
Academic Editor: Miguel Rubi

Received: 31 October 2024

Revised: 14 January 2025

Accepted: 16 January 2025

Published: 22 January 2025

Citation: Ozawa, H.;

Murayama-Ogino, S.; Kleidon, A.

Thermodynamics of Morphogenesis:

Beading and Branching Pattern

Formation in Diffusion-Driven Salt

Finger Plumes. Entropy 2025, 27, 106.

https://doi.org/10.3390/e27020106

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Thermodynamics of Morphogenesis: Beading and Branching
Pattern Formation in Diffusion-Driven Salt Finger Plumes
Hisashi Ozawa 1,2,*, Sayaka Murayama-Ogino 2 and Axel Kleidon 3

1 Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8521, Japan
2 School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
3 Max Planck Institute for Biogeochemistry, 07701 Jena, Germany; axel.kleidon@bgc-jena.mpg.de
* Correspondence: hozawa@hiroshima-u.ac.jp

Abstract: Spontaneous pattern formation is a universal phenomenon that occurs in purely
physical systems, biology, and human societies. Salt fingering due to differential diffusion
of heat and salt in seawater is a typical example, although the general principle that governs
pattern formation remains unknown. We show through simple experiments injecting a salt
solution into a sucrose solution of equal density that a salt finger exhibits characteristic
pattern transitions depending on the injection flow rate. When the rate increases, a linear
finger starts meandering, branching, and multiple branching, whereas when the rate is
decreased, it produces a beading pattern. These morphological instabilities and associated
pattern formation are caused by a local accumulation of kinetic energy that minimizes the
flow resistance and maximizes the energy dissipation in the final steady state. We suggest
that this energy accumulation mechanism governs a wide variety of pattern formation
phenomena in non-equilibrium systems, including morphogenesis of abiotic protocells.

Keywords: thermodynamics; pattern formation; energy accumulation; energy dissipation;
non-equilibrium systems; morphogenesis

1. Introduction
Spontaneous formation of regular and ordered patterns from initially homogeneous

distributions of materials in systems far from thermodynamic equilibrium has long attracted
interest of researchers in various fields [1–3]. Typical examples include the formation of
cellular patterns in thermal convection [4], crack pattern formation in stressed solids [5],
dendritic growth of crystals [6,7], vortex formation in front of granular flows [8], and
morphogenesis during the growth of living organisms [9]. These phenomena seem to
possess common characteristics, i.e., the spontaneous formation of ordered and coherent
patterns in systems far from equilibrium conditions and the resultant rapid and efficient
recovery to equilibrium. It would, therefore, seem to be a unified law that governs these
pattern formation phenomena in general. However, no complete theory that can explain
the mechanism of pattern formation has yet been presented [1–3,10–12]. Here, we propose
that all of these patterns are formed by the local accumulation of kinetic energy, which
minimizes the flow resistance and maximizes the dissipation of total available energy,
and we confirm this hypothesis with a series of laboratory experiments on finger-type
convection patterns.

Salt fingering, finger-type convection caused by the difference in diffusivities of heat
and salt in seawater, is a typical pattern formation phenomenon that occurs in the global
ocean [13,14]. Figure 1a shows a setting where a warm salt solution lies on cold fresh water
of nearly equal density, mimicking a situation of subtropical seawater. Since the diffusivity
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of heat, Dh, is much higher than the diffusivity of salt, Ds (Dh ≈ 100 Ds), the salt solution
above the interface cools and becomes denser via preferential heat diffusion, whereas
the fresh water below the interface warms and becomes lighter over time. This unstable
density distribution thus leads to descending “salt fingers” and ascending “water fingers,”
emerging from the interface in mutually opposite directions, as shown in Figure 1a [14].
A similar type of convection occurs when a sucrose (sugar) solution lies on a salt solution
of the same density [15–18]. Since the salt diffusivity is approximately three times higher
than the sucrose diffusivity, preferential salt diffusion makes the overlying sucrose solution
denser and the underlying salt solution lighter, leading to descending “sugar fingers” and
ascending “salt fingers” from the interface (Figure 1b). In both cases, the finger motion is
driven by buoyancy/gravity force caused by preferential diffusion of heat or salt. If the
finger were too thick, diffusion would be inefficient to drive the finger motion, whereas if it
were too thin, viscosity would suppress the motion. We therefore expect that each finger
may adjust its size and shape so as not to significantly increase the viscous force, while
maintaining the diffusion efficiency for the finger motion. Although several experimental
studies have been conducted on salt fingers, little is known about the shape and stability
of a single finger because numerous fingers emerged simultaneously from the interface in
previous experiments [14–19], preventing a detailed analysis of the behavior and motion of
a single finger.
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salt solution was subject to buoyancy force due to preferential salt diffusion and as-
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The injection rate was controlled with a syringe driver, and a porous stone was used to 
reduce the initial flow velocity and diminish initial perturbations. The porous stone was 

