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The effects of a tilted magnetic field on two-dimensional type-II superconductors of s- and d-
wave pairing are studied. This includes a study of the crossover from vortex states to the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state when the direction of the magnetic field is changed
from perpendicular to the conducting plane to a parallel orientation. The FFLO state is obtained
in the limit of a parallel magnetic field, and vortex phases with a large quantum number n > 0
(a higher Landau level) appear for tilted magnetic fields. At fixed tilt angle, the critical field
exhibits a characteristic gtemperature dependence due to the change of the discrete quantum

number.

The relevance of the results for the observation and the identification of the FFLO

state in the organic and high-T¢ superconductors is discussed.
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§1. Introduction

Fulde & Ferrell) and independently Larkin &
Ovchinnikov?) proposed in 1964 a new inhomogeneous
superconducting state, which is considered the stable
state at high magnetic fields in type-1I superconductors
with a strong Pauli paramagnetic effect. Compared to
the traditional superconducting states this state is sta-
bilized by a gain in spin-polarization energy. The obser-
vation of this state (FFLO state) requires clean type-II
superconductors with a large critical field, such that pair
breaking by the field acting on the spins (Chandrasekar-
Clogston effect) is stronger than the usual orbital pair
breaking which dominates in traditional type-II super-
conductors. A typical field which characterizes the
amount of paramagnetic effects is the Pauli paramag-
netic limit Hp. It is defined as the field at which the gain
in spin-polarization energy in the normal state equals
the superconducting condensation energy at 7' = 0 and
H = 0. If an observed critical field exceeds the Pauli
limit, the only presently available explanations would be
triplet pairing, strong spin-orbit scattering, or a super-
conductor in the FFLO state. Hence, a superconductor
with a critical field exceeding Hp is, in general, a possible
candidate for finding the FFLO state. A direct verifica-
tion of this state requires measuring the specific spatial
variations of the order parameter predicted by FFLO.

Candidates for observing the FFLO state are heavy
fermion superconductors, organic superconductors, and
the layered copper oxide superconductors. These mate-
rials are clean type-II superconductors with a very high
critical field. In fact, Gloos et al.®) have argued that the
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FFLO state was observed in the heavy fermion super-
conductor UPdsAls, although until now there is no di-
rect observation of the specific inhomogeneous structure
of the FFLO state in this compound. In heavy fermion
superconductors the orbital pairbreaking is strongly re-
duced by the very large effective mass (very low velocity)
of the quasiparticle excitations, which leads to a very
small orbital coupling and a very high critical magnetic
field. The observed tricritical temperature® of UPd,Als
is much larger than the theoretical prediction so far, but
can be explained by mixing of singlet and triplet order
parameters, which is a natural consequence of the spatial
oscillations and the Zeeman energy in FFLO supercon-
ductors.®)

Very high critical fields, which seem to exceed the
Pauli paramagnetic limit, have been observed in some
of the organic superconductors.>®) A possible interpre-
tation of these critical fields is in terms of the FFLO ef-
fect, although no direct evidence for the FFLO state has
yet been reported. The origin of the high critical field of
these systems lies in strong anisotropy of the conduction
electron bands, which is a consequence of the layered
crystal structure. A weak coupling of the layers leads to
a very small electron velocity perpendicular to the con-
ducting layers, and consequently to a very small orbital
pairbreaking by magnetic fields oriented along the layers.

Our study in this paper is concerned with the or-
ganic and cuprate layered superconductors. These sys-
tems are good candidates for FFLO superconductivity,
because (1) they are clean type-II superconductors, (2)
the orbital effect can be strongly reduced by applying
the magnetic field parallel to the conducting plane, and
(3) Fermi surface effects are expected to enhance the
critical field of the FFLO state remarkably in quasi-low-
dimensional systems. The FFLO state in quasi-two-
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dimensional (Q2D) compounds has been discussed by
several authors. FEarly studies of the Q2D FFLO su-
perconductor were published by Bulaevskiil®) and by
Aoi et al.lV) They obtained the phase diagram on the
H-T plane, which shows an enhanced critical field of
the FFLO state, especially at low temperatures. Re-
cently, Burkhardt and Rainer studied the FFLO state
below the critical field and the lower critical field.!?
Shimahara'31%) discussed the effects of Fermi surface
structures on the FFLO state, and argued that Q2D or-
ganic superconductors including quasi-one-dimensional
ones with sufficient curvature of the Fermi-surface to sup-
press the nesting instabilities are suited for observation
of the FFLO state.

