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We derive critical field Hc2 equations for antiferromagnetic s-wave, dx2-y2-wave, and dxy-wave supercon-
ductors with effective-mass anisotropy in three dimensions, where we take into account �i� the Jaccarino-Peter
mechanism of magnetic-field-induced superconductivity �FISC� at high fields, �ii� an extended Jaccarino-Peter
mechanism that reduces the Pauli paramagnetic pair-breaking effect at low fields where superconductivity and
an antiferromagnetic long-range order with a canted spin structure coexist, and �iii� the Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO or LOFF� state. As an example, experimental phase diagrams observed in organic super-
conductor �-�BETS�2FeBr4 are theoretically reproduced. In particular, the upper critical field of low-field
superconductivity is well reproduced without any additional fitting parameter other than those determined from
the critical field curves of the FISC at high fields. Therefore, the extended Jaccarino-Peter mechanism seems to
occur actually in the present compound. It is predicted that the FFLO state does not occur in the FISC at high
fields in contrast to the compound �-�BETS�2FeCl4, but it may occur in low-field superconductivity for s-wave
and dx2-y2-wave pairings. We also briefly discuss a possibility of compounds that exhibit unconventional
behaviors of upper critical fields.
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I. INTRODUCTION

Recently, magnetic-field-induced superconductivity
�FISC� has been observed in organic superconductors �-
�BETS�2FeCl4 and �-�BETS�2FeBr4,1–3 where BETS is bis-
�ethylenedithio�tetraselenafulvalene. In these salts, localized
spins on Fe3+ exhibit antiferromagnetic long-range order at
ambient pressure at low temperatures. The FISC in these
compounds is considered to be due to the Jaccarino-Peter
mechanism,4,5 where the localized spins are aligned uni-
formly at high fields. Konoike et al. have observed in the
compound �-�BETS�2FeBr4 that superconductivity coexists
with the antiferromagnetic long-range order in a low-field
region around the zero field.3 They have fitted the experi-
mental phase diagrams by Fisher’s theory6 based on the
Jaccarino-Peter mechanism. The resultant upper critical field
of low-field superconductivity is much smaller than their ex-
perimental data. They have suggested that the reason for the
discrepancy is that the Jaccarino-Peter-Fisher theory does not
take into account the antiferromagnetic long-range order at
low fields.3

In recent works, one of the authors has extended the
Jaccarino-Peter mechanism to antiferromagnetic supercon-
ductors with canted spin structures in magnetic fields.7,8 The
canted spin structure generates the ferromagnetic moments
that create exchange fields acting on the conduction electrons
through Kondo interactions. If the Kondo interactions are
antiferromagnetic, the exchange fields partly cancel the Zee-
man energy. As a result, the Pauli paramagnetic pair-
breaking effect can be largely reduced, and the upper critical
field can exceed the Pauli paramagnetic limit �Chandrasekhar
and Clongston limit�.9 This mechanism occurs even in the
presence of the orbital pair-breaking effect.8 We call this
mechanism an extended Jaccarino-Peter mechanism in this
paper. Since the canted antiferromagnetic phase occurs in the
compound �-�BETS�2FeBr4 for H �c,3,10 we apply the
mechanism to this compound.

In the compound �-�BETS�2FeBr4, the FISC has been ob-
served both for H �c and H �a.3 The phase diagrams for H �c
and H �a are rather different, and it is attributed to the aniso-
tropy of the Fermi surface and the Kondo interactions be-
tween the localized spins and the conduction electrons. We
take into account the Fermi surface anisotropy by effective
masses.

The effective-mass model was introduced in Ginzburg-
Landau equations by Ginzburg.11,12 Hohenberg and
Werthamer13 pointed out that detailed structures of the Fermi
surface affect the upper critical field. Rieck and Scharnberg14

and Langmann15 obtained general equations for arbitrary
Fermi surfaces. Xu et al.16 and Kim et al.17 calculated the
upper critical fields of mixed d-wave and s-wave supercon-
ductors with effective-mass anisotropy. Recently, Kita and
Arai18 have formulated an equation for the upper critical
field, taking into account the Fermi surface anisotropy and
the gap anisotropy on the basis of the Rieck and Scharnberg
theory.14 They have performed the quantitative calculations
of the upper critical fields for type-II superconductors Nb,
NbSe2, and MgB2 using Fermi surfaces obtained by first-
principles calculations.18

A theory of the upper critical field for layered supercon-
ductors has been proposed by Lebed and Yamaji,19 and de-
veloped by Lebed and Hayashi.20 They have found that when
the layer spacing is large, the upper critical field exhibits a
reentrant transition or an enhancement at low temperatures
in the quantum region, due to an effect of dimensional cross-
over induced by the magnetic field.19 In the compounds
�-�BETS�2FeBr4, however, since the upper critical field of
the low-field superconductivity did not exhibit either a reen-
trant transition or an enhancement in the experimental phase
diagrams, the dimensional crossover does not seem to take
place. Therefore, from a phenomenological consideration,
we use the effective-mass model as an approximation instead
of strict equations in Refs. 19 and 20. The effective-mass
model is adequate in the Ginzburg-Landau region for layered
superconductors.