Figure 1. Schematic illustrations of double-diffusive convection. (a) Warm salt solution on cold fresh
water, resulting in ascending water fingers and descending salt fingers. (b) Sugar solution on salt
solution, resulting in ascending salt fingers and descending sugar fingers. (c) Salt solution injection
into sugar solution, leading to an ascending salt finger (this study). The densities of the two solutions
are initially set to be equal.

To investigate the growth process and stability of a single finger, we conducted ide-
alized experiments in which dyed salt solution was injected into sucrose solution of the
same density from an injection point at a constant flow rate (Figure 1c). The injected salt
solution was subject to buoyancy force due to preferential salt diffusion and ascended from
the injection point in the form of a finger-like plume. We investigated the growth process
and patterns of the produced finger by varying the injection flow rate, Qin = 0.17–100 mm3

s−1, and the initial density of the two solutions, ρinit = 1010–1200 kg m−3. The injection
rate was controlled with a syringe driver, and a porous stone was used to reduce the initial
flow velocity and diminish initial perturbations. The porous stone was saturated with
salt solution to avoid mixing with the sugar solution inside the porous stone. The growth
process was monitored with two digital video cameras, and the mean velocity and diameter
of a finger in its steady state were measured through analysis of the digital video images
(see Appendix A for further details). A schematic of the experimental apparatus is shown
in Figure 2h.
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Figure 2. Five characteristic types of salt fingers. (a) Beading, (b) linear, (c) meandering, (d) branching,
and (e) multiple branching patterns. The injection flow rates, Qin, are 0.83, 1.7, 8.3, 17, and 83 mm3 s−1,
from the left (a) to the right (e). The initial solution densities, ρinit, are 1050 (a) and 1100 kg m−3 (b–e).
Scale bar, 10 mm. (f,g) Injection of pure water into sugar solution (ρinit = 1100 kg m−3) results in linear
water plumes over a wide range of Qin between 0.83 and 83 mm3 s−1. (h) Schematic of the experimental
apparatus. Dyed solution A (salt solution) is injected into solution B (sugar solution) of equal density
through a porous stone at a constant rate, Qin, using a syringe driver.

2. Results
We observed five characteristic salt finger patterns in our experiments: (a) beading,

(b) linear, (c) meandering, (d) branching, and (e) multiple branching patterns, as shown in
Figure 2. Each pattern depends on the injection flow rate and the initial density of the two
solutions (Figure 3). Under the same density conditions, a linear finger starts meandering
and forming branches and multiple branches when the injection flow rate is increased,
whereas it produces a beading pattern when the flow rate is decreased. The beading pattern
consists of a train of small droplets connected through a thin plume, all of which ascend in a
“bead-on-string” form (Figure 2a, Video S1). The beads are produced when the diameter of
a plume becomes thinner than a certain size at a few centimeters above the injection point.
They eventually split into discrete droplets in their final states (Video S1). This transition
is referred to as beading instability. By contrast, branching occurs at marginal parts of a
meandering finger via “budding” (Figure 2d, Video S4). We call this transition branching
instability. As the flow rate increases further, the finger repeats branching and tends to
be an assemblage of branched fingers, i.e., “multiple branching” (Figure 2e, Video S5). It
should be noted that when we inject pure water into sucrose solution, no such instability
occurs over a wide range of flow rates (0.83–83 mm3 s−1) despite the stronger buoyancy
acting on the water finger (Figure 2f,g). This clearly shows that both instabilities are of a
diffusion-driven type and do not occur in conventional-type convection where diffusion
always weakens fluid motion rather than enhancing it. The Reynolds number of the finger
motion is in the range of Re = d v/ν = 5–100, where d is the diameter, v is the ascending
velocity, and ν is the kinematic viscosity. Thus, the finger motion is essentially turbulent
and cannot be considered as a simple laminar flow.
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The solid (red) line indicates the flow rate for the maximum-velocity finger, Q*, as a function of the
initial density, ρinit.