For ideally two-dimensional (2D) systems the orbital
effect vanishes for magnetic fields pointing exactly along
the conducting planes. For the more realistic Q2D sys-
tems one needs to take into account the following two
points: Firstly, orbital effects may be important in real
materials with an unavoidable finite inter-layer coupling,
even for magnetic fields exactly parallel to the most con-
ductive plane. Secondly, a magnetic field which is not
perfectly oriented along the planes can lead to sizable
orbital effects, even if the interplane coupling can be
neglected. A nonzero perpendicular component of the
magnetic field, even if it is very small, necessarily quan-
tizes the in-plane orbital motion. This effect has serious
consequences, because the structure of the in-plane vor-
tex state competes with the structure of the FFLO state.
Such a competition does not occur in three dimensional
(3D) isotropic systems, where the order parameter can
develop spatial FFLO oscillations in the direction of the
magnetic field, whereas the orbital motion of the vortex
state is perpendicular to the field.!®) Thus, the vortex
state and the FFLO state can coexist in that case. The
situation of layered superconductors with a negligible in-
terlayer coupling was first studied by Bulaevskii.'?) He
showed that a series of vortex states with higher Landau
levels n > O appear because of the strong spin mag-
netic effect when the magnetic field is tilted away from
perpendicular orientation. He also showed by numerical
calculation that the critical field approaches that of the
FFLO state when the parallel orientation is approached.
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which includes the effect of the magnetic field on both
the orbits and the spins. We have defined h = po|H|
and IT = —ikV — 22 A(r), with the electron magnetic
moment po = —gug/2, where ug = hle|/(2mc) and g
are the Bohr magneton and the g-factor, respectively.
vl = vp(p') is the Fermi-velocity, ¢’ is the angle between
the momentum direction p’ and the p,-axis, and V (p, p’)
is the interaction between two electrons with momenta
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Recent works on the combined effects of the spin and
orbital magnetism are by Lebed’,'®) Dupuis,'”) Yin and
Maki,'® Tachiki et al.,'® and Maki and Won.??) Lebed’
calculated the FFLO critical field of Q1D superconduc-
tors in the presence of the orbital effect, and found that
it is much higher than the conventional critical fields.
Maki et al. also discussed the effect of interlayer motion
of the electrons on the upper critical field of a layered
superconductor as a model of the high-T. superconduc-
tors. Matsuo et al.*!) and Shimahara et al.?>?) studied
the orbital magnetic effect in detail in d-wave type-II
superconductors with crystal lattice anisotropy.

In this paper, we extend Bulaevskii’s work on decou-
pled layers in a tilted field, and calculate the H-T phase
diagram for finite tilt angles. We study superconductors
which are strictly 2D apart from a very small interlayer
coupling which suppresses fluctuations and stabilizes a
BCS-like mean field superconductivity. In this sense,
our system is a Q2D. We find characteristic features in
the temperature dependence of the critical field due to
changes of the discrete quantum number n of the vortex
state. We also consider d-wave pairing, which is a widely
accepted candidate for the pairing state in' the organic
and high-T; superconductors, and we compare our result
with that for s-wave pairing. The structure of the vortex
lattice in a high-n state, and its crossover to the FFLO
state will be discussed briefly.

In §2, we formulate the theory of the FFLO state for
s- and d-wave pairing, including orbital effects. In §3,
we show analytically how the order parameter and the
critical field of FFLO state are recovered in the limit of
a parallel magnetic field. It is analytically proved that
the quantum numer n of the vortex state diverges in
this limit, and an expression of n for small tilt angles is
obtained. In 84, we present the phase diagrams in the H-
T plane for various different tilt angles. The last section
is devoted to the summary and discussion. In particular,
we briefly analyse the perspectives for finding the FFLO
state in organic and high-T, superconductors.

§2. Formulation
We start with the linearized gap equation?:15:21-25)
. 1 N
Yy (6,8 coslt{h — Lon(d) - ITHA(r, ), e

p and p’ on the Fermi surface, where p = p/|p| and
P’ =p'/|p'|. The gap function is deﬁned in the same way
as in a previous paper.??) We take units such that & = 1.