PHYSICAL REVIEW B 74, 024518 �2006�

1098-0121/2006/74�2�/024518�10� ©2006 The American Physical Society024518-1

http://dx.doi.org/10.1103/PhysRevB.74.024518


In this paper, first, we derive critical field equations for
s-wave, dx2-y2-wave, and dxy-wave superconductors with
effective-mass anisotropy in three directions, taking into ac-
count both orbital and paramagnetic pair-breaking effects.
Secondly, we take into account the extended Jaccarino-Peter
mechanism. Lastly, we reproduce the phase diagrams of
�-�BETS�2FeBr4 including both the FISC and low-field su-
perconductivity.

We also examine the possibility of the FFLO state. The
FFLO state has extensively been studied21 since pioneering
works by Fulde and Ferrell, and Larkin and Ovchinnikov.22

The state is taken into account by an extension of the BCS
mean-field theory to include the possibility of finite center-
of-mass momenta q’s. In this study, we adopt a model in
which q �H is assumed following Gruenberg and Gunther,23

since we consider the situation in which substantial orbital
pair-breaking effect is present. In the organic compounds
�-�BETS�2FeCl4, the possibility of the FFLO state in the
FISC has been pointed out by Uji et al.1 and Balicas et al.,2

and also examined theoretically.24,25 The shape of the phase
boundary of the FISC is well reproduced by taking into ac-
count the FFLO state.25 Tanatar et al. have also argued that
the FFLO state may occur in �-�BETS�2GaCl4 from their
experimental data.26 Recently, the quasi-two-dimensional
heavy-fermion superconductor CeCoIn5 has been believed to
exhibit the FFLO state.27–31 Adachi and Ikeda32 and Won et
al.33 have calculated the critical fields for dx2-y2-wave pairing
taking into account the FFLO state in connection with
CeCoIn5.

This paper is constructed as follows. In the next section,
we extend the theory of the critical field to the systems with
anisotropic Fermi surfaces. The s-wave, dx2-y2-wave, and
dxy-wave pairing superconductors are examined. In Sec. III,
we take into account the extended Jaccarino-Peter
mechanism.7,8 In Sec. IV, we apply the present theory to the
organic superconductor �-�BETS�2FeBr4. We compare ex-
perimental and theoretical phase diagrams. The final section
is devoted to the summary and a discussion.

II. UPPER CRITICAL FIELD IN SYSTEMS WITH
EFFECTIVE-MASS ANISOTROPY

In this section, we derive critical field equations for
s-wave, dx2-y2-wave, and dxy-wave superconductors with an
effective-mass anisotropy. We consider the electron system
with the energy dispersion
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2
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+
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2
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+
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2mz
= �
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and the pairing interaction

H� =� d3r� d3r��↑
†�r��↑�r�V�r − r���↓

†�r���↓�r�� , �2�

where we have defined p= �p1 , p2 , p3�= �px , py , pz� and intro-
duced anisotropic effective masses mx=m1, my =m2, and mz
=m3. In the magnetic field H=B=rotA, the Hamiltonian is
written as

H = H0 + Hm + H�, �3�

where

H0 = �
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� d3r��
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Hm = −� d3r�eH · ��
���

��
†�r���������r�� . �4�

Here, ���r� denotes the field operator which annihilates an
electron of spin � at a point r��x ,y ,z���x1 ,x2 ,x3�. We
have defined the electronic magnetic moment �e=−ge�B /2
with the Bohr magneton �B= � 	e 	 / �2mc� and the g factor
of the conduction electrons ge. We use the units such that
c=kB= � =1 unless it is explicitly expressed.

We define the Sz axis in the spin space along the direction
of H. We should note that the Sz axis does not necessarily
coincide with the z axis of the electron coordinate depending
on the direction of the H. Therefore, we have

Hm = − �
�
� d3r �h��

†�r����r� , �5�

where h��eH with H= 	H	, and �= +1 and −1 for up and
down spin states, respectively.

We apply the BCS mean-field approximation to the inter-
action Hamiltonian �2� as

H� = −� d3r� d3r�
	↓�r,r���↑
†�r��↓

†�r��

+ 	↓
*�r,r���↓�r���↑�r�� , �6�

defining the order parameter

	−��r,r�� � − V�r − r����−��r�����r�
 . �7�

We define the center-of-mass coordinate R= �r+r�� /2 and
the relative coordinate �=r−r�, and redefine the gap func-
tion as 	−��R ,��. By following the procedure of Refs. 34
and 35, we obtain the linearized gap equation

	−��r,p� = − T�
n
� d3p�

�2
�3 � d3� exp�ip� · ��V�p − p��

�G�
�0��− p�,− i�n� � d3p�

�2
�3

�exp�ip� · �� G−�
�0��p�,− i�n�

� exp�i� · �� 	−��r,p�� �8�

near the second-order phase-transition point. We could ex-
amine both orbital and paramagnetic pair-breaking effects
with Eq. �8�. In the derivation of Eq. �8�, it is assumed that
the spatial variation of vector potential A is sufficiently slow.
Therefore, the order parameter becomes a slowly varying
function of the center-of-mass coordinate. We have defined
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� = − i � �−
2e

c
A�r� , �9�

the Matsubara frequencies �n= �2n+1�
T with integer n
=0, ±1, ±2, . . ., and the free-electron Green’s function