Beading instability leads to a reduction in the surface area of a thin finger, and this
resembles the Plateau–Rayleigh instability known to occur in a thin fluid column under
the effect of surface tension [20,21]. However, there is no surface tension in our case, but
rather a viscous shear layer between the ascending finger and the surrounding fluid. This
instability is therefore a dynamic one caused by velocity shear rather than a static one due
to surface tension. Both instabilities nonetheless lead to a reduction in the surface area
of a thin finger. By contrast, branching instability leads to an enlargement of the surface
area. With this process, the number of fingers increases, and the specific surface area of the
fingers increases drastically. We find that branching instability occurs when the injection
flow rate is increased, whereas beading instability occurs when the rate is decreased.

Figure 4a–c show the diameter, d, ascending velocity, v, and ascending flow rate, Q = π

(d/2)2 v, respectively, observed for salt fingers as a function of the injection flow rate, Qin.
For each initial density, as the injection flow rate increases, the diameter increases, reaching
a maximum before branching, and then decreases slightly after branching. A similar trend
is observed in the ascending velocity: v increases with Qin until branching starts and then
decreases gradually after branching. The ascending flow rate of a single finger also shows a
similar trend: Q increases with Qin until branching and then decreases after branching. The
somewhat large error bars in the measured diameters and velocities are due to turbulent
fluctuations in the ascending fingers (Figure 2).
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3. Discussion
3.1. Theoretical Finger Model

On the basis of our experimental results, we considered how a salt finger attains a
stable shape using a simple theoretical model. We assumed a columnar shape for a finger
and a steady state in which the force balance between buoyancy and viscous force and
the salt balance between advection and diffusion of salt molecules are maintained. For
simplicity, we neglected the effect of the slow diffusion of sucrose molecules in this attempt.

The salt diffusion flux, Jd, from a finger with salt concentration Cf to the surroundings
per unit length per unit time is given as follows:

Jd = −πd · Ds
∂C
∂r

∣∣∣∣
r=d/2

= πd · Ds
Cf
δd

, (1)

where d is the diameter, Ds is the diffusivity of salt molecules, C is the volumetric salt
concentration (salinity), r is the radial distance from the center of the finger, and δd is
the thickness of the diffusion boundary layer, defined as δd ≡ −Cf/ (∂C/∂r |r=d/2

)
.

Conversely, salt is transported into the finger by advection due to the ascending motion.
The salt advection flux into the finger, Jad, per unit length per unit time is given by the
following equation:

Jad = π

(
d
2

)2
βv =

π

4
β d2v, (2)

where v is the ascending velocity, β = C0/L is the mean gradient of salinity, C0 is the initial
salinity, and L is the characteristic length of the finger (system size). In a steady state,
the diffusion flux should be balanced by the advection rate (Jd = Jad), and we obtain the
following equation:

Cf =
βδdd
4Ds

v. (3)
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Let us next consider the force balance on the finger. Because of salt diffusion, the
salinity in the finger, Cf, is lower than the initial salinity of the solution, C0, injected through
the porous stone. The density of the surrounding sucrose solution, however, remains
nearly the same as that of the initial solution. Thus, the density of the solution in the finger
becomes less than that of the surrounding fluid by the amount ∆ρ = C0 − Cf, and the finger
is subjected to the net buoyancy force (buoyancy minus gravity force) from the surrounding
fluid. The net buoyancy force, Fb, exerted on the finger per unit length is given as follows:

Fb = π

(
d
2

)2
· ∆ρ · g =

π

4
(C0 − Cf)g d2, (4)

where g is the gravitational acceleration. Conversely, a finger moving upward with the
velocity (v) is subjected to the viscous drag force in the downward direction. The viscous
drag force, Fv, per unit length is given by the following equation:

Fv = −πd · µ
∂v
∂r

∣∣∣∣
r=d/2

= πdµ
v
δv

, (5)

where µ is the viscosity and δv is the thickness of the viscous boundary layer, defined as
δv ≡ −v/ (∂v/∂r |r=d/2

)
. In a steady state, the force balance is held (Fb = Fv), and we

obtain the following equation:

(C0 − Cf) g = 4µ
v

δvd
. (6)

Substituting Equation (3) into Equation (6) and eliminating Cf, we obtain the ascending
velocity of a salt finger in the steady state, vs, as a function of the diameter, as follows:

vs =
C0 g

4µ

δvd
+

gβ δdd
4Ds

=
C0 g

Rv + Rd
(7)

where Rv = 4µ/(δvd) represents the resistance to the finger’s ascending motion due to
viscosity and Rd = gβδdd/(4Ds) represents that due to salt diffusion. We can see from
Equation (7) that the numerator on the right-hand side, C0 g, represents the overall driving
force for the finger’s ascending motion, and the denominator, Rv + Rd, represents the
sum of the resistances due to the viscosity and diffusion processes. The viscous resistance
is inversely proportional to the diameter (i.e., decreases with d), whereas the diffusive
resistance is proportional to the diameter (i.e., increases with d). The viscous resistance
limits the ascending velocity of a very thin finger, while the diffusive resistance limits
the velocity of a very thick finger. The total resistance, Rt = Rv + Rd, then becomes a
minimum at diameter d* between the two limited states—the viscosity-limited state and
the diffusion-limited state—as shown in Figure 5a.

Figure 5b shows the ascending velocity of a salt finger as a function of the diameter
given by Equation (7). The velocity becomes a maximum at diameter d*, at which the total
resistance, Rt, becomes a minimum. We can solve the diameter, ascending velocity, and
ascending flow rate at this maximum velocity state (dv/dd = 0) as follows:

d∗ = 4

√
µ Ds

β δvδdg
≈ 1–5 mm, (8)

vs
∗ =

1
2

√
δv Ds g
µ β δd

C0 ≈ 2–10 mm s−1, (9)
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Q∗ = 2π

√
µ C2

0 D3
s

β3 δvδ3
d g

≈ 10–50 mm3 s−1, (10)

where the asterisk denotes the value at the maximum velocity state and the numerical
values are estimated from the parameter values used in the experiments: C0 ≈ 10–200 kg
m−3, µ = 10−3 Pa s, Ds = 1.5 × 10−9 m2 s−1, g = 9.8 m s−2, δv = δd ≈ 0.03 mm, and L ≈ 0.1 m.
The estimated values agree well with those observed for the salt fingers in our experiments
(Figure 4). We also examined the ascending velocity and the diameter observed for a linear
or meandering finger in each experiment and plotted them in Figure 5b on dimensionless
scales (vs/vs* and d/d*). The mean value (open circle) and its standard deviation (error
bars) show reasonable agreement with the state for the maximum velocity (solid circle),
suggesting that the maximum velocity state is actually realized in the diameter and velocity
for the linear and meandering fingers.

In Figure 3, we plot the ascending flow rate of a salt finger at the maximum velocity
state, Q*, given by Equation (10), as a function of the initial salt density, ρinit = ρw + C0,
with ρw being the water density. We can see that when the injection flow rate is larger than
this rate (Qin > Q*), the finger diameter d becomes larger than d*, and the ascending motion
is limited by salt diffusion. The finger then branches into two or more fingers via branching
instability, thereby reducing the diffusive resistance and increasing the ascending velocity.
Conversely, when Qin < Q*, d becomes smaller than d*, and the ascending motion is limited
by the viscosity. The finger then produces a beading pattern via beading instability, thereby
reducing the viscous resistance and increasing the velocity. Both the instabilities and the
associated morphological changes can be understood if salt fingers have a tendency to
increase their ascending velocity under the prescribed non-equilibrium conditions.
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Figure 5. (a) Flow resistance due to viscosity, Rv, that due to salt diffusion, Rd, and the total resistance,
Rt = Rv + Rd, as a function of the diameter, d. (b) The steady ascending velocity, vs, as a function of
the diameter, d [Equation (7)]. The open circle (#) indicates the mean velocity and mean diameter
of the linear and meandering fingers observed in the experiments, and the error bars indicate the
standard deviations. The dashed arrows show schematic transitions of salt finger patterns.