We approximate the pairing interaction by V(p,p’) =
~9aYa(P)Ya(D'), so that the gap function has the form
A(r,p) = Aa(7)7a(p), and equation (2.1) can be writ-
ten as

dy’

Sl @)P[L = coslt{h - Sop - YAl (22)
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where T, = 2e7n~lwp exp(—1/goN(0)) is the zero
field transition temperature with the Euler’s constant
v =~ 0.57721.

In this paper, we assume a cylindrical Fermi surface
and set the z- and y-axes in the conducting plane. The
magnetic field lies in the yz plane,

= (07 H//aHJ_)

= (0, H cos gy, H sinby), (2:3)

and, with an appropriate gauge, the vector potential is
given by

A=(A;,0,4,)

2.4
:(—H.Lyv 07 —H//l‘) ( )

T
- log(W)Aa(T) =T

x[1 — cos[ht

The second-order transition temperature and critical
field are given by the solution of this equation with the
minimum eigenvalue.
(i) s-wave case

First, we consider an s-wave pairing interaction,
[vs(P)]*> = 1. In this case the integration over ¢’ in
the gap equation (2.6) eliminates all terms with unequal
powers in n and 7! (off-diagonal terms), and the eigen-
function of eq. (2.6) must be an eigenfunction of ni7.
The Abrikosov functions

67 (2.7)

_ ikx _ kL __1‘5_2
r) = expl-r(y — )

T b 1
T -
o) =" / dt sinh(7Tt)

>3
=
2

x[1 — cos(ht) exp[Tﬁ—t%F K1 Z

with n optimized to give the largest H at fixed T' and
0n.
(i1) d-wave case

Next, we consider dg2_,2-wave pairing interactions
with va(p) = 2(p7 — 5;), i-e, [va(D)]® = 1+ cos(4p).
In this case, the ¢’-integral in eq. (2.6) produces off-
diagonal terms of 1 and 7', because of the term cos(4y)
in [v4(p)]>. We expand the gap function in terms of the
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We define the differential operators, which satisfy

bosonic commutation relations:

1 .
=——(II, — il
r /—‘2,“_( 1 y)
= \/——_(HI +iIT,,)
where k. = 2|e|H | /c. The parameter k| expresses the
strength of the orbital magnetic effect due to the tilted
magnetic field. We should note here that 7 and nf cannot
be used for k; = 0. In terms of 1 and 1, the equation
(2.2) is rewritten as

(2.5)

d /

& )

satisfy the equation nr¢(()k)(r) =0 for any value of the
parameter k. In addition, the boundary condition on
A4 (r) requires real k’s. Hence, the eigenfunctions of n'n
belonging to an integer eigenvalue n are constructed from

qS(()k) as

1
- \/—"(77 ) (bO . (2‘8)
The suﬂix k is omitted in the following, because no mix-
ing of ¢n ’s with different k& occurs in eq. (2.6). Thus,
for s-wave pairing the gap function must be proportional
to one of the ¢,’s. The critical field and temperature are

given by

(- 1) - (2.9)
n 2ol T
7wy ]
and obtain the matrix equation
—log ))A" Z Dy AT (2.11)
n/=0
with
Duns = 6y Dy + Bpmra + Onpan) DL, (212)

where D,,, and DT(:Q, are defined by

on’s as
=3 Algn(r), (2.10)
n=0
D =7rT/occit——i—— [1 — cos(ht) exp[_—1t2v 2]
e o sinh(rTt) T
(=1Fn! 1 ool *
k'2(n—k)'[8 vrta]']

(2.13)
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The resultant transition temperature T = T is given by
the solution of eq. (2.11) with the mininum eigenvalue of
the matrix D = (Dyy). One can see from eq. (2.12) that
A7 is mixed with A7** in eq. (2.11) for any n. Thus,
the A%’s with n = ng,ng + 4,n9 + 8, -- - are all mixed,
where ng can be equal to 0, 1, 2, and 3.

83. Recovery of the FFLO State

In this section, we examine the gap equation in the
limit of a parallel magnetic field and show that the FFLO
state is recovered as the vortex state of infinite n. If
we fix the quantum number n at any finite value, it is
obvious that the critical field of the FFLO state is not
recovered in the limit of the parallel magnetic field, i.e.,
k1 — 0. Taking the limit x; — 0 with any fixed n in
eq. (2.9) for s-wave pairing, and in egs. (2.11), (2.12),
and (2.13) for d-wave pairing, we obtain the equation for
the transition point

_log(ffl;o)—) =7T /Omdtm [1—cos(ht)]. (3.1)

This equation gives only the critical field of the tradi-
tional BCS state when the second-order transition is as-
sumed.

