15-NODAL QUARTIC SURFACES. PART II: THE AUTOMORPHISM GROUP: COMPUTATIONAL DATA

ICHIRO SHIMADA

This note explains the contents of the computational data about the results of the paper [1] (joint work with Igor Dolgachev). The data is available at

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html in the text file 15nodalcompdata.txt. In this data, we use the Record-format of GAP [2].

1. Lattices

We use L_{26} to denote the even unimodular hyperbolic lattice $II_{1,25}$ of rank 26. We fix bases of the lattices L_{26} , S_{16} and S_{15} . The following data are with respect to these bases.

- GramL26. The Gram matrix of L_{26} .
- GramS16. The Gram matrix of S_{16} .
- GramS15. The Gram matrix of S_{15} .
- embS16L26. The matrix M such that $v \mapsto vM$ is the primitive embedding $\epsilon_{16} \colon S_{16} \hookrightarrow L_{26}$.
- embS15L26. The matrix M such that $v \mapsto vM$ is the primitive embedding $\epsilon_{15} \colon S_{15} \hookrightarrow L_{26}$.
- embS15S16. The matrix M such that $v \mapsto vM$ is the primitive embedding $\epsilon_{15,16} \colon S_{15} \hookrightarrow S_{16}$.
- projL26S16. The matrix M such that $v \mapsto vM$ is the orthogonal projection $L_{26} \otimes \mathbb{Q} \to S_{16} \otimes \mathbb{Q}$.
- projL26S15. The matrix M such that $v \mapsto vM$ is the orthogonal projection $L_{26} \otimes \mathbb{Q} \to S_{15} \otimes \mathbb{Q}$.
- projS16S15. The matrix M such that $v \mapsto vM$ is the orthogonal projection $S_{16} \otimes \mathbb{Q} \to S_{15} \otimes \mathbb{Q}$.
- weyl0. The Weyl vector $\mathbf{w}_0 \in L_{26}$.
- ample16. The class $\alpha_{16} \in S_{16}$, that is, the image of \mathbf{w}_0 by the orthogonal projection $L_{26} \otimes \mathbb{Q} \to S_{16} \otimes \mathbb{Q}$. This vector is the class of a hyperplane section of the (2,2,2)-complete intersection model of Y_{16} .
- ample15. The class $\alpha_{15} \in S_{15} \otimes \mathbb{Q}$, that is, the image of \mathbf{w}_0 by the orthogonal projection $L_{26} \otimes \mathbb{Q} \to S_{15} \otimes \mathbb{Q}$. Note that $\alpha_{15} \notin S_{15}$ but $2\alpha_{15} \in S_{15}$.
- h4X16. The class $h_4 \in S_{16}$ of the hyperplane section of the quartic surface X_{16} .
- h4X16dual. The class of the hyperplane section of the quartic surface X'_{16} (the dual of $X_{16} \subset \mathbb{P}^3$).
- h4X15. The class $h_4 \in S_{15}$ of the hyperplane section of the quartic surface X_{15} .

- h6Y15. The class $h_6 \in S_{15}$ of the hyperplane section of the (2,3)-complete intersection model $X_{15}^{(6)}$ of Y_{15} (see (5.5) of [1]).
 - 2. Y_{16} and the induced chamber D_{16} of S_{16}

2.1. **Groups.**

- GeneratorsOS16D16 is a generating set of the group $O(S_{16}, D_{16})$ of order 23040.
- GeneratorsAutY16D16 is a generating set of the group $\operatorname{Aut}(Y_{16}, \alpha_{16}) = \operatorname{O}(S_{16}, D_{16}) \cap \operatorname{O}(S_{16})^{\omega} \cong (\mathbb{Z}/2\mathbb{Z})^5$.
- 2.2. **Rational curves.** The following are the data related with Remark 4.4 of [1].
 - RatCurvesOnY16deg5 is the list of classes of smooth rational curves on Y_{16} with degree 5 with respect to α_{16} .
 - RatCurvesOnY16deg7 is the list of classes of smooth rational curves on Y_{16} with degree 7 with respect to α_{16} .
- 2.3. Walls. The data D16WallRecs is the list of 316 records wallrec, each of which describes a wall $w = D_{16} \cap (v)^{\perp}$ of D_{16} and consists of the following items.
 - no. The number k such that the record wallrec is at the kth position of D16WallRecs.
 - orbit. The number i of the orbit containing w (see Table 4.2 of [1]).
 - innout. "inner" or "outer".
 - vector. The primitive defining vector v of w.
 - n. $n = \langle v, v \rangle$.
 - a. $a = \langle v, \alpha_{16} \rangle$.
 - adjacentweyl. The Weyl vector $\mathbf{w}' \in L_{26}$ that induces the chamber D' adjacent to D_{16} across w.
 - d. $d = \langle \alpha_{16}, \mathbf{w}'_S \rangle$, where \mathbf{w}'_S is the image of \mathbf{w}' by the orthogonal projection $L_{26} \to S_{16} \otimes \mathbb{Q}$.
 - isomL26. An isometry $\tilde{g} \in O(L_{26})$ that preserves $S_{16} \subset L_{26}$ and maps the Conway chamber $\mathcal{D}(\mathbf{w}_0)$ to the Conway chamber \mathcal{D}' such that $\epsilon_{16}^{-1}(\mathcal{D}')$ is the induced chamber D' adjacent to D_{16} across w.
 - extraaut. An isometry $g_w \in O(S_{16})$ that maps D_{16} to the induced chamber D' adjacent to D_{16} across w. When w is inner, this isometry g_w is chosen from $Aut(Y_{16})$.
 - index. The combinatorial data of w. The 32 lines