Entropy 2025, 27, 106 8 of 14

3.2. Generation and Dissipation of Kinetic Energy

Let us discuss the reason for a salt finger’s tendency to increase the ascending velocity
from a thermodynamic viewpoint. The kinetic energy of a salt finger is supplied by the
work performed by the net buoyancy force (buoyancy minus gravity force), and this energy
is dissipated into heat (internal energy) by the viscous drag force exerted on the moving
finger. The rate of change of the kinetic energy, Ek, per unit time per unit volume of a finger
is given as follows:

dEk
dt

= ( fb − fv) v = (C0 − Cf) g v − Rvv2, (11)

where f b = (C0 − Cf) g is the net buoyancy force, and f v = Rv v is the viscous drag force
exerted on the finger per unit volume. Using the salt balance Equation (3) and eliminating
Cf in (11), we obtain the following equation:

dEk
dt

= C0 g v − Rtv2= G − D. (12)

The first term on the right-hand side, G = C0 gv, represents the total generation rate
of kinetic energy and the second term, D = Rt v2, represents the total dissipation rate of
kinetic energy due to viscosity and salt diffusion. The generation rate G increases with
v, whereas the dissipation rate D increases with v2, as shown in Figure 6. At steady state
(G = D), there exist two solutions: a static state with no motion (v = 0) and the steady
ascending state (v = vs) described by Equation (7). The static state is unstable since any
small positive fluctuation in velocity (δv > 0) leads to a net gain in kinetic energy (G > D),
forming a positive feedback for the growth of the velocity. This growth can continue until a
steady state (say, vs’ = C0 g/Rt’), at which the energy balance is attained. This state is stable
since any further fluctuations (± δv) lead to negative feedbacks: a positive fluctuation
leads to G < D, whereas a negative fluctuation leads to G > D, thereby suppressing these
fluctuations. A steady ascending motion thus tends to emerge in this system if the total
resistance remains constant and the linear relation holds for the dissipative forces [22].
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Figure 6. Generation rate, G, and dissipation rate, D, of kinetic energy as a function of the ascending
velocity. In steady state, G = D and v = vs. A morphological change that reduces total resistance
(δRt < 0) tends to grow by a net supply of kinetic energy (G > D), whereas one that increases the
resistance (δRt > 0) cannot grow because of a deficit in kinetic energy (G < D), resulting in a final steady
state with minimum resistance, Rt*, maximum velocity, vs*, and maximum energy dissipation, D*.
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The total resistance, Rt, however, varies depending on the size and shape of a finger. A
morphological change that reduces the resistance (δRt < 0) tends to grow by a net supply of
kinetic energy (G > D). This growth can thus continue and lead to an increase in the velocity
toward a new steady state (Figure 6). By contrast, a morphological change that increases
the resistance (δRt > 0) cannot grow but is suppressed since it reduces the energy supply
(G < D). Because of this “ratchet-like” mechanism for energy accumulation, morphological
changes under turbulent fluctuations always reduce the resistance and increase the velocity,
resulting in a final steady state with minimum resistance (Rt*) and maximum velocity
(vs*), as demonstrated in our experiments. This final state also corresponds to the most
active state at which the finger generates and dissipates kinetic energy at the maximal rate:
G* = D* = C0 gvs*. The key process in the above mechanism is that a coherent or ordered
structure, such as the beading or branching pattern, can only be formed by the net supply
of work on the finger—work is the motive power for producing coherent structures [23].