On the other hand, if we consider the same model with
an exactly parallel magnetic field (k. = 0), the critical
field is determined by the appearance of the FFLO state.
Replacing the gap function A,(r) with exp(ig - r) in
eq. (2.1), we obtain the equation for the FFLO critical
field as

oo 2m
_ T \_ 1 dor a2
log( Te® )= 7TT/O dt sinhhthi/O 27 [ra(P)]

x [1 = cos[t{h — %vF -q}]].

(3.2)

The resultant critical field is obtained by optimizing q.

The discrepancy between the critical field in the limit
of k1 — 0 for any fixed finite n and that for k; = 0
leads to the result that the optimum quantum number
n diverges when x; — 0, unless the critical field and
the gap function are singular at x; = 0 as functions of
k1. We prove below that the FFLO critical field and
the order parameter are recovered in this limit of n and
k1. It is also shown that ¢ = |g| of the FFLO state is
expressed in this limit as

=1l 2 .
¢= lim /2k1n(kL), (3.3)
where n(k ) is the optimum n for each %, and thus q is
also optimized in the equation for x; — 0.

It is plausible for the boson operator 7 to satisfy the

equation
7' ¢n = Ve ¢y,

for eigenfunctions of infinitly large n. From the expres-

(3.4)

sion (2.5) of 7, this equation leads to the following two
results. First, by solving eq. (3.4), we obtain

$oo o exp(iq - T) (3.5)

with ¢ = (g cos g, gsinp,0) and ¢ = lim,, 0 V2K 7.
Secondly, n' and n are replaced with /nel¥® and
V/ne~ %0 respectively in the gap equation (2.6). There-
fore, the FFLO critical field equation (3.2) is immedi-
ately recovered. Here, ¢ is optimized so that the critical
field is maximized, corresponding to the optimization of
n. Therefore, if a solution with nonzero ¢ is the opti-
mum solution in the FFLO critical field equation, the
optimized n = n(x ) diverges as n(k1) = ¢/v/2Kk, — o0
when xk; — 0.
Strictly speaking, a correct expression of eq. (3.4) is

(n1)2¢n ~ ne®0 gy, (3.6)

because 1t ¢, o ¢ni1 and ¢, have different spatial sym-
metries. However, as is easily seen, eq. (3.4) and eq. (3.6)
lead to the same result, when we use them in eq. (2.6).
Then, eq. (3.5) is corrected as

oo x cos(g-7) or sin(q-r). 3.7

For the s-wave pairing, since the gap function is pro-
portional to one of ¢,’s as we have seen in the previous
section, it immediately follows that the spatial depen-
dence of the FFLO gap function A,(7) is recovered in
the limit of n — oo. This is confirmed also by the direct
calculation of the gap function. The function 45%’“)(7') is
expressed as

88 (r) = (-1 Ho[VIRL(y - 2]
k1
(3.8
K k
x exp[~ - (y — 27
in terms of the Hermite polynomial
Ha(e) = (—1)re=" /2 S ome' 2
— Z (_1 "n! n—2m (39)
T 4= (n—2m)!12"m! :c
Gz

The behavior of the function ¢$lk20) for large n and small
k1 with a fixed ¢ = 2k n is easily examined for y <
v/2/k,. Since the terms with m such that n — 2m is
much smaller than n are dominant in the summation in
eq. (3.9), we have

o0 ~ (-)F()Feos(qy)  (3.10)
for even n, and
B0 ~ ()T (DFsin(gy)  (3.10)
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Fig. 1. The behavior of A(r) 45%) calculated from eq. (3.8).

The scale of the vertical axis varies with the magnetic field.

for odd n. Therefore, we obtain the FFLO order param-
eter in this limit. The behavior of A(r) « ¢4~ (r) with
a large n is drawn in Fig. 1. It is localized and oscillates
in space within a width several times 1/,/k1 ~ v/2n/q.

In eq. (3.10) and eq. (3.11), the spatial oscillation is in
the direction along the y-axis, because we choose the so-
lution with & = 0. The other directions of q are obtained
by the gauge transformation

A— A=A+ Vy (3.12)

with

X ZH_L[%(Z'Q — y?)sinf cos§ + zysin® 4], (3.13)
where 6 is the angle between the projection of A to the
zy-plane and the z-axis. It is easy to see that the criti-
cal field and temperature are invariant under the gauge
transformation as is expected.