$$N_0, N_{ij}, T_i, T_{ij}$$

in the (2,2,2)-complete intersection model of Y_{16} are expressed by

["nodal", [0]], ["nodal", [i, j]], ["trope", [i]], ["trope", [i, j]], respectively.

- When orbit is 1, index indicates the curve whose class defines the wall \boldsymbol{w} .
- When orbit is 2, index indicates the Göpel-tetrad.
- When orbit is 3, index indicates the curve that is the exceptional curve over the center of the projection $X_{16} \dashrightarrow \mathbb{P}^2$ or $X'_{16} \dashrightarrow \mathbb{P}^2$ that induces the involution g_w .
- When orbit is 4, index indicates the Weber-hexad.

When orbit is 1, the record wallrec has the following items:

- octad. The corresponding octad (see Table 4.1 of [1]).
- Leechroot. The Leech root $\epsilon_{16}(v) \in L_{26}$.
 - 3. Y_{15} and the induced chamber D_{15} of S_{15}

3.1. Groups.

- OS15D15 is the list of elements of the group $O(S_{15}, D_{15})$.
- OS15D15permutation describes the natural isomorphism $O(S_{15}, D_{15}) \cong \mathfrak{S}_6$. The *i*th isometry g of OS15D15 is mapped to the *i*th permutation $\sigma = [i_1, \ldots, i_6]$ in OS15D15permutation such that $\nu^{\sigma} = i_{\nu}$ for $\nu = 1, \ldots, 6$.
- 3.2. Walls. The data D15WallRecs is the list of 314 records wallrec, each of which describes a wall $w = D_{15} \cap (v)^{\perp}$ of D_{15} and consists of the following items.
 - no. The number k such that the record wallrec is at the kth position of D15WallRecs.
 - orbit. The number i of the orbit O_i containing w (see Table 5.1 of [1]).
 - innout. "inner" or "outer".
 - vector. The primitive defining vector v of w.
 - n. $n = \langle v, v \rangle$.
 - a. $a = \langle v, \alpha_{15} \rangle$.
 - adjacentweyl. The Weyl vector $\mathbf{w}' \in L_{26}$ that induces the chamber D' adjacent to D_{15} across w.
 - d. $d = \langle \alpha_{15}, \mathbf{w}'_S \rangle$, where \mathbf{w}'_S is the image of \mathbf{w}' by the orthogonal projection $L_{26} \to S_{15} \otimes \mathbb{Q}$.
 - isomL26. An isometry $\tilde{g} \in O(L_{26})$ that preserves $S_{15} \subset L_{26}$ and maps the Conway chamber $\mathcal{D}(\mathbf{w}_0)$ to the Conway chamber \mathcal{D}' such that $\epsilon_{15}^{-1}(\mathcal{D}')$ is the induced chamber D' adjacent to D_{15} across w.
 - extraaut. An isometry $g_w \in O(S_{15})$ that maps D_{15} to the induced chamber D' adjacent to D_{15} across w. When w is inner, this isometry g_w is the unique extra-automorphism $g_w \in Aut(X_{15})$.
 - index. The combinatorial data of w.
 - When orbit is 1, then index is a double trio (ijk)(lmn) = [[i, j, k], [1, m, n]].
 - When orbit is 2, then index is a duad (ij) = [i, j].
 - When orbit is 3, then index is a syntheme (ij)(kl)(mn) = [[i, j], [k, 1], [m, n]].
 - When orbit is 4, then index is a double trio (ijk)(lmn) = [[i, j, k], [1, m, n]].
 - When orbit is 5, then index is a number $\nu \in \{1, \dots, 6\}$.
 - When orbit is 6, then index is a pair of double trios

$$\begin{split} & \left\{ (i_1 j_1 k_1) (l_1 m_1 n_1), (i_2 j_2 k_2) (l_2 m_2 n_2), \right\} \\ & = & \left[\, \left[\left[\mathbf{i}_1, \, \mathbf{j}_1, \mathbf{k}_1 \right], \left[\mathbf{l}_1, \mathbf{m}_1, \mathbf{n}_1 \right] \right], \left[\left[\mathbf{i}_2, \, \mathbf{j}_2, \mathbf{k}_2 \right], \left[\mathbf{l}_2, \mathbf{m}_2, \mathbf{n}_2 \right] \right] \, \right] \end{split}$$

- When orbit is 7, then index is a number $\nu \in \{1, \ldots, 6\}$.
- When orbit is 8, then index is a duad (ij) = [i, j].
- When orbit is 9, then index is an index $[t(a), t(b), \ldots, t(f)]$ of Γ_{tripod} (see Figure 5.3 of [1]).
- When orbit is 10, then index is an index $[p(a), p(b), \ldots, p(e)]$ of Γ_{penta} (see Figure 5.4 of [1]).