3.3. Implications for Other Structure Formation Phenomena

It has long been suggested that the rate of energy dissipation, which is proportional to
the rate of entropy production, tends to increase toward its maximum in various kinds of
nonlinear, non-equilibrium systems. Examples include thermal convection [24], shear tur-
bulence [24], atmospheric circulation [24–28], oceanic circulation [29], tropical cyclones [30],
boundary layer turbulence [31], plasma convection [32], dendritic growth of crystals [6,7],
vortex formation in granular flows [8], dendrite formation in voltage-driven beads [33], vis-
cous finger formation in a Hele-Shaw cell [34,35], self-organization of microstructures [36],
and biological evolution [37,38]. The energy dissipation rate in each system increases
and reaches a maximum as the internal structure develops, while mechanical (available)
energy is supplied from the non-equilibrium surroundings. This tendency has been referred
to as the maximum entropy production (MEP) principle for nonlinear, non-equilibrium
systems [39–45], which shows a sharp contrast to the principle of minimum entropy pro-
duction suggested for linear processes in near-equilibrium systems [2,10,11,46]. While the
basic theoretical background of this MEP principle is still debatable, the key factor seems
to be related to the dynamic or morphological instability inherent in far-from-equilibrium
systems (e.g., Sec. 7.2 in [40]). For example, Martyushev and Birzina [34,35] investigated
morphological instability in the initial growth of an interface between two pressurised fluids
in a gap between two parallel plates (a Hele-Shaw cell). They found that the critical condition
for the initial growth of viscous fingers estimated by the state of larger entropy production
was in reasonable agreement with the experimental results [35]. Although stability analysis
provides useful insight into the initial growth condition of viscous fingers, it cannot state
the situation of the final steady state in which actual emerging fingers converge after their
growth. We have shown in this paper that a salt finger produces a finger pattern that reduces
the flow resistance and increases the ascending velocity by enhancing the energy supply from
the non-equilibrium surroundings. The energy dissipation rate reaches a maximum at the
final steady state, and the dissipated energy, as well as the produced entropy, is discharged
steadily into its surroundings, thereby bringing the surroundings to equilibrium at the fastest
rate [24,40]. The “ratchet-like” mechanism for energy accumulation found for the nonlinear
growth of a salt finger seems to work also for other structure formation phenomena in highly
non-equilibrium systems [1–8,24–45]. Further studies are needed to verify this mechanism
for other phenomena, and some attempts will be reported in future publications.

The proposed mechanism for beading and branching pattern formation seems to
apply also to the growth and division of protocells in the primordial oceans of the Earth.
Oparin [47] suggested that organic-rich liquid emulsion droplets, called “coacervates,”
formed via phase separation from a mixture of organic materials and seawater in the
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primordial oceans. Numerical simulations of such coacervate droplets showed that they
can form, elongate, and divide when super-saturation of the chemical component that
fuels them exceeds critical values [48]. Elongation occurs at the periphery of a growing
droplet where the concentration of the chemical fuel is high. The diameter of curvature at
the periphery becomes larger than the optimum growth size (d > d*peri) and thus leads to
protrusion of the surface by Mullins–Sekerka instability [49]. By contrast, division takes
place at the central waistline of an elongated droplet where the concentration is low and
the diameter is smaller than the optimum size (d < d*cent), leading to surface shrinkage
and division. The two morphological transitions are therefore essentially identical to the
branching and beading instabilities (Figure 5b) under the inhomogeneous concentration
field produced around a growing droplet. The diffusion flux of the chemical fuel is higher
in the outer regions than in the vicinity of the droplets. Each droplet thus migrates toward
the chemically rich outer regions while repeating elongation and division [48]. If organic-
rich chemical fuels were continuously supplied to seawater from the surroundings by
photochemical reactions due to solar radiation or hydrothermal fluids supplied from
volcanic activities, coacervate droplets could have formed via phase separation, and they
would have grown, elongated, and divided by adjusting their shapes so as to increase the
growth rate and free energy dissipation. Growth competition among these droplets could
have eventually led to the emergence of primary protocells that dissipated free energy and
produced entropy most efficiently [37,50], whereby the state of the surrounding system
was brought to equilibrium at the maximum rate.

It should be noted that actual protocells might have been composed of complex
materials such as amphipathic lipids and nucleic acids [51,52]. However, even simple
emulsion droplets (coacerbates) could grow, elongate, and divide under the effect of surface
tension and the diffusion of chemical fuels under non-equilibrium conditions [48,53]. The
beading and branching instabilities of a salt finger can thus be seen as a simple, dynamic
compartment model for the growth and development of primordial protocells. Further
experimental studies could provide valuable insights into what is currently unknown about
the early evolution of protocells.