G�
�0��p,i�n� =

1

i�n − ��p� + �h + �
. �10�

We introduce p̃= �p̃x , p̃y , p̃z�= �p̃1 , p̃2 , p̃3� with p̃�

= �m̃ /m��1/2p� so that the dispersion relation becomes isotro-
pic as

��p� = �̃�p̃� �
p̃2

2m̃
=

1

2m̃
�p̃x

2 + p̃y
2 + p̃z

2� �11�

in the p̃ space, where m̃��mxmymz�1/3. We also introduce r̃
= �x̃1 , x̃2 , x̃3�= �x̃ , ỹ , z̃� with x̃�= �m� / m̃�1/2x� and � /�x̃�

= �m̃ /m��1/2� /�x�, so that p ·r= p̃ · r̃. We also define the op-

erator �̃ with

�̃ · �̃ � � · � , �12�

where �= �
1 ,
2 ,
3� and 
̃�= �m� / m̃�1/2
�. We will calculate

the explicit form of �̃ afterward.
We replace 	p̃	 and 	p̃�	 in V�p−p��, 	−��r ,p�, and

	−��r ,p�� with the Fermi momentum p̃F since electrons with
momenta p̃ and p̃� near the Fermi surface mainly contribute
to the gap equation. Therefore, we write V�p−p�� and

	−��r ,p� as V�p̂ , p̂�� and 	−��r̃ , p̂̃�, respectively, with unit

vectors p̂=p / 	p	 and p̂̃= p̃ / 	p̃	.
After simple algebra using Eq. �10�, we obtain

	−��r̃, p̂̃� = − 
T �
	�n	��D

Ñ�0� � d�p̂̃�

4

V�p̂,p̂��

� �
0

�

dte−
	�n	−i�h sgn��n��t

� exp� t

2i
sgn��n�ṽF�p̂̃�� · �̃�	−��r̃, p̂̃�� ,

�13�

where we have defined ṽF�p̃�� p̃ / m̃ and the density of states
at the Fermi energy N�0�� m̃p̃F / �2
2�2�.35 Since Eq. �13�
does not depend on the spin value �, we omit the spin suffix

from now on. By redefining p̃�= tṽF�p̂̃�� /2= tṽFp̂̃� /2 and
summing up the Matsubara frequencies, the gap equation
�13� acquires the form

	�r̃, p̂̃� = −
TN�0�
2ṽF

� d3p̃�V�p̂,p̂��
1 − e−2p̃��D/ṽF

p̃�2sinh�2
Tp̃�/ṽF�

� cos�2p̃�

ṽF

h + p̃� · �̃�	�r̃, p̂̃�� . �14�

It is obvious that if we rewrite the integral variable p̃ as p,
the linearized gap equation �14� is similar to those obtained
by many authors.12–14,34–38 The differences between Eq. �14�
and the equations obtained so far for isotropic systems are

that the vector potential A is scaled as Ã�= �m� / m̃�1/2A� in �̃,
and that the pairing interaction V�p̂ , p̂�� is deformed in the
p̃-space anisotropic superconductivity. The former scale
transformation in A has been studied in Ginzburg-Landau
theory11,12,39 for s-wave pairing. For s-wave pairing, since

V�p̂ , p̂��=V�p̂̃ , p̂̃��, Eq. �14� is exactly reduced to the equa-
tions for the system with the isotropic Fermi surface, except

the scale of A�, which results in the scaling H̃�

= �m� / m̃�1/2H�. Therefore, the only difference due to the
Fermi-surface anisotropy is that the critical field in the �
direction is enhanced or reduced by the factor �m̃ /m��1/2. The
latter deformation of V�p̂ , p̂�� occurs because V�p̂ , p̂��
�V�p̂̃ , p̂̃�� for anisotropic superconductivity. We take into
account the deformation of the pairing interaction in the p̃
space. These changes affect the mass anisotropy dependence
of the critical field.

Now, we derive a more explicit form of the upper critical
field equation. We take the z axis in the direction where the
effective mass is the largest. The compounds with layered
structures with large layer spacing are approximately de-
scribed by the models with mz�mx ,my. For example, in the
application to the organic superconductor �-�BETS�2FeBr4,
we take the x and y axes along c and a axes of the com-
pounds, respectively. We study a quasi-two-dimensional su-
perconductor under magnetic fields parallel to the layers
�H �x or H � y� hereafter. We derive the critical field equations
only for H �x, because those for H � y are obtained by ex-
changing mx and my.