For d-wave pairing it is difficult to calculate the k; —
0 limit of the gap function directly from the expression
(3.8) of ¢, since an eigenfunction of the gap equation is
a linear combination of ¢,’s as in eq. (2.10). However,
the eigenfunction with the minimum eigenvalue satisfies
an equation of the same form as eq. (3.6) for k; — 0, be-
cause the majority of the ¢,’s in the linear combination
must have infinitely large n. If ¢,, with a finite n occupies
a finite fraction of the linear combination of eq. (2.10),
such a fraction reduces the critical field in the kx; — 0
limit, because such terms with finite n’s converges to the
uniform solution in that limit. Thus, linear combina-
tions including terms of finite n’s with finite amplitudes
are not the eigenfunctions with the minimum eigenvalue,

as far as the optimum solution of eq. (3.2) has a non-zero.

g. Therefore, we can replace ' and 7 with /nel¥° and
V/ne~¥° respectively, in eq. (2.6) in the limit of x; — 0.
In this equation, ¢ is optimized as well as g, since the
eigenvalues depend on g for d-wave pairing. Therefore,
the FFLO gap function and critical field are recovered in
the limit of x; — 0. As in the s-wave case the physical
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results do not depend on the choice of the gauge. For the
d-wave case, the expression eq. (2.13) is invariant except
for additional phase factors eT? of D,(;;),, which do not
affect the eigenvalues.

§4. Phase Diagrams

As we have seen in §2, the critical field and tempera-
ture are determined by the first appearance of a high-n
vortex state for magnetic fields not strictly parallel to
the conducting plane. In this section, we examine the
phase diagrams in the H-T plane for the s- and d-wave
cases and for various tilt angles of the magnetic field.

First, we define the parameter r,,, which characterizes
the strength of the orbital magnetic effect relative to that
of the spin magnetic effect, as

Hy

= 4.1
Tm i H ( )
with
|| o
0)
PR — { ~m I (42
2le] Ael(_ve_yop 4 mup
c 27TT(0)
We can take the three parameters, T’/ T , h/Ag, and 7y,

as the essentlal parameters in the gap equation, where
Ao=mn /e’VTc is the zero field gap.

For small %, , the optimum n = n(x ) is roughly esti-
mated as a function of r,, as

_|nlg® 2l 1
=~ 0.561
B7A0’r‘m x4 AO T'm ’

with § = vpq/(2|h|), since ¢ =~ 1/2k,n(x, ). For exam-
ple, we have n ~ 0.56/r,,, at T = 0 in the s-wave case,
because § = 1 and |h¢|/Ap = 1 for the FFLO state when
rm = 0. Hence, for example for r,,, ~ 2, the usual vortex
state with n = 0 occurs at the critical field, while for
rm ~ 0.5, the vortex state with n = 1 occurs. Equa-
tion (4.3) results in that the optimum 7 increases when
the temperature decreases, because ¢ increases. For d-
wave pairing, eq. (4.3) gives the value of n which mainly
contributes to the optimum solution.

First, we examine the s-wave case. In this case, the
tilt angle dependence of the critical field in the ground
state was already obtained by Bulaevskii.'?) We study
the ground state in more detail and, in addition, calcu-
late the critical field for finite temperatures.

Figure 2 shows the result for r,, = 0.5. At each tem-
perature the line with the highest critical field corre-
sponds to the physical critical field. Thus, it is seen
that the vortex state with n = 1 occurs at low temper-
atures in accordance with the above rough estimation,
while the state with n = 0 occurs at high temperatures.
One can see from this figure that the resultant critical
field for r,, = 0.5 is already larger than the Pauli limit
for r,, = 0.