4. Concluding Remarks
We have shown in this paper that two new types of morphological transitions, beading

and branching instabilities, are caused by a local accumulation of available energy, which
minimizes the flow resistance and maximizes the energy dissipation in the final steady
state. The emergence and evolution of ordered structures therefore accelerate the rate at
which the surrounding non-equilibrium system approaches equilibrium. The same energy
accumulation mechanism-induced structure formation is likely to occur in non-equilibrium
systems on Earth and other planets that exchange radiant energy with the surrounding
universe composed of the hot sun and cold space. We suggest that all of these structures,
as well as living organisms, are formed so as to produce entropy and equilibrate the highly
non-equilibrium universe.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/e27020106/s1, Videos S1–S5: movies of five typical salt finger patterns
(S1: beading, S2: linear, S3: meandering, S4: branching, S5: multiple branching).
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Appendix A. Experimental Methods
A schematic representation of the experimental apparatus is shown in Figure 2h. A

transparent container, 0.1 m × 0.1 m × 0.2 m high, contained solution B (sucrose solution).
Solution A (salt solution) of the same density was supplied from a syringe (30 × 103 mm3)
at a constant flow rate, Qin = 0.17–100 mm3 s−1, using a syringe driver. Using a floating
hydrometer, we adjusted the initial densities of the solutions to the same value, ρinit = 1010,
1050, 1100, or 1200 kg m−3, with an accuracy of ± 0.5 kg m3. The salt solution was dyed
blue to make the fingers clearly visible. A porous stone was attached to the injection point to
reduce the initial flow velocity and avoid initial disturbances. After trying several materials
of different sizes and shapes, we chose a porous stone (diameter: 10 mm; length: 18 mm),
as it most efficiently reduced the initial flow disturbances and the associated turbulence.

At the beginning of each experiment, the porous stone was filled and saturated with
the salt solution using the syringe driver. At this stage, no sucrose solution was added
to the container. When the salt solution flowed out from the surface of the porous stone,
which was visible as a thin layer of dyed fluid covering the surface, the injection was
stopped, and the sucrose solution was added slowly to the container so as not to mix it
with the salt solution filled in the stone. After this procedure, the injection was started
again at a constant rate (Qin) using the syringe driver. An accumulation of the salt solution
was observed around the porous stone, and shortly thereafter, an ascending motion of a
finger-like plume was caused by buoyancy force due to preferential diffusion of salt into
the surrounding sucrose solution.

The first part of the ascending plume usually consisted of a group of small fingers in
a rather complicated shape resembling a “hydra.” This assemblage, however, was soon
followed and overtaken by a faster and steady “stem”. Aproximately 30 s after the start
of injection, the finger shape and its motion reached a nearly steady state. We observed
the shape, diameter, and ascending velocity of such a salt finger in its steady state with
two digital video cameras; one was placed in front of the container and the other was
placed to the side. The digital images were transferred to a computer, and the diameter
and velocity were measured at 5 cm above the porous stone by tracing the finger motion
observed with the front camera. In the case of multiple branching fingers, a typical finger
rising on the side was selected for measurement to avoid overlapping of finger images. In
this case, images from the side camera were used to ensure that the selected finger position
was within ± 1 cm in front or behind the position of the porous stone, thereby reducing
measurement errors due to parallax. The measurement was repeated at least 10 times
(10–20 times) to obtain the mean value and its standard deviation. We changed the injection
flow rate, Qin, after the steady-state measurements and repeated the procedure for the
new steady state. The results of the diameter and velocity measurements on a total of 26
steady-state fingers for four different initial densities are shown in Figure 4 and Table A1.
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It should be noted that the viscosity of a salt solution is generally lower than that of a
sucrose solution of equal density (see the footnote of Table A1). In this case, we may expect
the Saffman–Taylor instability [54] that is known to occur when two pressurized fluids with
different viscosities coexist in a porous medium, such as a Hele–Shaw cell [34,35]. In our
experiments, however, the porous stone was saturated with salt solution at the beginning
of each experiment. The sucrose solution outside the porous stone was unconstrained
and in contact with the free atmosphere. Thus, Saffman–Taylor instability was unlikely to
occur. We confirmed this through experiments, in which polyethylene glycol was added to
a salt solution to make its viscosity the same as that of a sucrose solution of equal density
(1100 kg m−3). Exactly the same results as those found in our experiments (Figures 2 and 3)
were observed in the same viscosity experiments, eliminating the possibility of Saffman–
Taylor instability in our case. However, Saffman–Taylor instability should play an important
role in the pattern formation of fluids under constrained conditions such as a Hele–Shaw
cell [34,35,54].