We assume the uniform magnetic field H in the −x direc-
tion parallel to the layers, which is expressed by a vector
potential A= �0,0 ,−Hy�. Then, we obtain the explicit form

of �̃ as

�̃ = �− i �
�

� x̃
, − i �

�

� ỹ
, − i �

�

� z̃
−

2	e	
c

m̃
�mymz

Hỹ�
from Eqs. �9� and �12�. We define the differential operators

�r̃ =
1

�2�x

��̃y − i�̃z� ,

�r̃
† =

1
�2�x

��̃y + i�̃z� , �15�

which satisfy the bosonic commutation relations, where

�x �
m̃

�mymz

2	e	H
c

. �16�

The factor m̃ /�mymz is due to the effective-mass anisotropy.
We consider pairing interactions of the form

V�p̂,p̂�� = − g����p̂����p̂�� , �17�

where ���p̂� denotes the symmetry function of symmetry �
and �=s, dx2-y2, dxy, and so on. The symmetry function ���p̂�
is normalized so that �
���p̂��2
=1, where the average on the
Fermi surface �¯
 is defined by �¯
=�d�p
�0,� ,��
��¯� /�d�p
�0,� ,��, where 
�0,� ,�� denotes the angle-
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dependent density of states on the Fermi surface. The gap
function is proportional to the symmetry function ���p̂� and
expanded by the Abrikosov functions �n�r̃� of the Landau-
level indexes n=0,1 ,2 , . . . as

	�r̃, p̂̃� = �
n=0

�

	n
����p̂��n�r̃�eiq̃x̃. �18�

The Abrikosov functions �n�r̃� are expressed as

�n�r̃� =
1

�n!
��r̃

†�n�0�r̃� , �19�

where �0�r̃� denotes the solution of �r̃�0�r̃�=0. In the gap
function �18�, we have taken into account the possibility of
nonzero q̃ for the FFLO state, where q̃��m̃ /mx�1/2 	q	. The
linearized gap equation �14� can be written as

	n
� = N�0�g��

n�

Enn�
�

	n�
� �20�

with

Enn�
� = �nn�E0

� − Dnn�
� , �21�

where we have defined

E0
� =

T

2ṽF
� d3p̃
���p̂��2 1 − e2p̃�D/ṽF

p̃2sinh�2
Tp̃/ṽF�
,

Dnn�
� = −

T

2ṽF
� d3p̃
���p̂��2 1 − e2p̃�D/ṽF

p̃2sinh�2
Tp̃/ṽF�
ei�n�−n��̃

� ��
j=1

�

dnn�
�j� �p̃, �̃���n�−n,2j + �n�−n,−2j� + dnn�

�0� �p̃, �̃��nn��
�22�

and

dnn�
�j� �p̃, �̃� � exp�−

�x

4
p̃2sin2 �̃� �

k=0

min�n,n�� �−
�x

2
p̃2sin2 �̃�k+j

�
�n ! n�!

k ! �k + 2j� ! 
min�n,n�� − k�!

�cos�2p̃

ṽF
�h +

q̃ṽF

2
cos �̃�� − �nn�� j,0. �23�

More explicit expressions of the matrix elements Dnn�
s ,

D
nn�
dx2−y2

, and Dnn�
dxy are given below. Defining the zero-field

transition temperature Tc
�0�, the linearized gap equation �20�

is written as

log
T

Tc
�0�	n

� = − �
n�=0

�

Dnn�
�

	n�
� . �24�

The transition temperature and the critical field are given by
the condition that Eq. �20� has a nontrivial solution of 	n

� for
the first time when the magnetic field and temperature de-
crease, respectively, where q̃ is optimized.

A. The case of s-wave pairing

For s-wave pairing, we insert �s�p̂�=1 into Eq. �21�. It is
easily verified by integrating over �̃ that Enn�

s =0 for n�n�.
Therefore, the matrix elements Dnn�

s in the linearized gap
equation �24� are expressed as

Dnn�
s = −


T

ṽF
�

0

�

dp̃�
0




sin �̃d�̃
dnn�

�0� �p̃, �̃��nn�

sinh�2
Tp̃/ṽF�
. �25�

B. The case of dx2-y2-wave pairing

We consider dx2-y2-wave pairing interaction given by Eq.
�17� with �dx2−y2�p̂�=C1�p̂x

2− p̂y
2�, where �p̂x , p̂y�

= �px , py� /�px
2+ py

2. The function �dx2−y2�p̂� is rewritten as

�dx2−y2�p̂� = C1
mxp̃x

2 − myp̃y
2

mxp̃x
2 + myp̃y

2 = C1� 2mx

mx + mytan2 �̃ cos2 �̃
− 1� ,

�26�

where we have defined the polar coordinates ��̃ , �̃� taking

the p̃x axis as the polar axis, so that �̃ is measured from the p̃x
axis, and �̃ is measured from the p̃y axis. Therefore, in the
linearized gap equation �24�, the matrix elements D

nn�
dx2−y2

are
written as

D
nn�

dx2−y2
= D

nn�

dx2−y2�0�
�nn� + �

j=1

�

D
nn�

dx2−y2�j���n,n�+2j + �n+2j,n�� ,

�27�

where D
nn�
dx2−y2�j�

is defined by

D
nn�

dx2−y2�j�
= −


T

ṽF
�

0

�

dp̃ �
0




sin �̃d�̃
Cdx2−y2

�j� ��̃�dnn�
�j� �p̃, �̃�

sinh�2
Tp̃/ṽF�
,

�28�

with

Cdx2−y2

�j� ��̃� = �1 +
2�mxmy

mx + my
�� c��̃� − 1

c��̃� + 1
� j

�� j,0 − 2c��̃�

+ 4j
c��̃��2 + 2
c��̃��3� , �29�

and c��̃��1/�1+ �my /mx�tan2 �̃. The matrix equation �24� is
decoupled two sets of equations for 	n

dx2−y2
of even and odd

n’s.