The result for r,, = 0.2 is shown in Fig. 3. It is seen
that vortex states with a higher n occur, and that the
critical field of the ordinary FFLO state for parallel mag-
netic field is approached. The optimum value of the

(4.3)
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Fig. 2. The temperature dependence of the critical field for r, =
0.5 in the s-wave case. The solid lines are the solutions of
eq. (2.9) for fixed n. The physical critical field is the maximum
one at each temperature. The broken and dotted lines show the
Pauli paramagnetic limit of the BCS state with ¢ = 0 and the
critical field of the FFLO state, respectively, in the absence of
the orbital effect, i.e., for r,, = 0.

he/Ag

0 05 1
/7,0

Fig. 3. The temperature dependence of the critical field for r,, =
0.2 in the s-wave case. The definitions of the solid, broken, and
dotted lines are the same as in Fig. 2.

quantum number n of the vortex state at the critical
field increases with decreasing temperature, as discussed
above.

In these figures, we find a characteristic temperature
dependence of the critical field due to the discrete change
of the optimum n. The temperature derivative of the
critical field shows jumps when n changes.

Figure 4 shows the result for r,,, = 0.1. The optimum
quantum number n = 6 at ' = 0 coincides with the
rough estimate given in eq. (4.3). The critical field curve
becomes nearly smooth in spite of the discrete changes of
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T T T T T T

B n=6 _
1_ // n=5 i

0 0.5 1
T/T.©

Fig. 4. The temperature dependence of the critical field for v, =
0.1 in the s-wave case. The solid lines show the results for n =
0,1,2,---6, and the broken lines show the results for n = 7 and
8.

ho/ A

T/T,0

Fig. 5. The temperature dependence of the critical field for r, =

0.05 in the s-wave case. The solid lines show the results for
n =0,1,2,---13, and the broken lines show the results for n = 14
and 15.

n from n = 0 to n = 6. The results for a smaller r,,, are
depicted in Fig. 5. It is found that for T/TC(O) 2 0.05, the
value 7, = 0.05 is sufficiently small so that the critical
field h. is indistinguishable from the FFLO critical field
within the width of the lines. However, they differ for
low temperatures 7'/ TC(O) < 0.05. In particular, the linear
temperature dependence of the FFLO critical field near
T = 0 is not recovered even for r,, = 0.05.

The r,, dependence of the critical field at T = 0 is
drawn in Fig. 6. The curves for n = 1 ~ 6 were already
obtained by Bulaevskii,!®) except for a discrepancy in the
scale of the r,, axis. The figure shows, in addition, the
critical fields for larger n and smaller r,,, and it confirms
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0 05 1
rm

Fig. 6. The rm, dependence of the critical field at 7 = 0 in the
s-wave case. The whole curves at fixed n are drawn for n = 0,
1,2,3,4,5, 6,8, 10, 15, and 20.

T T T T T T T
§ m=0.5 7
L ne=1 " .
) ]
o L i
S e No=0 7
.Co B \\§;¥\\ / B
0.5F Np=2 3 o
L -
- _3 \\_
L Ng= d
I | | | | 1 1 { |
0 0.5 1
T/T,0

Fig. 7. The temperature dependence of the critical field for r, =
0.5 in the d-wave case. The solid lines are the solutions of
eq. (2.11) with fixed ng. The physical critical field is the maxi-
mum one at each temperature. The broken and dotted lines show
the critical field at ry, = 0, for pg = 0 and 7/4, respectively.

numerically the recovery of the FFLO critical field in the
limit of 7, — 0. In this figure, the multipeak structure of
the critical field obtained by Bulaevskii is seen. It is also
found that the critical fields for r,, < 0.74 are larger than
the Pauli paramagnetic limit h, = Ag/v/2 for 7, = 0,
and vortex states with a large quantum number n > 1
occur for v, < 0.84.

Next, we consider the d-wave case. In this case, mixing
between n and n 4 occurs in the linearized gap equa-
tion, as we discussed in §2. The solutions are classified
by mo, which is the smallest value of n in each solution.
When we solve the linearized gap equation (2.11) nu-
merically, we need to set a sufficiently large cutoff n. in
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Fig. 8. The temperature dependence of the critical field for rm =
0.2 in the d-wave case. The definitions of the solid, broken, and
dotted lines are the same as Fig. 7.

ho/Ag

T/T,©

Fig. 9. The temperature dependence of the critical field for r, =
0.1 in the d-wave case. The definitions of the solid, broken, and
dotted lines are the same as Fig. 7.

the summation over n. We set the cutoff n, = ng + 4l
with [, = 5, which gives sufficiently accurate results for
the parameters that we used in this paper. The results
for the d-wave FFLO state at r,,, = 0 were published by
Maki et al.20)