The ascending flow rate of a single finger was calculated from the measured diameter,
d, and velocity, v, as Q = π (d/2)2 v. The standard error of the flow rate, ∆Q, could then be
estimated by the following equation:

∆Q =

∣∣∣∣∂Q
∂d

∣∣∣∣∆d +

∣∣∣∣∂Q
∂υ

∣∣∣∣∆v =
π

2
dv ∆d +

π

4
d2 ∆v, (A1)

where ∆d and ∆v are the standard deviations of d and v, respectively. The estimated
standard errors of the flow rates from Equation (A1) are shown as error bars in Figure 4c.

Table A1. Results of the salt finger experiments. ρinit, initial density; Qin, injection flow rate; v,
velocity; d, diameter of a salt finger. Finger types: Bd, beading; L, linear; M, meandering; B, branching;
MB, multiple branching types. If a finger exhibits a bimodal mixture of two types, both types are
described. The mean velocity and diameter of linear or meandering fingers designated by the cross
(+) are shown in Figure 5b on dimensionless scales.

ρinit
1

(kg m−3)
Qin

(mm3 s−1)
v

(mm s−1)
d

(mm) Finger Type

1010 0.83 1.91 ± 0.37 2.02 ± 0.30 Bd
1010 1.67 1.53 ± 0.13 2.74 ± 0.30 Bd, M (+)
1010 8.33 2.19 ± 0.48 2.31 ± 0.53 B, MB
1010 16.7 1.67 ± 0.41 1.51 ± 0.27 MB

1050 0.83 3.85 ± 0.32 2.92 ± 0.37 Bd
1050 1.67 4.90 ± 0.57 3.03 ± 0.22 Bd
1050 3.33 7.54 ± 0.81 3.04 ± 0.38 Bd (+)
1050 5.0 6.82 ± 0.84 2.95 ± 0.37 B
1050 8.33 6.29 ± 0.65 3.46 ± 0.47 MB
1050 66.7 6.77 ± 0.94 2.20 ± 0.45 MB
1050 100 5.76 ± 0.62 2.49 ± 0.43 MB

1100 0.83 5.25 ± 0.76 1.90 ± 0.22 Bd
1100 1.67 5.51 ± 0.66 1.57 ± 0.18 L (+)
1100 5.0 8.40 ± 0.65 1.85 ± 0.35 M
1100 8.33 9.25 ± 0.52 2.17 ± 0.28 M
1100 12.5 11.97 ± 1.59 1.79 ± 0.27 M
1100 16.7 8.95 ± 0.67 1.18 ± 0.28 B
1100 33.3 7.84 ± 1.50 1.55 ± 0.22 B
1100 50.0 8.34 ± 1.64 1.08 ± 0.14 MB
1100 66.7 9.40 ± 1.40 1.25 ± 0.26 MB
1100 83.3 7.25 ± 1.42 1.48 ± 0.32 MB

1200 1.67 3.06 ± 0.28 1.81 ± 0.29 M
1200 8.33 4.71 ± 0.62 2.64 ± 0.29 M (+)
1200 16.7 5.80 ± 1.12 1.58 ± 0.36 B, MB
1200 50.0 6.81 ± 1.04 1.55 ± 0.26 MB
1200 83.3 7.06 ± 1.74 1.72 ± 0.33 MB

1 The viscosities of the salt and sucrose solutions are estimated to be 1.00, 1.10, 1.31, 1.96 and 1.01, 1.42, 2.49, 8.76
mPa s, respectively, for densities ρinit = 1010, 1050, 1100, 1200 kg m–3 at a temperature of 293 K [55,56].
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