C. The case of dxy-wave pairing

Next, we consider dxy-wave pairing interaction with

�dxy
�p̂� = C2p̂xp̂y = C2

�mxmytan �̃ cos �̃

mx + mytan2 �̃ cos2 �̃
. �30�

The matrix elements Dnn�
dxy take the form
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Dnn�
dxy = Dnn�

dxy�0��nn� + �
j=1

�

Dnn�
dxy�j���n,n�+2j + �n+2j,n�� , �31�

where D
nn�
dxy�j� is defined by

Dnn�
dxy�j� = −


T

ṽF
�

0

�

dp̃�
0




sin �̃d�̃
Cdxy

�j� ��̃�dnn�
�j� �p̃, �̃�

sinh�2
Tp̃/ṽF�
, �32�

with

Cdxy

�j� ��̃� = �1 +
mx + my

2�mxmy
� �2c��̃��1 − 
c��̃��2�� j,0

−
4j


c��̃��2j−1
� c��̃� − 1

c��̃� + 1
� j� . �33�

The order parameter components 	0
dxy and 	1

dxy couple only
with 	2n

dxy and 	2n+1
dxy , respectively, where n=1,2 , . . . . There-

fore the matrix equation �24� for dxy-wave pairing is decou-
pled into two sets of equations for 	n

dxy of even and odd n’s.

III. EXTENDED JACCARINO-PETER MECHANISM

In this section, we review an extended Jaccarino-Peter
mechanism in antiferromagnetic superconductors.7,8 We have
formulated the upper critical field equation of the conduction
electron system in the previous section. Now, we shall intro-
duce a localized spin system that is coupled with the conduc-
tion electron system through the Kondo interaction JK. We
consider a situation in which the antiferromagnetic long-
range order has canted spin structures in magnetic fields.
Then, ferromagnetic moments are induced in the localized
spins and create exchange fields on the conduction electrons.
The exchange fields partly or completely cancel the magnetic
fields in the Zeeman energy terms of the conduction elec-
trons when JK�0. The exchange fields are not real magnetic
fields in the sense that they only modify the Zeeman energy
terms but not the vector potential. On the other hand, the
ferromagnetic moments also create real internal magnetic
fields. However, such internal magnetic fields are weak when
the localized spins are spatially separated from the conduc-
tion electrons. Therefore, we neglect them in this study.

We examine the case in which the antiferromagnetic tran-
sition occurs at a temperature much higher than the super-
conducting transition temperature and thus the magnetic or-
dered state is rigid. Therefore, we neglect modification of the
magnetic structure by occurrence of superconductivity.
Strictly speaking, the localized spin state is modified by the
mobile electrons, and the state of the total system should be
determined self-consistently.40 However, we consider a
model in which such modification has already been included
and the canted spin structure occurs as a result.

We modify the extended Jaccarino-Peter mechanism7,8 for
the system with anisotropic Kondo interactions, introducing
Kondo coupling constants JK

� between the localized spins and
the conduction electrons of the x� component in spin space.
When the magnetic field is oriented to the −x� direction,
where �=1,2 ,3, we replace Hm in Eq. �4� with the effective
Hamiltonian

H̃m = − �
�
� d3r �h̃���

†�r����r� , �34�

where h̃� denotes the effective Zeeman energy. Therefore, in
the critical field equations derived in the previous section,

the Zeeman energy h is replaced with h̃�. For H�HAF, h̃� is
given by

h̃� = �1 −
gszKJK

�

gezJ
� h = �1 −

JK
�

JAF�
�h �35�

with JAF� �gezJ / �gszK�. In Eq. �35�, z, zK, J, and gs denote
number of antiferromagnetic bonds for a given site, number
of lattice sites that participate in the Kondo interaction with
the conduction electrons at r, coupling constant of the ex-
change interaction of the localized spins, and the g factor of
the localized spins, respectively. Here, HAF denotes the criti-
cal field of the antiferromagnetic phase, which is given by

HAF=2zJS̄ /gs�B, where S̄ denotes the magnitude of the lo-
calized spins. Therefore, when 0�JK

��2JAF� , the Pauli para-
magnetic pair-breaking effect is reduced in antiferromagnetic
superconductors.

For H�HAF, since the spins are aligned uniformly, the

effective Zeeman energy h̃� is given by

h̃� = h − zKJK
�S̄ . �36�

Because the second term is a negative constant when JK
�

�0, the present mechanism is reduced to the conventional
Jaccarino-Peter mechanism. The Zeeman energy is com-

pletely compensated at H=zKJK
�S̄ / 	�e 	 �Hcent

� . It is noted
that FISC occurs only when Hcent

� /HAF=JK
� /JAF� �1.7,8

IV. APPLICATION TO AN ORGANIC SUPERCONDUCTOR

In this section, we apply the present theory to the antifer-
romagnetic organic superconductor �-�BETS�2FeBr4 taking
the x and y axes along the crystallographic c and a axes,
respectively. Therefore, we write the effective masses as mx
=mc, my =ma, and mz=mb, and the anisotropic Kondo inter-
actions as JK

1 =JK
c and JK

2 =JK
a . In �-�BETS�2FeBr4, the canted

spin structure was observed when H �c, and we can apply the
extended Jaccarino-Peter theory. However, for the magnetic
field parallel to the magnetic easy axis, i.e., H �a, the canted
spin structure have not been observed and the details of the
metamagnetic transition have not been revealed. Therefore,
we do not apply the present theory to the low-field region for
H �a.