In Fig. 7, the temperature dependence of the critical
field is shown for r,, = 0.5. As in the s-wave case, we
already have a higher critical field for this large value of
Tm than the Pauli paramagnetic limit. Fig. 8 shows the
result for r,, = 0.2. The FFLO critical field with the
optimum q is approached, as r,, becomes smaller. We
find a characteristic temperature dependence due to the
change of the optimum quantum number ng similar to
that of the s-wave case. The mixing of n and n +4 due
to the anisotropy of the d-wave order parameter does not
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Fig. 10. The rm dependence of the critical field at T' = 0 in the
d-wave case. The open and closed circles show the critical field
of the FFLO state with ¢q = 7/4 and 0, respectively.

smear the discrete changes of the temperature derivative
of the critical field.

Figure 9 shows the result for r,, = 0.1. leferently
from the s-wave case the critical field is much smaller
than that for r,, = 0, although the behavior is nearly
smooth. Such slow convergence with respect to r,, is
due to the mixing of n caused by the anisotropy of the
d-wave order parameter. In particular, it is found that
the rapid rise of the critical field of the FFLO state with
g = 0 at low temperatures is not recovered, unless r.,
is much smaller than 0.1, where g4 is the angle between
g and the pg-axis.

The critical field at zero temperature is shown in
Fig. 10. The results for small r,,, < 0.07 are not shown
because they are beyond our numerical accuracies. In
this figure, we find the multipeak structure and the dis-
crete behavior like for s-wave pairing, in spite of the mix-
ing of n’s. It is found that the vortex states with nonzero
n essentially occur for r,, < 0.83.

~

§5. Summary and Discussion

We have studied the combined influence of spin and
orbital magnetic effects on the critical fields of 2D type-
II superconductors in a tilted magnetic field. When the
tilt angle is small, i.e. when the magnetic field is nearly
parallel to the conducting plane, the spin magnetic effect
stabilizes vortex states of higher Landau levels, as first
discussed by Bulaevskii for s-wave superconductors.!?) In
this paper, we presented our calculations of the tempera-
ture dependence of the critical field at various tilt angles
for s-wave and d-wave pairings, the latter of which is a
widely accepted candidate for the type of pairing in or-
ganic and high-T, superconductors. These calculations
shall clarify the cross-over from the traditional vortex
state at perpendicular field to the FFLO state at par-
allel field. We have examined the parallel field limit in
detail, and have proved analytically that the FFLO state
is recovered as a limit of the vortex state.
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When the direction of the magnetic fleld changes from
parallel to perpendicular to the conducting planes, the
ratio 7., defined by eq. (4.1), increases from zero to a
very large value (r,, = 2, ~1). For the parallel magnetic
field (r,, = 0) the spin effect favors the FFLO state,
while for the non-parallel magnetic fields (7, # 0) the
orbital effect favors vortex states, because the orbital mo-
tions of the electrons are necessarily quantized for any
nonzero r,,. The apparent incompatibility of the struc-
tures of the FFLO state at r,,, = 0 and the vortex states
for r,, > 0 is resolved in the following way. The FFLO
state is exactly recovered as the n — oo limit of the vor-
tex states. At temperatures where the FFLO state exists
for fields parallel to the planes (r, = 0), the quantum
number n of the optimum vortex state increases when 7.,
decreases. At other temperatures, the vortex state with
n = 0 remains favored at arbitrary r,,. The relation of
the three quantities n, r.,, and ¢ is given by eq. (4.3) for
small r,,,’s, where n is the optimum quantum number
and ¢ the wave vector of the stable FFLO state in the
limit r,,, = 0.

To illustrate that a strong spin effect results in the
appearance of vortex states with non-zero n, we discuss
the coefficient of the expansion of the gap equation in-
powers of . = 2|e|H /c. Expansion of eq. (2.9) to the
first order in s leads to

'UF K1 h 1

—lo, g(T (0)) = (7TT) F(_f)(n + 5)7 (5‘1)
where the function F'(a) is defined by
oo 2
F(a) = /0 du cos(au) ah(a) (5.2)

This definition implies F'(a) > 0 for a < ap =~ 0.608,
while F(a) < 0 for a > ap. Therefore, for weak spin
magnetic effects such that h/7T < ao, the coefficient of
n is positive on the right hand side of eq. (5.1), and n =0
is the optimum quantum number. On the other hand,
for strong spin magnetic effect such that h/7T > ag, the
coefficient becomes negative, the lowest order expansion
breaks down, and the vortex state with n = 0 is no longer
the optimum solution.

The most remarkable feature of the H-T phase dia-
grams is the rugged behavior of the critical field. The
slope of the critical field curve changes discontinuously
at the temperatures where the optimum n changes. This
behavior occurs also in the d-wave case. In spite of the
mixing of the vortex states with n and n +4, the rugged
behaviors of the critical field as a function of tempera-
ture and the tile angle are not smeared. The calculated
phase diagrams show, in accordance with eq. (3.3), that
the optimum quantum number n increases with the de-
creasing temperature, since § = vpq/(2hc) of the FFLO
state increases. When 7, becomes smaller, the temper-
ature dependence of the critical field becomes smoother.
The rugged behaviors of the critical field as a function of
temperature and tilt angle are helpful for an experimen-
tal identification of the high n vortex state. In particular,
it would be easier to control the temperature for a fixed
tilt angle than to control the tilt angle in a very narrow
region of the order of z,. :



1997)

The critical field curve becomes nearly smooth at
rm S 0.05 ~ 0.1, and especially for s-wave case it
becomes very close to the curve of the FFLO crtical
field. However, for low temperatures, the convergence
to the FFLO critical field is slow, and the typical linear
temperature dependence of the FFLO critical field near
T = 0 in 2D systems is not recovered even for a small
rm = 0.05 ~ 0.1, both in the s- and d-wave cases. For
d-wave pairing, Maki et al.?®) argued that the appear-
ance of the FFLO state is signaled by a rapid rise of
the critical field at low temperatures, when the magnetic
field is applied in the conducting plane. The slope of the
FFLO critical field becomes very steep when the direc-
tion of g changes from g = 7/4 to pq = 0 discretely.
However, depending on the material under consideration,
such behavior is not recovered unless the magnetic field
is applied accurately in the direction parallel to the con-
ducting plane so that r,,, becomes less than a value of
the order of 0.1.

Now, we briefly discuss the organic and high-T, su-
perconductors. The parameter z,, defined by eq. (4.2)
is expressed in terms of the effective mass m* = pp/vr,
the Fermi momentum pg, and the BCS coherence length
fo = 'UF/(TFA()) as

gTC(O) m* 1
Zp = S ——— |
™4 Ay m préo

(5.3)

where T /A¢ = €7/ in the present weak coupling the-
ory. For Q2D organic superconductors, if we assume
& ~ 100 A, a lattice constant a ~ 10 A, m* ~ 3m, and
g ~ 2, as an example, and estimate pp by an equation
pr by mpr?/(2n/a)? ~ 1/4 for quarter filling, then we
have z,, ~ 1/20 as a rough estimate. Therefore, for p,
to be of the order of 0.1 and 0.8 the tilt angle 8y must be
of the order of 0.3(deg) and 2.3(deg), respectively. We
should note that these estimates are very crude, because
we have ignored the interplane electron transfers, and as-
sumed a simplified form of the pairing interactions and
weak coupling theory.

On the other hand, for high-T¢ superconductors, if we
assume & ~ 20 A, a ~ 4 A, m* ~ 2m, and g ~ 2,
7pr? /(472 /a?) ~ 0.5 for nearly half-filling, as an exam-
ple, then we estimate z,, ~ 0.3. Thus, for r,, to be of the
order of 0.1 and 0.8, §; must be of the order of 1.7(deg)
and 13.9(deg), respectively. Therefore, for the rapid rise
due to d-wave pairing®® to appear, the magnetic field
has to be nearly parallel to the conducting plane so that
fu < 1.7(deg), while for the rugged behavior of the crit-
ical field to be observed, one needs 0y < 13.9(deg). If we
take into account that the ratio Ay /Tco) is a few times
7/€e” in the high-T. superconductors, the estimated an-
gles are modified to a few times smaller values. For com-
parison of the theory and experiments, the interplane
transfers of holes are also important at moderate mag-
netic fields, while they are suppressed in the limit of high
magnetic fields, according to Lebed’s arguement.!)
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As a future study, the vortex lattice structure is rel-
evant for the experimental identification of the high-n
vortex states and the FFLO state in the Q2D system,
by the scanning tunneling microscope (STM) technique.
Small interplane electron transfers and the Fermi surface
anisotropy, which are inevitable in the real materials, are
also important subjects to study.
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