are
explained very well by this physical picture.2) It seems
impossible, because of the redox potential energy, to assume
a physical picture for the high-temperature phase in which
the cations with two FeIII ions and those with two FeII ions
are randomly distributed with the probability of 1=2.3)

Furthermore, the ionic charges tend to be uniform in the
ionic crystal so that the static Coulomb energy and the lattice
deformation energy are lowered. Therefore, the entropy
difference at the transition point is not the entropy due to the
random distribution of the ionic charges at high temper-
atures. It has also been discussed that the entropies of the
electrons in the high- and low-temperature phases are the
same.3,4)

Motivated by the discovery of the above-described
compound, we examine a system in which the ionic charges
are uniformly distributed over all N lattice sites in both the
high- and low-temperature phases. Hence, we introduce a
macroscopic variable s, which represents the soft and hard
phases by s ¼ 0 and 1, respectively. In this model, the
entropy difference at the transition temperature is attributed
to the phonons, i.e., the lattice vibrations, which is
appropriate for the biferrocene–F1TCNQ complex, as dis-
cussed above. We define the cohesive energy per site �ðsÞ and
the frequency !ðsÞ

q� of the phonon of mode � and crystal
momentum q in state s. Therefore, the Hamiltonian is
expressed as

LETTERS

Journal of the Physical Society of Japan

Vol. 74, No. 3, March, 2005, pp. 823–826

#2005 The Physical Society of Japan

823



H ¼ N�ðsÞ þ
X
q�

h�!
ðsÞ
q� n̂nðsÞq� þ

1

2

� �
; ð1Þ

where n̂nðsÞq� denotes the phonon number operator. We express
the difference in the cohesive energies per site with
corrections due to the zero-point fluctuations as

� ¼ �ð0Þ � �ð1Þ þ N�1
X
q�

1

2

�
h�!

ð0Þ
q� � h�!

ð1Þ
q�

�
: ð2Þ

From the definition of s, we assume that � > 0 and
!ð1Þ
q� > !ð0Þ

q� , which is appropriate for the biferrocene–
F1TCNQ complex, because the crystal becomes harder for
higher ionic charges. We disregard intramolecular vibra-
tions, because they are irrelevant to the present phase
transition.

The free energy is calculated as F ¼ �kBT lnZ, where Z

denotes the partition function Z ¼ Trðe��HÞ with � ¼
1=kBT . Using eq. (1), we obtain

FðsÞ ¼ �sN�þ kBT
X
q�

ln
�
1� e��h�!

ðsÞ
q�
�
; ð3Þ

where we have omitted constant terms. Equation (3) can be
rewritten as FðsÞ ¼ EðsÞ � TSðsÞ in terms of

EðsÞ ¼ �sN�þ
X
q�

h�!
ðsÞ
q�n

ðsÞ
q�

SðsÞ ¼ �kB
X
q�

nðsÞq� ln n
ðsÞ
q� � ð1þ nðsÞq�Þ lnð1þ nðsÞq�Þ

h i
;

ð4Þ

where nðsÞq� ¼ 1=ðe�h�!
ðsÞ
q� � 1Þ. We define the free energy per

site as f ðsÞ � FðsÞ=N. We refer to the sets of modes � of the
acoustic and optical phonons as Mac and Mop, respectively.
We adopt the Debye approximation for the acoustic
phonons. Hence, we set !ðsÞ

q� � c�jqj for � 2 Mac. Further-
more, we set !ðsÞ

q� � !ðsÞ
� for the optical phonons of � 2 Mop,

where !ðsÞ
� does not depend on q, as in the Einstein model.

Therefore, eq. (3) is rewritten as

f ðsÞ ¼ �s�þ facðsÞ þ fopðsÞ ð5Þ

with

facðsÞ ¼ kBT
X
�2Mac

N�1
X
q

ln
�
1� e��h�!

ðsÞ
q�
�
;

fopðsÞ ¼ kBT
X
�2Mop

ln
�
1� e��h�!

ðsÞ
�
�
:

ð6Þ

The first-order transition temperature Tc is determined from
the condition Fðs ¼ 1Þ ¼ Fðs ¼ 0Þ, which is rewritten as

�c� ¼
X
�2Mac

N�1
X
q

ln
1� e��ch�!

ð1Þ
q�

1� e��ch�!
ð0Þ
q�

þ
X
�2Mop

ln
1� e��ch�!

ð1Þ
�

1� e��ch�!
ð0Þ
�

;

ð7Þ

where �c � 1=kBTc.
For the acoustic phonons, the summation of an arbitrary

function Gð!ðsÞ
q�Þ of the form N�1

P
q Gð!ðsÞ

q�Þ is replaced withZ
ddq

ð2�Þd
Gð!ðsÞ

q�Þ �
Z !ðsÞ

D�

0

d!�ðsÞd�ð!ÞGð!Þ; ð8Þ

where d, �ðsÞd� and !ðsÞ
D� denote the dimensions of the system,

the density of states of the acoustic phonons, and the Debye
frequency. Since �ðsÞd�ð!Þ / !d�1 in the Debye model and

N�1
P

q 1 ¼ 1, we obtain �ðsÞd�ð!Þ ¼ d!d�1=ð!ðsÞ
D�Þ

d. Here, it
is convenient to define the function

AdðtÞ � �
Z 1

0

dp pd�1 lnð1� e�p=tÞ: ð9Þ

We can rewrite fac as facðsÞ ¼ �kBTd
P

�2Mac
AdðtðsÞ� Þ, where

tðsÞ� � kBT=h�!
ðsÞ
D�. It is easy to derive

AdðtÞ ¼ td�ðdÞ�ðd þ 1Þ � �ðdÞ
Xd
k¼1

tkgkþ1ðtÞ
�ðd � k þ 1Þ

; ð10Þ

where � and � denote the gamma function and Reimann’s
zeta function (�ð2Þ ¼ �2=6, �ð3Þ ¼ 1:202 � � �, �ð4Þ ¼ �4=90),
and the function gkðtÞ is defined as gkðtÞ �

P1
n¼1 e

�n=t=nk ¼
Oðe�1=tÞ. Therefore, we obtain the following expression for
the acoustic phonon part of the free energy,

facðsÞ ¼
X
�2Mac

h�!
ðsÞ
D�

�ff ðdÞac ðtðsÞ� Þ; ð11Þ

with

�ff ðdÞac ðtÞ ¼ d!
Xd
k¼1

tkþ1 gkþ1ðtÞ
ðd � kÞ!

� �ðd þ 1Þ�k;d
� �

: ð12Þ

We consider three possible cases: (1) a case in which the
acoustic phonons are relevant and the optical phonons are
negligible (i.e., !ðsÞ

� � T for � 2 Mop), (2) a case in which
the optical phonons are relevant and the acoustic phonons
are negligible (i.e., !ðsÞ

D� � T for � 2 Mac), and (3) a case in
which both types of phonons are relevant at the same time.
For simplicity, we consider a system in which there are one
cation and one anion in a unit cell. In this case, the acoustic
and optical phonons have three modes, because the ions
oscillate in three dimensional space, even when the crystal
structure is of low dimension. Furthermore, we set !ðsÞ

� ¼
!ðsÞ
op and !ðsÞ

D� ¼ !ðsÞ
D , which do not depend on �, as an

example, because their values for the biferrocene–F1TCNQ
complex are unknown at present. Hence, the summationsP

�2Mac
and

P
�2Mop

only result in factor 3. These simpli-
fications do not cause any qualitative difference in the
present mechanism of the phase transition.

First, we examine case (1), in which the acoustic phonons
are relevant. The temperature dependences of the free
energies for s ¼ 1 and s ¼ 0 are shown in Fig. 1. As an
example, we set � ¼ 0:1h�!

ð0Þ
D and !ð1Þ

D ¼ 1:1!ð0Þ
D . The

curves of the free energies for s ¼ 0 and s ¼ 1 cross at a
finite temperature in any dimension. This result indicates the
occurrence of the first-order phase transition, since the state
with the lower free energy is realized at each temperature. At
high temperatures, the soft state occurs since the entropy due
to the lattice vibrations overcomes the increase in energy.

In this case, we can omit the second term of eq. (7). Then
we obtain

�c� ¼ 3d Adðtð0Þc Þ � Adðtð1Þc Þ
� �

; ð13Þ

where tðsÞc ¼ kBTc=h�!
ðsÞ
D . Figure 2 shows the numerical

solutions of eq. (13). It is found that the phase transition
occurs at a finite temperature in any dimension, as long as
� > 0 and !ð1Þ

op > !ð0Þ
op . The transition temperature is higher

in higher dimensions, although the dependence of Tc on the
dimensionality is not very strong. When the value of � is
fixed, the transition temperature Tc increases as the ratio
!ð1Þ
op =!

ð0Þ
op decreases and approaches 1.
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When kBT � h�!
ðsÞ
D � h�!ðsÞ

op , the free energy per site is
expressed as

f ðsÞ ¼ �s�� 3d! �ðd þ 1Þh�!ðsÞ
D

kBT

h�!
ðsÞ
D

 !dþ1

; ð14Þ

in d dimensions. Hence, we obtain the entropy and the
specific heat as

S ¼ 3ðd þ 1Þ! �ðd þ 1ÞNkB
kBT

h�!
ðsÞ
D

 !d

;

CV ¼ 3dðd þ 1Þ! �ðd þ 1ÞNkB
kBT

h�!
ðsÞ
D

 !d

;

ð15Þ

respectively. The transition temperature is derived as

Tc ¼
1

kB½3d! �ðd þ 1Þ�
1

dþ1

�

ðh�!ð0Þ
D Þ�d � ðh�!ð1Þ

D Þ�d

" # 1
dþ1

; ð16Þ

when � � h�!
ð0Þ
D . h�!

ð1Þ
D . We obtain the latent heat at the

transition temperature as

Q ¼ ðd þ 1ÞN�: ð17Þ

Next, we examine case (2), in which the optical phonons
are relevant and they all have the same frequency. The
temperature dependences of the free energies for s ¼ 1 and
s ¼ 0 are shown in Fig. 3. We set � ¼ 0:1h�!

ð0Þ
D and !ð1Þ

op ¼
1:1!ð0Þ

op , as an example. The curves of the free energies of
s ¼ 0 and s ¼ 1 cross at a finite temperature. Hence, it is
found that the first-order transition occurs between the soft
phase at high temperatures and the hard phase at low
temperatures. The free energies when both the acoustic and
optical phonons contribute [i.e., case (3)] are also plotted
in Fig. 3. The transition temperature is lower than that when
the acoustic phonons are irrelevant, because the entropy
increases as the number of the relevant phonon modes
increases.

In case (2), eq. (7) for the transition temperature Tc is
simplified to

�c� ¼ 3 ln
��
1� e��ch�!

ð1Þ
op
�
=
�
1� e��ch�!

ð0Þ
op
��
: ð18Þ

Figure 4 shows the numerical solution of eq. (18), and the
latent heats calculated with eq. (4). When � > 0 and
!ð1Þ
op > !ð0Þ

op , we obtain a finite transition temperature. The
transition temperature does not depend on the dimension-
ality. When the value of � is fixed, the transition temper-
ature Tc increases as the ratio !ð1Þ

op =!
ð0Þ
op decreases, as in

case (1). Since Fð1Þ ¼ Fð0Þ at T ¼ Tc, we have Q ¼
½TSð0Þ � TSð1Þ�Tc ¼ ½Eð0Þ � Eð1Þ�Tc 	 N�. It is analytically
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Fig. 1. Temperature dependences of the free energies when the acoustic

phonons are relevant. The solid and dashed curves correspond to s ¼ 0

and s ¼ 1, respectively. The labels 1D, 2D and 3D indicate one, two and

three dimensions, respectively.
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Fig. 2. Transition temperatures when the acoustic phonons are relevant.

(a) �=!ð0Þ
D ¼ 0:1 and (b) �=!ð0Þ

D ¼ 0:5. The solid, dashed and dotted

curves show the results in three, two and one dimensions, respectively.
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Fig. 3. Temperature dependences of the free energies (a) when only the

optical phonons are relevant, and (b) when both the acoustic and optical

phonons are relevant. The solid and dashed curves correspond to s ¼ 0

and s ¼ 1, respectively. We set � ¼ 0:1!ð0Þ
op and !ð1Þ

op ¼ 1:1!ð0Þ
op . Fur-

thermore, for curves (b), we set !ð0Þ
D ¼ !ð0Þ

op and assumed a three-

dimensional system.
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verified that Q increases as the ratio !ð1Þ
op =!

ð0Þ
op increases. It is

found, from the numerical results, that Q=N is of the order of
kBTc in a large area of parameter space.

We obtained sharp transitions, as described above.
However, the transition in the present compound has a
finite width of 
50K.2) This can be explained by the effect
of inhomogeneity of the ionic charge distribution in the
temperature region of the transition. A study of this effect
will be presented in a separate paper.5)

The valence transition observed in the compound
YbInCu4

6,7) is a similar phenomenon. In this compound, it
was observed that the first-order transition from the high-
temperature phase with Yb3þ to the low-temperature phase
with Yb2:9þ occurred at TV � 42K. Hence, the difference in
the valence number is much smaller than that in the
transition of the biferrocene–F1TCNQ complex. Further-
more, the electron state changes qualitatively around the
transition temperature in YbInCu4. For example, the
magnetic susceptibility changes from that described by the
Curie law to the Pauli paramagnetic susceptibility. Hence,
the transition in YbInCu4 seems different from that in the
present compound.8)

The neutral-ionic transition observed in the TTF–chloranil
compound9,10) was also accompanied by changes of the ionic
charges from �0 to �1. However, since the transition was
accompanied by the spin-Peierls transition, the lattice
symmetry changed at the transition point. Furthermore, the
electron state also changed qualitatively there. Therefore, the
neutral-ionic transition also seems quite different from the
transition in the present compound.

In conclusion, it has been shown that the first-order phase
transition without any symmetry breaking can occur between

hard and soft solid states. An ionic crystal which has two
possible states with different ionic charges would be a
typical example of this phenomenon, if its cohesive energies
are similar. The transition occurs between the high-temper-
ature state with a high energy and a large entropy and the
low-temperature state with a low energy and a small entropy,
as in other phase transitions. The difference in the entropies
at the transition temperature is attributed to the phonons.
Both the optical and acoustic phonons can be relevant to the
phase transition. The present theory is the only one proposed
to explain the mechanism of the transition in the biferro-
cene–F1TCNQ complex at present, to the author’s knowl-
edge. However, its quantitative confirmation based on future
experimental data, such as phonon frequencies, remains as a
topic of a future study.
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