It is convenient to introduce a constant

am � � m̃

mb
�1/4� ṽF

2
Tc
�0��22	e	

c
, �37�

with which �x and �y are expressed as

�x = amH�mc

ma
�1/4�2
Tc

�0�

ṽF
�2

,
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�y = amH�ma

mc
�1/4�2
Tc

�0�

ṽF
�2

. �38�

We also define the strength ratio of the paramagnetic and
orbital pair-breaking effects

rm �
h/2
Tc

�0�

amH
. �39�

We explain the procedure to analyze the experimental
phase diagram with the present theory. Our critical field
equations contain five microscopic parameters: am, mc /ma,
rm, JK

c , and JK
a . First, we fit the experimental data of the

critical field of the FISC for H �c with the parameters am,
mc /ma, rm, and JK

c . Secondly, using the parameter values of
am, mc /ma, and rm determined in the first step, we fit the data
of the FISC for H �a with a single parameter JK

a . It is noted
that all five parameters are determined only from the curves
of the FISC for H �c and H �a. Crudely speaking, the curve
of the FISC can be characterized by three real numbers, that
is, the magnetic field where the transition temperature is
maximum, the maximum transition temperature, and the
width of the magnetic fields at T=0. Therefore, we obtain six
real numbers from the two experimental data of the FISC,
which sufficiently determine all five microscopic parameters.
Lastly, using those five parameters determined in the first and
second steps, we calculate the upper critical field of low-field
superconductivity for H �c, where the canted spin structure
coexists. In this last step, we do not use any additional fitting
parameter.

We carry out this procedure for s-wave, dx2-y2-wave, and
dxy-wave pairings. In Figs. 1–7, we set Tc

�0�=1.4 K and
HAF=4.6 T, which have been observed in the compounds

�-�BETS�2FeBr4. For all pairing symmetries examined, the
theoretical curves agree well with the experimental data, as
shown in Figs. 1–6. In particular, the agreements at low field
for H �c are quantitative, because all parameters are deter-
mined only from the data of the FISC at high fields. In what
follows, we explain the differences depending on the pairing
symmetries.

The results for s-wave pairing are shown in Figs. 1 and 2.
We obtain the effective-mass ratio mc /ma=0.785, which is
reasonable in comparison with the value estimated from the
Shubnikov–de Haas �SdH� oscillations.41,42 It is confirmed
that the FFLO state is not realized in the FISC. In contrast, it
is shown that low-field superconductivity exhibits the FFLO
state at low temperatures.

FIG. 1. Theoretical phase diagram for s-wave pairing in the
magnetic fields parallel to the c axis. Here, SC stands for supercon-
ductivity. The solid and dotted curves show boundaries of supercon-
ductivity in the presence and the absence of the FFLO state, respec-
tively. The closed circles show the experimental data of the
superconducting transition points for H �c in �-�BETS�2FeBr4 by
Konoike et al. �Ref. 3�. The dot-dashed line shows the critical field
of the antiferromagnetic phase.

FIG. 2. Theoretical phase diagram for s-wave pairing in the
magnetic fields parallel to the a axis. The notations are the same as
those in Fig. 1. Since the canted spin structure does not occur for
H �a at low field, the upper critical field of low-field superconduc-
tivity has not been calculated.

FIG. 3. Theoretical phase diagram for dx2-y2-wave in the mag-
netic fields parallel to the c axis. The notation is the same as those
in Fig. 1. The inset shows the theoretical phase diagram below
0.8 K and between 2 and 2.6 T.
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The results for dx2-y2-wave pairing are shown in Figs. 3
and 4. We obtain mc /ma=0.468, which is too small in com-
parison with the value estimated from the SdH
oscillations.41,42 It is confirmed that the FFLO state is not
realized in the FISC. There are bends in the theoretical
curves of the low fields, where the Landau-level indexes n’s
of the optimum solution alternate. The solution near T=0 is
expressed by a linear combination of the Abrikosov func-
tions with odd n’s. In Fig. 3, it is found that there are two
tricritical points in the phase diagram for H �c. One at T
�0.67 K is the critical point of the normal state, the BCS
state with even n’s, and the FFLO state with even n’s, and
another at T�0.32 K is that of the normal state, the FFLO
states with even n’s and odd n’s.

The results for dxy-wave pairing are shown in Figs. 5 and
6. We obtain mc /ma=0.865, which is reasonable in compari-

son with the value estimated from the SdH oscillations.41,42

In this case, the area of the FFLO state is very limited. It is
found that the FFLO state is not realized in the FISC and
low-field superconductivity near T=0. There is a bend in the

FIG. 4. Theoretical phase diagram for dx2-y2-wave in the mag-
netic fields parallel to the a axis. The notation is the same as those
in Fig. 1.

FIG. 5. Theoretical phase diagram for dxy-wave in the magnetic
fields parallel to the c axis. The notation is the same as those in Fig.
1. The inset shows the theoretical phase diagram below 0.8 K and
between 2 and 2.6 T.

FIG. 6. Theoretical phase diagram for dxy-wave in the magnetic
fields parallel to the a axis. The notation is the same as those in Fig.
1.

FIG. 7. Temperature dependence of the magnitudes of the total
pair momentum along the upper critical field curves for �a� s-wave,
�b� dx2-y2-wave, and �c� dxy-wave pairings in the magnetic fields
parallel to the c axis. The sets of parameters for �a�, �b�, and �c� are
the same as in Figs. 1, 3, and 5, respectively.
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theoretical curve, where the parity of the Landau-level in-
dexes n’s alternates. The solution of the odd n’s gives the
highest critical field near T=0.

In Fig. 7, we show temperature dependences of q̃
��m̃ /mc�1/2 	q	 along the upper critical field curves of low-
field superconductivity for s-wave, dx2-y2-wave, and dxy-wave
pairings when H �c. For dx2-y2-wave pairing, it is found that
the q̃ jumps at a temperature where the Landau-level indexes
n of the optimum solution alternate. For dxy-wave pairing, it
is found that the q̃ vanishes for T�0.32Tc

�0�, where the FFLO
state with odd n is unstable.

In a brief summary of this section, experimental results
could be reproduced for all s-wave, dx2-y2-wave, and
dxy-wave pairings. For s-wave pairing, the upper critical
fields of low-field superconductivity are smaller than the ex-
perimental data, but they are improved by taking into ac-
count the FFLO state. The in-plane mass anisotropies are
estimated as mc /ma=0.785, 0.468, and 0.865 for s-wave,
dx2-y2-wave, and dxy-wave pairings, respectively. The results
for s-wave and dxy-wave pairings agree with the value ob-
tained from the SdH oscillations,41,42 whereas the result for
dx2-y2-wave pairing largely deviates from it. We found that
the FFLO state does not occur in the FISC, while it occurs in
low-field superconductivity.

V. SUMMARY AND DISCUSSION

We have studied the upper critical fields of antiferromag-
netic s-wave, dx2-y2-wave, and dxy-wave superconductors
with Fermi surface anisotropy. We have derived the linear-
ized gap equations when the magnetic field is applied paral-
lel to layers, taking into account the effective-mass aniso-
tropy, the FFLO state, and the extended Jaccarino-Peter
mechanism. We have applied the theory to the organic super-
conductor �-�BETS�2FeBr4, and obtained good agreement
between the theoretical and experimental results.

While the agreements have been obtained for all cases of
s-wave, dx2-y2-wave, and dxy-wave pairings, the resultant in-
plane mass ratios mc /ma are different from one another. The
mass ratio for dx2-y2-wave pairing seems too small, although
those for s-wave and dxy-wave pairings are close to the value
estimated from the SdH oscillations.41,42 The mass aniso-
tropy dependence of the pure orbital limits of the upper criti-
cal fields is shown in Fig. 8. The upper critical fields for
s-wave, dx2-y2-wave, and dxy-wave pairings become larger
when the ratio mc /ma decreases. It is found that the upper
critical field is the most influenced for dxy-wave pairing by a
change in the ratio mc /ma, while it is less influenced for
dx2-y2-wave pairing. This is why the resultant ratio mc /ma to
fit the experimental data becomes much smaller for
dx2-y2-wave pairing than for dxy-wave pairing.

This result is physically interpreted as follows. For ex-
ample, we consider the situation that mc /ma�1. The origin
of the orbital pair-breaking effect is the Lorentz force that
acts on electrons. When the magnetic fields are applied along
the c axis, the Lorentz force is the strongest for electrons
near the pa axis, where the Fermi velocity is the largest, in
the two-dimensional momentum space. When the mass ratio
mc /ma decreases with the fixed electron number, i.e., when

the effective mass ma increases, the Fermi velocity in the a
direction decreases. Therefore, the Lorentz force acting on
the electrons on the Fermi surface near the pa axis becomes
stronger and superconductivity is more suppressed when
mc /ma decreases. The order parameter of dx2-y2-wave pairing
has nodes on the pa axis, while that of dxy-wave pairing has
the largest amplitude there. Therefore, dx2-y2-wave pairing is
less affected than dxy-wave pairing by a change in the ratio
mc /ma.

It has been found from Fig. 5 that the FFLO state does not
occur for dxy-wave pairing in low-field superconductivity
near T=0. This result is physically explained as follows.
Since the effective density of states for �-wave pairing is
proportional to 
���p̂��2 in the gap equation, areas of the
Fermi surface near the peak of 
���p̂��2 have a greater effect
on the nesting condition for the FFLO state, but those near
the nodes of 
���p̂��2 have less effect.43 Hence, in the ab-
sence of the orbital pair-breaking effect, the vector q tends to
points in the areas of the Fermi surfaces where 
���p̂��2 ex-
hibits a peak. In this study, however, we adopt the model in
which q �H is assumed due to the orbital pair-breaking ef-
fect. Therefore, for dxy-wave pairing, the Fermi surface nest-
ing is less effective when H � x̂ or ŷ, because the order pa-
rameter has nodes on the px and py axes. In contrast, for
dx2-y2-wave pairing, because the order parameter has peaks
on the px and py axes, the FFLO state occurs in low-field
superconductivity, when H � x̂ or ŷ.

In the application to �-�BETS�2FeBr4, it is found that
the FFLO state is not present in the FISC in contrast to
�-�BETS�2FeCl4, while it is present in low-field supercon-
ductivity. In �-�BETS�2FeCl4, the phase boundary of the
FISC can be well reproduced if the possibility of the FFLO
state is taken into account.25 For the FFLO state to occur, the
orbital pair-breaking effect needs to be sufficiently sup-

FIG. 8. The mass anisotropy dependence of the pure orbital
limits for H �c. The open circles, open diamonds, and open triangles
show the results for s-wave, dx2-y2-wave, and dxy-wave pairings,
respectively. The solid, dotted, and dashed curves are guides to the

eye. Here, H̄c20 denotes the orbital limit Hc20 of the isotropic case
�mc=ma�.
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pressed. In �-�BETS�2FeCl4, this condition seems to be sat-
isfied even at high field due to low dimensionality. In con-
trast, it was suggested that �-�BETS�2FeBr4 has a larger
interlayer electron hopping energy than �-�BETS�2FeCl4.3

Therefore, in �-�BETS�2FeBr4, the orbital effect is substan-
tial at high fields, as verified by comparison of the zero-field
transition temperature and the maximum transition tempera-
ture of the FISC.

The upper critical fields of low-field superconductivity
agree with the experimental data, as shown in Figs. 1, 3, and
5. Further, for s-wave pairing, the agreement is improved if
the FFLO state is taken into account. However, they are
slightly smaller than the experimental data. This discrepancy
may be removed by taking into account a mixing effect in
the presence of the weak triplet pairing interaction, as in the
compounds �-�BETS�2FeCl4.25 A slight discrepancy also oc-
curs in the lower critical fields of the FISC, where the FFLO
state does not occur as explained above. If the mixing effect
occurs, this discrepancy may also be removed.

For dx2-y2-wave and dxy-wave pairings in low-field super-
conductivity, we found an internal transition between the
vortex states with different Landau level indexes n, which is
analogous to internal transitions in a two-dimensional system
in tilted magnetic fields.36 Both the FFLO state and the vor-
tex state with higher n’s originate from the Pauli paramag-
netic effect as discussed in Ref. 36, because in the absence of
Zeeman energy only the vortex state with lower n’s occurs.
Due to the transitions to the FFLO state and the vortex states
with higher n’s, the upper critical fields of low field super-
conductivity exhibit downward convex curves for all pairing
symmetries examined, which agrees with the experimental
data.

We have determined the microscopic parameters only
from the curves of the FISC, and calculated the upper critical
field of low-field superconductivity with those parameter val-
ues without any additional fitting parameters. From the ac-
cordance between the theoretical and experimental results on
low-field superconductivity, the extended Jaccarino-Peter
mechanism7,8 seems to be realized in �-�BETS�2FeBr4. Ap-
plying the extended Jaccarino-Peter mechanism to the same
models with different parameter values, we obtain some un-
usual phase diagrams as shown in Fig. 9. When JK

c =1.5JAF� ,
the transition temperature curve has double peaks. When
JK

c =JAF� , superconductivity occupies large area in the phase
diagram. Similar phase diagrams have been obtained in two-
and three-dimensional systems.8,25 In this study, we con-
firmed that the phase diagrams as obtained above can be
realized in a more realistic model of organic superconduct-
ors. If we control the value of JK by material design, such
critical field curves would be observed.

In the present theory, the effective mass mb is included in
the parameter am. Since we have obtained the value of am,
we can estimate a value of mb, if we have the value of p̃F
appropriate for �-�BETS�2FeBr4.

The upper critical field in low fields for H �a could not be
reproduced by the present theory. It has been found that the
magnetic easy axis of antiferromagnetic long-range order in
low fields is along the a axis,10 and that the metamagnetic
transition occurs at the antiferromagnetic phase boundary
close to the upper critical field.3 In order to reproduce the
upper critical field in low fields for H �a, we need to repro-
duce the localized spin structure. This remains for future
study.

In conclusion, the experimental phase diagrams of the an-
tiferromagnetic superconductor �-�BETS�2FeBr4 are theo-
retically reproduced by the present theory. In particular, the
low-field phase for H �c is well reproduced by the model
parameters that are determined from the critical fields of the
FISC. Therefore, the extended Jaccarino-Peter mechanism
seems to be realized in the present compound at low fields.
Due to this mechanism, some unusual phase diagrams may
occur in compounds with appropriate energy parameters, in
the future.
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FIG. 9. Theoretical predictions of the phase boundary of super-
conductivity for various values of JK

c . The other parameters are
common to Fig. 1. The thin dotted and thin two-dot-dashed curves
show the Pauli paramagnetic and orbital limits, respectively. In this
figure, the FFLO state is taken into account, but modifies the curves
slightly at low temperatures. At the upper critical fields of the FISC
for JK

c =2.5JAF� , the FFLO state does not occur.
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