Remark 3.1. When there exist several choices of representatives of a combinatorial data, we choose the minimal one. For example, a double trio (123)(456) can be written in 72 ways

$$[[1, 2, 3], [4, 5, 6]], [[1, 3, 2], [4, 5, 6]], \dots, [[6, 5, 4], [3, 2, 1]],$$

and we choose [[1, 2, 3], [4, 5, 6]] as a representative.

- 3.3. **Involutions.** Let $\iota \in \operatorname{Aut}(Y_{15})$ be an involution that is obtained from a rational double covering $Y_{15} \to \mathbb{P}^2$ (in several ways). Then ι is described by a record involve with the following items:
 - invol is the matrix representation of the action of ι in S_{15} .
 - degree is the α_{15} -degree $\langle \alpha_{15}, \alpha_{15}^{\iota} \rangle$.
 - index indicates a combinatorial data that specifies ι . The content of index depends on the type of ι .
 - h2recs is a list of records h2rec that describe polarizations h_2 of degree 2 such that $|h_2|$ gives a rational double covering $Y_{15} \to \mathbb{P}^2$ inducing ι . Each h2rec has the following items:
 - h2 is the vector $h_2 \in S_{15}$.
 - sing describes the singular points P of the branch curve B of the covering $Y_{15} \to \mathbb{P}^2$. Each singular point P of B is given by a pair of an ADE-type such as "A1", "A2", "D4", ... and the list of classes of smooth rational curves contracted to P by $Y_{15} \to \mathbb{P}^2$.

We have the following lists of involutions of Y_{15} .

- 3.3.1. Sigmas. The list of six involutions $\sigma^{(\nu)}$ that make Y_{15} the focal surface of a congruence of bi-degree (2,3). See Section 5.2.1 of [1]. The index involrec.index is the number $\nu \in \{1,\ldots,6\}$. Each involrec.h2recs consists of five records.
- 3.3.2. X15Projections. The list of 15 involutions obtained by the projection of X_{15} with the center being a node p_{δ} of X_{15} . See Example 5.6 of [1]. The index involrec.index is the duad δ corresponding to the center p_{δ} . Each involrec.h2recs consists of a single record.
- 3.3.3. SevenNodals. The list of 360 involutions obtained by the linear system on Y_{15} cut out by quadric surfaces passing through a set of 7 nodes of X_{15} obtained from the 7 edges of the graph in Figure 5.2 of [1]. See Example 5.7 of [1]. The index involrec.index is the list of 7 duads corresponding to the 7 nodes of X_{15} . Each involrec.h2recs consists of a single record.
- 3.3.4. Pentagons. The list of 72 involutions obtained by the linear system on Y_{15} cut out by cubic surfaces passing through a certain set of 5 nodes of X_{15} with given multiplicities. See Example 5.8 of [1]. The index involrec.index is the list of 5 duads corresponding to the 5 nodes of X_{15} . Each involrec.h2recs consists of five records.
- 3.3.5. X6ModelProjections. The list of 45 involutions obtained from the projections of the (2,3)-complete intersection $X_{15}^{(6)}$ with the center being the line passing through two ordinary nodes of $X_{15}^{(6)} \subset \mathbb{P}^4$. See Section 5.2.3 of [1]. The index involrec.index is the pair of double trios corresponding the two nodes of $X_{15}^{(6)}$. Each involrec.h2recs consists of a single record.

- 3.4. Faces. The data D15InnFaceRecs is the list of 5235 records facerec, each of which describes a face $f = w_1 \cap w_2$ of D_{15} with codimension 2 and consists of the following items.
 - ullet no. The number k such that the record facerec is at the kth position of D15InnFaceRecs.
 - orbit. The number i of the orbit containing f (see Table in Theorem 5.11 of [1]).
 - walls. The pair of wallrec1.no and wallrec2.no, where wallrec1 and wallrec2 are the records that describe the walls w_1 and w_2 containing f, respectively.
 - relation. Let (D_0, \ldots, D_m) be one of the two simple chamber loops around f from D_0 to $D_m = D_0$, and let g_1, \ldots, g_m be the extra-automorphisms such that

$$D_i = D_0^{g_i \dots g_1}$$

for $i = 1, \dots m$. Then we have a relation

$$g_m \cdots g_1 = 1.$$

The item facerec.relation is the list $[\nu_m, \dots, \nu_1]$ of numbers, where ν_i is the number wallrec.no of the record wallrec such that wallrec.extraaut is equal to g_i .

References

- [1] Igor Dolgachev and Ichiro Shimada. 15-nodal quartic surfaces. Part II: The automorphism group, 2019.
- [2] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http://www.gap-system.org).

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp