
THE AUTOMORPHISM GROUP OF AN APÉRY–FERMI K3
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Abstract. An Apéry–Fermi K3 surface is a complex K3 surface of Picard

number 19 that is birational to a general member of a certain one-dimensional
family of affine surfaces related to the Fermi surface in solid-state physics. This

K3 surface is also linked to a recurrence relation that appears in the famous

proof of the irrationality of ζ(3) by Apéry.
We compute the automorphism group Aut(X) of the Apéry–Fermi K3 sur-

face X using Borcherds’ method. We describe Aut(X) in terms of generators

and relations. Moreover, we determine the action of Aut(X) on the set of
ADE-configurations of smooth rational curves on X for some ADE-types. In

particular, we show that Aut(X) acts transitively on the set of smooth rational
curves, and that it partitions the set of pairs of disjoint smooth rational curves

into two orbits.

1. Introduction

1.1. Main results. We consider a pencil of complex affine surfaces X◦
s ⊂ A3 de-

fined by the equation

(1.1) ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s,

where ξ1, ξ2, ξ3 are coordinates of A3, and s ∈ C is a parameter. When s is very
general, the surface X◦

s is birational to a projective K3 surface Xs whose Néron–
Severi lattice is isomorphic to

(1.2) M6 := U ⊕ E8(−1)⊕ E8(−1)⊕ 〈−12〉,

where U is the hyperbolic plane, E8(−1) is the negative-definite root lattice of type
E8, and 〈−12〉 is a rank-one lattice generated by a vector with square-norm −12.
We call the K3 surface Xs with s sufficiently general an Apéry–Fermi K3 surface.
For simplicity, we assume that the parameter s is very general throughout this
work.

In this paper, we study the automorphism group Aut(Xs) of the Apéry–Fermi
K3 surface Xs by using Borcherds’ method. We provide a finite set of generators
of Aut(Xs), and describe the action of Aut(Xs) on the nef-and-big cone of Xs

explicitly. We prove that the nef-and-big cone of Xs is tessellated by copies of a
polyhedral cone with 80 walls, that the action of Aut(Xs) preserves this tessellation,
and that Aut(Xs) acts transitively on the set of tiles of this tessellation with the
stabilizer subgroup Aut(Xs, D0) of a tile D0 being isomorphic to a dihedral group
of order 16. Using this tessellation, we obtain the following result in Section 3:
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µ τ |C(τ)/Aut(Xs)|
1 A1 1
2 2A1 2
2 A2 1
3 3A1 2
3 A1 +A2 1
3 A3 3

µ τ |C(τ)/Aut(Xs)|
4 4A1 2
4 2A1 +A2 2
4 A1 +A3 9
4 2A2 2
4 A4 1
4 D4 2

Table 1.1. Sizes of C(τ)/Aut(Xs)

Theorem 1.1. The automorphism group Aut(Xs) is generated by a finite subgroup
Aut(Xs, D0) of order 16, and eight extra automorphisms.

In Section 4, we provide an explicit geometric description of these generators in
terms of Mordell–Weil groups of Jacobian fibrations, using the algorithm for com-
puting the Mordell–Weil action on the Néron–Severi lattice described in our previ-
ous paper [23]. We also analyze the faces of D0, and using the list of codimension-2
faces, we describe Aut(Xs) in terms of generators and relations in Section 6.

Next we study the action of Aut(Xs) on the set of ADE-configurations of smooth
rational curves on Xs. Let τ be an ordinary ADE-type, and let µ be the number
of nodes in the corresponding Dynkin diagram. We denote by C(τ) the set of all
non-ordered sets C = {C1, . . . , Cµ} of smooth rational curves on Xs such that the
dual graph of C is the Dynkin diagram of type τ . For example, C(A1) is the set
of smooth rational curves on Xs, C(2A1) is the set of non-ordered pairs of disjoint
smooth rational curves, whereas C(A2) is the set of non-ordered pairs of smooth
rational curves intersecting at one point transversely.

Theorem 1.2. For µ ≤ 4, the numbers of the orbits of the action of Aut(Xs) on
the set C(τ) are given in Table 1.1.

Corollary 1.3. The group Aut(Xs) acts on the set of smooth rational curves on
Xs transitively. □

In fact, it is theoretically possible to obtain the same result for ADE-types τ
with higher Milnor numbers µ. However, we stopped the computation at µ = 4
because the computation becomes too expensive for µ ≥ 5. See Section 5.3.

Our result is obtained by using Borcherds’ method. This method was introduced
by Borcherds [7], [8], and its first geometric application was given by Kondo [16].
In [22] and [23], we presented tools and techniques for implementing Borcherds’
method on a comuter.

Borcherds’ method has been applied to many K3 and Enriques surfaces. With
the advances in machine computing power, the geometric information that can be
obtained by means of this method is rapidly expanding. A secondary aim of this
paper is to highlight the usefulness and strength of this method by applying it to
an important K3 surface.

1.2. Previous studies of the Apéry–Fermi K3 surface. The Apéry–Fermi
K3 surface is an important K3 surface that has been extensively studied by many
authors. Here, we provide a brief review of previous works related to the Apéry–
Fermi K3 surface.
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In 1984, Beukers and Peters [6] constructed a one-dimensional family of K3
surfaces whose Picard-Fuchs equation is the differential equation arising in Apéry’s
famous proof [2] of irrationality of ζ(3). In 1986, Peters [19] determined the Néron–
Severi lattice and the transcendental lattice of the general member of this family,
and in 1989, Peters and Stienstra [20] showed that the general member is an Apéry–
Fermi K3 surface defined above. The equation (1.1) has its origin in the solid-state
physics, where it is related to the Fermi surface of electrons moving in a crystal.

In 1996, Dolgachev [12] introduced the notion of lattice polarized K3 surfaces.
The Apéry–Fermi K3 surface is an M6-lattice polarized K3 surface, and Dol-
gachev [12] determined, among other things, the coarse moduli space of Apéry–
Fermi K3 surfaces. In 2004, Hosono et al. [15] used Apéry–Fermi K3 surfaces in
the study of the autoequivalences of derived category of its Fourier–Mukai partner,
a K3 surface with Picard number 1 and of degree 12. In the paper [11] of Dardanelli
and van Geemen, the Apéry–Fermi K3 surfaces appear as the Hessians of certain
cubic surfaces (see Proposition 5.7 of [11]).

On the other hand, there exists a rigid Calabi–Yau 3-fold birational to a smooth
affine 3-fold defined by

(1.3) ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
+ ξ4 +

1

ξ4
= 0.

Its modularity was studied by van Geemen and Nygaard [26], Verrill [27], and
Ahlgren and Ono [1].

In 2015, Mukai and Ohashi [17] found another birational model of the Apéry–
Fermi K3 surface: the symmetric quartic surface Yt ⊂ P3 defined by

(1.4) (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)
2 = t x1x2x3x4,

where (x1 : x2 : x3 : x4) are homogeneous coordinates of P3 and t ∈ C is a
parameter. Mukai and Ohashi [17] exhibited an Enriques involution ε of Yt, and
described the automorphism group of the Enriques surface birational to Yt/〈ε〉.

Remark 1.4. To the best of our knowledge, the fact that the Apéry–Fermi K3 sur-
face Xs is birational to the quartic surface Yt for some t = t(s) has not yet appeared
in the literature. We were informed of this fact through personal communication
with the authors of [17]. See Proposition 2.3 for the proof of this fact.

In 2020, Bertin and Lecacheux [4] determined all Jacobian fibrations of the
Apéry–Fermi K3 surface by using Kneser–Nishiyama method. The geometry of
some special members of the pencil (1.1) has also been studied, for example, in
Bertin and Lecacheux [3], [5]. In [14], Festi and van Straten provided an account
on the relation between the Apéry–Fermi K3 surfaces and quantum electrodynam-
ics, highlighting the importance of studying this K3 surface.

1.3. Plan of this paper. In Section 2, we review the result of Peters and Stien-
stra [20], and present 32 smooth rational curves on the K3 surface Xs whose classes
generate the Néron–Severi lattice of Xs. We also compare Xs with the quartic sur-
face Yt of Mukai and Ohashi [17], and prove that Xs is birational to Yt for a
suitable choice of t (see Remark 1.4). In Section 3, we execute Borcherds’ method,
and obtain a set of generators of Aut(Xs) lattice-theoretically, thereby proving
Theorem 1.1. We also describe the finite polytope D0 with 80 walls and prove
Corollary 1.3. In Section 4, we give geometric realization to each of the generators
of Aut(Xs) given in Theorem 1.1. In Section 5, we calculate the set of faces of the
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polytope D0, and prove Theorem 1.2 in Section 5.3. In Section 6, we explain how
to describe Aut(Xs) in terms of generators and relations using the codimension-2
faces of D0.

Detailed computational data are available from [24]. For our computation, we
used GAP [25].

Acknowledgements. We are grateful to Professor Shigeru Mukai, Professor
Shigeyuki Kondo, and Professor Hisanori Ohashi for providing information about
the quartic surface Yt. We also thank Professor Takuya Yamauchi for enlightening
us about the rigid Calabi–Yau 3-fold (1.3).

2. Two projective models of an Apéry–Fermi K3 surface

2.1. The Fermi surface model. We review the result of Peters and Stienstra [20].
Let X◦

s be the affine surface in A3 defined by the equation (1.1), and let Xs be the
K3 surface containing X◦

s as a Zariski open subset. Recall that we have assumed
that the parameter s ∈ C is very general. We present 32 smooth rational curves on
Xs whose classes generate the Néron–Severi lattice NS(Xs) of Xs.

The K3 surface Xs is isomorphic to a smooth surface in P6×P1×P1×P1 defined
by the equation (4) in [20]. Considering the projection onto the first factor P6, we
see that Xs is birational to the surface Xs in P6 defined by

(2.1)
u1 + u2 + u3 + v1 + v2 + v3 = sw,

u1v1 − w2 = u2v2 − w2 = u3v3 − w2 = 0,

where (w : u1 : u2 : u3 : v1 : v2 : v3) is a homogeneous coordinate system of P6 such
that we have ξi = ui/w = w/vi on X◦

s . We denote by H∞ the hyperplane of P6

defined by w = 0. For i = 1, 2, 3, let γi ∈ {0,+,−} denote the condition
ui = 0 and vi = 0, if γi = 0,

ui 6= 0 and vi = 0, if γi = +,

ui = 0 and vi 6= 0, if γi = −.

If one of γ1, γ2, γ3 is 0 and the other two are not, then the conditions γ1, γ2, γ3
with w = 0 determine a single point pγ1γ2γ3

on X̄s ∩H∞. For example, we have

p+−0 = (0 : 1 : 0 : 0 : 0 : −1 : 0).

The points pγ1γ2γ3
are ordinary nodes of Xs, and the singular locus SingXs of Xs

consists of these 12 points. Let Lγ1γ2γ3
denote the exceptional (−2)-curve of the

minimal desingularization Xs → Xs over pγ1γ2γ3
. If none of γ1, γ2, γ3 is 0, then the

conditions γ1 and γ2 and γ3 with w = 0 define a line Lγ1γ2γ3
on Xs ∩ H∞. For

example, we have

L+−+ = { (0 : λ1 : 0 : λ3 : 0 : λ2 : 0) | λ1 + λ2 + λ3 = 0 }.

Let Lγ1γ2γ3 ⊂ Xs denote the strict transform of Lγ1γ2γ3 in Xs. Thus, we obtain
12 + 8 smooth rational curves Lγ1γ2γ3 on Xs.

Let σ, σ−1 ∈ C be the roots of the equation ξ + 1/ξ = s. For k ∈ {1, 2, 3} and
α, β ∈ {+,−}, we define the curve Mkαβ on Xs as follows. Let i, j be the indexes
such that {i, j, k} = {1, 2, 3}. The curve defined by

ξi + 1/ξi + ξj + 1/ξj = 0
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in A2 with coordinates (ξi, ξj) is a union of two rational curves ξi + ξj = 0 and
ξiξj + 1 = 0. Let M◦

kαβ be the curve on X◦
s ⊂ A3 defined by{

ξk = σ if α = +,

ξk = σ−1 if α = −
, and

{
ξi + ξj = 0 if β = +,

ξiξj + 1 = 0 if β = −,

and let Mkαβ ⊂ Xs be the strict transform of the closure of M◦
kαβ . Thus, we obtain

12 smooth rational curves Mkαβ on Xs.
We now confirm the following results proved in Section 7 of [19] and [20] by

direct computation.

Lemma 2.1. (1) The intersection numbers of these 20+12 smooth rational curves
Lγ1γ2γ3 and Mkαβ are as follows.

(i) The dual graph of the curves Lγ1γ2γ3 is shown in Figure 2.1, which we refer
to as the L-cube.

(ii) The curves Mkαβ intersect as follows:

〈Mkαβ ,Mk′α′β′〉 =



−2 if k = k′, α = α′, β = β′,

2 if k = k′, α = α′, β 6= β′,

0 if k = k′, α 6= α′, β = β′,

0 if k = k′, α 6= α′, β 6= β′,

1 if k 6= k′, α = α′, β = β′,

0 if k 6= k′, α = α′, β 6= β′,

0 if k 6= k′, α 6= α′, β = β′,

1 if k 6= k′, α 6= α′, β 6= β′.

(iii) We have

〈Lγ1γ2γ3 ,Mkαβ〉 =

{
1 if γk = 0 and β = γiγj, where {i, j, k} = {1, 2, 3},
0 otherwise.

(2) The classes of these 32 smooth rational curves span the Néron–Severi lattice
NS(Xs) of Xs, which is of rank 19 and with discriminant −12.

(3) The lattice NS(Xs) is isomorphic to the lattice M6 defined by (1.2). □
To prove the assertion (3), we use the following Jacobian fibration of Xs. The

configuration of the 32 smooth rational curves described in Lemma 2.1 contains a
sub-configuration shown in Figure 2.2. Hence Xs has an elliptic fibration with a
section M2++ and two singular fibers of type II∗. Consequently, NS(Xs) contains
a rank-18 sublattice isomorphic to U ⊕ E8(−1) ⊕ E8(−1). Since this sublattice is
unimodular, it must be a direct summand of NS(Xs). Comparing the discriminant,
we see that NS(Xs) is isomorphic to M6.

Thus, Xs can be regarded as an M6-lattice polarized K3 surface in the sense
of Dolgachev [12]. According to [12], the isomorphism classes of M6-lattice polar-
ized K3 surfaces are parameterized by an irreducible curve, and our surface Xs

corresponds to a geometric generic point of this curve.

2.2. The Mukai–Ohashi quartic. Let Yt be the quartic surface in P3 defined by
the quartic polynomial (1.4), where the parameter t is assumed to be very general.
For i ∈ {1, . . . , 4}, let Hi ⊂ P3 denote the plane defined by xi = 0, and let pi denote
the point such that {pi} = Hj ∩Hk ∩Hl, where {i, j, k, l} = {1, . . . , 4}. Then the
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−−0
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−0−

−0+

−+−
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0−+

0+−
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+−+

+0−
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++−

++0

+++

Figure 2.1. Dual graph of the curves Lγ1γ2γ3
(L-cube)

L−−−

L−0+ L−−+ L−−0

M3−+ L++0 L+++ L0++ M1++

L+−+

L+0− L+−− L+−0

M3+− L−+0 L−+− L0+− M1−−

M2++

Figure 2.2. Sub-configuration containing 2 II∗

singular locus Sing Yt of Yt consists of four points p1, . . . , p4. Let (P3)′ → P3 be the
blowing up at the points p1, . . . , p4. We denote by Y ′

t ⊂ (P3)′ the strict transform
of Yt, and by Ei ⊂ (P3)′ the exceptional divisor over pi. We have homogeneous
coordinates (uij : uik : uil) of Ei

∼= P2, where {i, j, k, l} = {1, . . . , 4}, such that the
strict transform of the plane in P3 defined by ajxj + akxk + alxl = 0 intersects Ei

along the line ajuij + akuik + aluil = 0. We consider the line

Λi : uij + uik + uil = 0

on Ei. Then the scheme-theoretic intersection of Y ′
t and Ei is the double line 2Λi.

For ν ∈ {j, k, l}, let qiν be the intersection point in Ei
∼= P2 of the line Λi and the

line defined by uiν = 0. Then the singular points of Y ′
t located on Ei are precisely

the three points qiν , forming a total of 3×4 ordinary nodes of Y ′
t . Let (P3)′′ → (P3)′
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be the blowing up at these nodes qiν , and let Y ′′
t ⊂ (P3)′′ be the strict transform

of Y ′
t . Then Y ′′

t is smooth. Let Pi ⊂ Y ′′
t be the strict transform of Λi, and let

Qiν ⊂ Y ′′
t be the exceptional curve over the ordinary node qiν ∈ Y ′

t . Then, for
each i, the smooth rational curves Pi and Qiν (ν ∈ {j, k, l}) form a dual graph
isomorphic to the Dynkin diagram of type D4 with Pi being the central node.

The scheme-theoretic intersection of Yt and Hλ = {xλ = 0} is a double conic
2Tλ, where Tλ is a smooth conic on Hλ. Let T ′

λ ⊂ Y ′
t and T ′′

λ ⊂ Y ′′
t be the strict

transforms of Tλ in Y ′
t and in Y ′′

t , respectively. Suppose that i 6= λ. Then T ′
λ

intersects Ei at the point qiλ, and the curve T ′′
λ intersects Qiλ, but is disjoint from

the other three component Pi and Qiµ, Qiν of the D4-configuration over pi, where
{i, λ, µ, ν} = {1, . . . , 4}.

Let τ and 1/τ be the two roots of the equation (u − 1)2 − tu = 0 in variable
u. Let µ, ν ∈ {1, . . . , 4} be distinct indexes, and let Hµν ⊂ P3 be the plane in P3

defined by xµ + xν = 0. We put {i, j} = {1, . . . , 4} \ {µ, ν}. Then Hµν ∩ Yt is a
union of two conics

Cµν,ρ : xµxν + ρ xixj = xµ + xν = 0,

where ρ ∈ {τ, 1/τ}. Let C ′
µν,ρ ⊂ Y ′

t and C ′′
µν,ρ ⊂ Y ′′

t be the strict transforms of Cµν,ρ

in Y ′
t and in Y ′′

t , respectively. Note that, since the strict transform H ′
µν ⊂ (P3)′ of

Hµν intersects the exceptional surface Ei along the line uiµ + uiν = 0, the curves
C ′

µν,τ and C ′
µν,1/τ pass through qij , because Λi is defined by uij + uiµ + uiν = 0.

Thus, the curves C ′′
µν,τ and C ′′

µν,1/τ intersect Qij .

We can now establish the following result by direct computation.

Lemma 2.2. The intersection numbers of the 32 smooth rational curves Pi, Qij,
T ′′
ν , and C ′′

µν,ρ on Y ′′
t are as follows.

(i) The dual graph of the curves Pi, Qij, T
′′
ν is shown in Figure 2.3, where the

thick edges indicate the four D4-configurations over the singular points of Yt.
(ii) The intersection numbers of the curves C ′′

µν,ρ, where µ, ν ∈ {1, . . . , 4} with
µ 6= ν and ρ ∈ {τ, 1/τ}, are as follows.

If {µ, ν} = {µ′, ν′}, then

〈C ′′
µν,ρ, C

′′
µ′ν′,ρ′〉 =

{
−2 if ρ = ρ′,

0 if ρ 6= ρ′.

If {µ, ν} ∩ {µ′, ν′} consists of a single element, then

〈C ′′
µν,ρ, C

′′
µ′ν′,ρ′〉 =

{
1 if ρ = ρ′,

0 if ρ 6= ρ′.

If {µ, ν} ∩ {µ′, ν′} = ∅, then

〈C ′′
µν,ρ, C

′′
µ′ν′,ρ′〉 =

{
0 if ρ = ρ′,

2 if ρ 6= ρ′.

(iii) The curve C ′′
µν,ρ is disjoint from Pi, T

′′
ν , and we have

〈C ′′
µν,ρ, Qij〉 =

{
1 if {µ, ν, i, j} = {1, 2, 3, 4},
0 otherwise.

□
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P3

Q34

T ′′
4

Q31

Q24

T ′′
1

Q21

P2

Q32

Q14

Q41

Q23

T ′′
2

Q12

P1

Q42

Q13

P4

Q43

T ′′
3

Figure 2.3. Dual graph of the curves Pi, Qij , T
′′
ν

kαβ 1−− 1−+ 1+− 1++ 2−− 2−+ 2+− 2++
µν, ρ 23, τ 14, 1/τ 23, 1/τ 14, τ 13, τ 24, 1/τ 13, 1/τ 24, τ

kαβ 3−− 3−+ 3+− 3++
µν, ρ 34, τ 12, 1/τ 34, 1/τ 12, τ

Table 2.1. Bijection between Mkαβ and C ′′
µν,ρ

As noted in Remark 1.4, the following result was known to the authors of [17].

Proposition 2.3. There exists a parameter t(s) ∈ C such that the K3 surfaces Xs

and Y ′′
t(s) are isomorphic.

Proof. The 32 smooth rational curves in Lemma 2.1 and those in Lemma 2.2 have
the same configuration. Indeed, a bijection between these two sets of 32 curves
preserving their intersection numbers can be established by comparing the cubes
in Figures 2.1 and 2.3 for the curves Lγ1γ2γ3

, and using Table 2.1 for Mkαβ .
Since the isomorphism class of the K3 surface Y ′′

t varies as t changes, and t is as-
sumed to be very general, we conclude that NS(Y ′′

t ) is of rank 19. By Lemma 2.1 (2)
and the bijection above, NS(Y ′′

t ) contains a sublattice isomorphic to NS(Xs) with fi-
nite index. Since NS(Xs) admits no non-trivial even overlattice, as was noted in the
proof of Proposition 7.1.1 of [19], we see that NS(Xs) ∼= NS(Yt). By Corollary 7.1.3
of [19], the transcendental lattice of Xs is isomorphic to that of Y ′′

t . Applying the
Torelli theorem for K3 surfaces, we conclude that there exists a suitable choice of
t(s) for which Xs

∼= Y ′′
t(s). □
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3. Néron–Severi lattice and automorphism group

From now on, we omit the parameter s in Xs, and simply denote the Apéry–
Fermi K3 surface by X. We also write SX for the Néron–Severi lattice NS(X) of
X. We make the orthogonal group O(SX) act on SX from the right.

3.1. Chambers and their faces. We fix terminologies and notation about lattices
and hyperbolic spaces. Let L be an even lattice of signature (1, l − 1) with l ≥ 2.
A positive cone of L is one of the two connected components of the space

{x ∈ L⊗ R | 〈x, x〉 > 0 }.

We fix a positive cone PL, and define the autochronous subgroup of O(L) as

O(L,PL) := { g ∈ O(L) | Pg
L = PL }.

We also define

RL := { r ∈ L | 〈r, r〉 = −2 }.
For v ∈ L ⊗ R with 〈v, v〉 < 0, let (v)⊥ denote the real hyperplane in PL defined
by 〈x, v〉 = 0. The Weyl group W (L) is the subgroup of O(L,PL) generated by
reflections x 7→ x + 〈x, r〉r into the mirrors (r)⊥ defined by vectors r ∈ RL. A
standard fundamental domain of the action of the Weyl group W (L) on PL is the
closure in PL of a connected component of the space

PL \
⋃

r∈RL

(r)⊥.

Now, let M be a primitive sublattice of L with signature (1,m − 1) with m ≥ 2,
and let PM be the positive cone (M ⊗ R) ∩ PL of M .

Definition 3.1. An L/M -chamber is a closed subset D of PM such that

(i) D has the form PM ∩DL, where DL is a standard fundamental domain of the
action of W (L) on PL, and

(ii) D contains a nonempty open subset of PM .

Each L/M -chamber is defined in PM by locally finite linear inequalities

(3.1) 〈x, vi〉 ≥ 0, where vi ∈M ⊗Q.

Remark 3.2. According to this terminology, the lengthy phrase “standard funda-
mental domain of the action of W (L) on PL” can be shortened to “L/L-chamber”.
Note that W (L) acts on the set of L/L-chambers simply transitively.

Remark 3.3. In general, L/M -chambers are not congruent to each other.

Remark 3.4. Each M/M -chamber is a union of L/M -chambers, meaning that each
M/M -chamber is tessellated by L/M -chambers. (We use the term “tessellation”
even when the constituent tiles are not congruent to each other.)

More generally, if M ′ is a primitive sublattice of M , then every M/M ′-chamber
is tessellated by L/M ′-chambers.

For v ∈ L ∩ PL, we put

[v]⊥ := { r ∈ L | 〈v, r〉 = 0 }.

Then a point v ∈ L ∩ PL is an interior point of an L/L-chamber if and only if
[v]⊥ ∩ RL = ∅. Suppose that v is an interior point of an L/L-chamber N , and let
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v′ be another vector of L ∩ PL. Then v′ belongs to the same L/L-chamber N as v
if and only if the set

Sep(v, v′) := { r ∈ RL | 〈v, r〉 > 0, 〈v′, r〉 < 0 }
of separating (−2)-vectors is empty. The set Sep(v, v′) can be computed using an
algorithm given in [21].

LetD be an L/M -chamber. A closed subset f ofD is called a face of codimension
µ of D if there exists a linear subspace Pf of PM of codimension µ such that

(i) f = Pf ∩D,
(ii) Pf is disjoint from the interior of D, and
(iii) f contains a nonempty open subset of Pf .

The linear subspace Pf is called the supporting linear subspace of the face f . A
face of codimension 1 is called a wall.

Let Fµ(D) be the set of faces of codimension µ of D. Suppose that the set
F1(D) of walls of D is finite. Then the set Fµ(D) can be computed inductively on
µ using standard linear programming methods (see [13]).

Let w be a wall of D. We say that a vector v of the dual lattice M∨ is a primitive
defining vector of the wall w = Pw ∩D of D if

(i) Pw = (v)⊥,
(ii) v is primitive in M∨, and
(iii) 〈v, x〉 > 0 for an (and hence every) interior point x of D.

Each wall of D has a unique primitive defining vector.
For a face f of D, let D(f) be the set of L/M -chambers that contain f . If w is a

wall of D, there exists a unique L/M -chamber D′ 6= D such that D(w) = {D,D′}.
We call D′ the L/M -chamber adjacent to D across the wall w.

3.2. The lattice SX . We study the Néron–Severi lattice SX , which is an even
lattice of signature (1, 18). Let PX ⊂ SX ⊗R be the positive cone of SX containing
an ample class of X. We define the nef-and-big cone of X by

NX := {x ∈ PX | 〈x,C〉 ≥ 0 for all curves C on X }.
It is well known that NX is an SX/SX -chamber. We then define

RX := RSX
= { r ∈ SX | 〈r, r〉 = −2 },

and denote by Rats(X) ⊂ RX the set of classes of smooth rational curves on X.
Then NX is determined by

NX = {x ∈ PX | 〈x,C〉 ≥ 0 for any C ∈ Rats(X) }.

Remark 3.5. To simplify notation, we do not distinguish a smooth rational curve
on X and its class in SX . For example, we often write C ∈ SX for C ∈ Rats(X).

We introduce a basis of the Néron–Severi lattice SX . First, we fix a basis for the
lattice M6 defined in (1.2). Let u1, u2 be the basis of the hyperbolic plane U with
the Gram matrix (

0 1
1 0

)
.

For ν = 1, 2, let e
(ν)
1 , . . . , e

(ν)
8 be the (−2)-vectors in the two copies of E8(−1) that

form the dual graph illustrated in Figure 3.1. Let 〈−12〉 = Z v12 be the rank-one
lattice generated by a vector v12 satisfying 〈v12, v12〉 = −12. Then the 19 vectors

(3.2) u1, u2, e
(1)
1 , . . . , e

(1)
8 , e

(2)
1 , . . . , e

(2)
8 , v12
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e
(ν)
1

e
(ν)
2 e

(ν)
3 e

(ν)
4 e

(ν)
5 e

(ν)
6 e

(ν)
7 e

(ν)
8

Figure 3.1. Dual graph of e
(ν)
1 , . . . , e

(ν)
8

L−−− : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−−0 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−−+ : [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−0− : [4, 3,−8,−5,−10,−15,−12,−9,−6,−3,−6,−4,−8,−12,−10,−8,−6,−3,−1]
L−0+ : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−+− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
L−+0 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
L−++ : [4, 4,−8,−6,−11,−16,−13,−10,−7,−4,−9,−6,−12,−18,−15,−12,−8,−4,−1]
L0−− : [4, 4,−8,−5,−10,−15,−12,−9,−6,−3,−10,−7,−14,−20,−16,−12,−8,−4,−1]
L0−+ : [4, 4,−10,−7,−14,−20,−16,−12,−8,−4,−8,−5,−10,−15,−12,−9,−6,−3,−1]
L0+− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
L0++ : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L+−− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
L+−0 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
L+−+ : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
L+0− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
L+0+ : [4, 3,−6,−4,−8,−12,−10,−8,−6,−3,−8,−5,−10,−15,−12,−9,−6,−3,−1]
L++− : [4, 4,−9,−6,−12,−18,−15,−12,−8,−4,−8,−6,−11,−16,−13,−10,−7,−4,−1]
L++0 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L+++ : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
M1−− : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3,−2,−4,−6,−5,−4,−3,−2, 0]
M1−+ : [7, 7,−15,−10,−20,−30,−25,−19,−13,−7,−12,−8,−16,−24,−20,−15,−10,−5,−2]
M1+− : [7, 7,−12,−8,−16,−24,−20,−15,−10,−5,−15,−10,−20,−30,−25,−19,−13,−7,−2]
M1++ : [1, 0,−3,−2,−4,−6,−5,−4,−3,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0]
M2−− : [3, 3,−5,−4,−7,−10,−8,−6,−4,−2,−5,−4,−7,−10,−8,−6,−4,−2,−1]
M2−+ : [5, 5,−12,−8,−16,−24,−20,−15,−10,−5,−12,−8,−16,−24,−20,−15,−10,−5,−1]
M2+− : [9, 7,−17,−12,−23,−34,−28,−21,−14,−7,−17,−12,−23,−34,−28,−21,−14,−7,−2]
M2++ : [−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
M3−− : [12, 11,−24,−16,−32,−48,−40,−30,−20,−10,−24,−16,−32,−48,−39,−30,−20,−10,−3]
M3−+ : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
M3+− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
M3++ : [12, 11,−24,−16,−32,−48,−39,−30,−20,−10,−24,−16,−32,−48,−40,−30,−20,−10,−3]

Table 3.1. Isometry between M6 and SX

form a basis of M6. We write vectors of M6 as row vectors of length 19 with respect
to this basis. Next, we choose an isometry M6

∼= SX as given in Table 3.1, and
express vectors of SX using the same row vector representation.

Remark 3.6. Under this isomorphism M6
∼= SX , the vector u1 ∈M6 corresponds to

the class of a fiber of the elliptic fibration φ : X → P1 defined by the configuration
in Figure 2.2, the vector u2 ∈ M6 corresponds to the class z + u1, where z is the

zero section M2++ of φ, and the vectors e
(ν)
i correspond to the reduced parts C of

the irreducible components of the two reducible fibers of φ satisfying 〈z, C〉 = 0.
The sign of v12 is chosen so that 〈v12, C〉 ≥ 0 holds for all 32 smooth rational curves
C in Lemmas 2.1 and 2.2.

Finally, let

qSX
: S∨

X/SX → Q/2Z
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denote the discriminant form of the even lattice SX (see [18]), where S∨
X is the

dual lattice of SX . The discriminant group S∨
X/SX is a cyclic group of order 12

generated by v12/12 mod SX , and satisfies qSX
(v12/12) = −1/12 mod 2Z.

Let L32 be the set of 32 smooth rational curves in Lemmas 2.1 and 2.2. The two
sets in these two lemmas are identified by the bijection established in the proof of
Proposition 2.3.

Let h8 ∈ SX be the class of a hyperplane section of the projective model Xs ⊂ P6

of X defined by (2.1). Since Xs is a (2, 2, 2)-complete intersection in the hyperplane
of P6 defined by the first equation of (2.1), it follows that h8 is a nef vector of degree
8. Examining the intersection numbers with the 32 smooth rational curves in L32,
we find

h8 = [24, 22,−48,−32,−64,−95,−78,−59,−40,
−20,−48,−32,−64,−95,−78,−59,−40,−20,−6].

Similarly, the class h4 of the hyperplane section of the quartic surface Yt(s) ⊂ P3 is
given by

h4 = [28, 26,−56,−38,−76,−112,−92,−70,−48,−24,
−56,−38,−76,−112,−92,−70,−48,−24,−7].

Recall that SingXs consists of 12 ordinary nodes pγ1γ2γ3 , where one of γ1, γ2, γ3 is
0 and the other two are in {+,−}. Thus, we obtain

{ r ∈ Rats(X) | 〈r, h8〉 = 0 } = {Lγ1γ2γ3
| one of γ1, γ2, γ3 is 0 } ⊂ L32.

It follows that NX is the SX/SX -chamber containing h8 and contained in the region
of PX defined by

(3.3) 〈x,C〉 ≥ 0 for all C = Lγ1γ2γ3 with one of γ1, γ2, γ3 being 0.

Now we define

a32 := [70, 63,−140,−94,−187,−279,−230,−174,−117,
−59,−140,−94,−187,−279,−230,−174,−117,−59,−17].

We verify that

〈a32, a32〉 = 32.

The intersection numbers of a32 with elements of L32 are

〈C, a32〉 =


1 if C = Lγ1γ2γ3

or C ∈ {M2−+,M2+−,M3−−,M3++},
4 if C = M1αβ ,

7 if C ∈ {M2−−,M2++,M3−+,M3+−}.

Since a32 lies in the region defined by (3.3), and we confirm by direct computation
that

[a32]
⊥ ∩RX = ∅, Sep(h8, a32) = ∅,

it follows that a32 is in the interior of NX , and hence a32 is ample.
Thanks to the ample class a32, we can now utilize various tools and methods

explained in [23]. For example, we can determine whether a given (−2)-vector
r ∈ RX belongs to Rats(X) or not by the criterion in Section 3.4 of [23]. The
numbers of smooth rational curves C on X of low degree 〈C, a32〉 are given in
Table 3.2.
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〈C, a32〉 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
number 24 0 0 4 0 0 8 0 0 16 32 0 32 16 0 80 192

〈C, a32〉 18 19 20 21 22 23 24 25 26 27 28 29
number 0 136 96 0 248 384 0 416 320 304 560 816

.

Table 3.2. Numbers of smooth rational curves of low degrees

Remark 3.7. We found the ample class a32 by random search for ample classes of
X. This class plays an important role in specifying the Conway chamber C(w0)
and the L26/SX -chamber D0 = PX∩C(w0) in Borchards’ method. See Section 3.5.

3.3. Embedding Aut(X) into O(SX ,PX). Recall that qSX
is the discriminant

form of the even lattice SX . Let

O(qSX
) ∼= (Z/12Z)× = {±1,±5}

denote the automorphism group of the finite quadratic form qSX
. We have a natural

homomorphism

η : O(SX)→ O(qSX
).

By Theorem 5.4 and Example 5.5 of [23], we obtain the following result:

Proposition 3.8. The natural homomorphism Aut(X)→ O(SX ,PX) is injective,
and its image consists precisely of isometries g ∈ O(SX ,PX) satisfying Ng

X = NX

and η(g) ∈ {±1}. □

From this point onward, we will regard Aut(X) as a subgroup of O(SX ,PX).
An isometry g ∈ O(SX ,PX) satisfies the condition Ng

X = NX if and only if the
set Sep(a32, a

g
32) of (−2)-vectors separating a32 and ag32 is empty. Thus, for g ∈

O(SX ,PX), we have

g ∈ Aut(X) ⇐⇒ ( Sep(a32, a
g
32) = ∅ and η(g) ∈ {±1} ).

3.4. The finite subgroup Aut(X,L32). Let O(SX ,L32) denote the group of per-
mutations of the set L32 of 32 smooth rational curves in Lemma 2.1 that preserve
intersection numbers. Since the classes of curves in L32 generate SX , we can nat-
urally embed O(SX ,L32) into O(SX). Since the sum s of elements of L32 satisfies
〈s, s〉 > 0 and 〈s, a32〉 > 0, it follows that O(SX ,L32) is contained in O(SX ,PX).
We put

Aut(X,L32) := O(SX ,L32) ∩Aut(X),

where the intersection is taken in O(SX ,PX). In this section, we present various
facts about this finite automorphism group Aut(X,L32).

(a) The size of the group O(SX ,L32) is 96. Every element g of O(SX ,L32)
satisfies Sep(a32, a

g
32) = ∅, which implies

Aut(X,L32) = { g ∈ O(SX ,L32) | η(g) ∈ {±1} }.
Let µ ∈ O(SX ,L32) be the involution given by

Lµ
γ1γ2γ3

= Lγ1γ2γ3
, Mµ

kαβ = Mk(−α)β .

Then we have η(µ) = 5 ∈ O(qSX
), and

O(SX ,L32) = 〈µ〉 ×Aut(X,L32).
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In particular, the size of the group Aut(X,L32) is 48. This group Aut(X,L32) acts
on the L-cube (Figure 2.1) faithfully. We put the L-cube in R3 by

Lγ1γ2γ3
7→ γ1e1 + γ2e2 + γ3e3,

where e1, e2, e3 are the standard ortho-normal basis of R3. This gives a represen-
tation

(3.4) ρL : Aut(X,L32) ↪→ O(3).

Then the morphism η : Aut(X,L32)→ {±1} ⊂ O(qSX
) is given by

(3.5) η(g) = 1 ⇔ ρL(g) ∈ SO(3).

(b) The action of Aut(X,L32) decomposes L32 into three orbits

{Lγ1γ2γ3 | none of γ1, γ2, γ3 is zero }, {Lγ1γ2γ3 | one of γ1, γ2, γ3 is zero }, {Mkαβ}.

These orbits have sizes 8, 12, 12, respectively.

(c) By the natural embedding L32 ↪→ SX , we have

L32 = { r ∈ Rats(X) | 〈r, h8〉 ≤ 2 }.

Hence the group

Aut(X,h8) := { g ∈ Aut(X) | hg
8 = h8 }

of projective automorphisms of the (2, 2, 2)-complete intersection Xs ⊂ P5 given
by (2.1) is contained in Aut(X,L32). In fact, by computing the order of Aut(X,h8),
we can show that Aut(X,h8) = Aut(X,L32).

(d) There exists an involution ε ∈ Aut(X,L32) defined by

Lε
γ1γ2γ3

= L(−γ1)(−γ2)(−γ3), Mε
kαβ = Mk(−α)β .

The center of Aut(X,L32) is equal to 〈ε〉. Let Σ ⊂ Aut(X,L32) be the subgroup
consisting of all g ∈ Aut(X,L32) such that

{P g
1 , P

g
2 , P

g
3 , P

g
4 } = {P1, P2, P3, P4},

where P1 = L+−+, P2 = L−++, P3 = L−−−, P4 = L++− are the vertices of a
regular tetrahedron in the cube in Figure 2.3. Then we have

Aut(X,L32) = 〈ε〉 × Σ,

and Σ is isomorphic to the symmetric group S4. The involution ε is induced by
the Enriques involution

(3.6) x1 ↔ 1/x1, x2 ↔ 1/x2, x3 ↔ 1/x3, x4 ↔ 1/x4

of the quartic surface Yt. This Enriques involution and the associated Enriques
surface were studied by Mukai and Ohashi [17]. The action of Σ ∼= S4 on Yt is
induced by the permutations of the coordinates (x1 : x2 : x3 : x4) of P3.

(e) We have an isomorphism

Aut(X,L32) = 〈ε〉 × Σ ∼= (Z/2Z)3 ⋊S3.

This isomorphism arises from the action of Aut(X,L32) on the affine Fermi surface
X◦

s in A3 via the three involutions ξi ↔ 1/ξi and the permutations of the coordinates
(ξ1, ξ2, ξ3) of A3.
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f1

f2 f3 f4 f5 f6 f7

Figure 3.2. Basis of R

3.5. Borcherds’ method. Let L26 be an even unimodular lattice of rank 26 and
signature (1, 25). Note that such a lattice is unique up to isomorphism. We embed
SX into L26 primitively using the technique of discriminant forms [18] as follows.
Recall that the discriminant group S∨

X/SX is a cyclic group of order 12 generated
by γS , where γS := v12/12 mod SX , and the discriminant form qSX

is given by
qSX

(γS) = −1/12 mod 2Z. Let R be the negative-definite root lattice of type
D5 + A2. We fix a basis f1, . . . , f7 of R as is shown in the Dynkin diagram in
Figure 3.2. Then R∨/R is a cyclic group of order 12 generated by γR := γ̃R mod R,
where

γ̃R :=
1

4
(3f1 + f2 + 2f3 + 2f5) +

1

3
(f6 + 2f7) ∈ R∨,

and we have qR(γR) = 1/12 mod 2Z, where qR : R∨/R→ Q/2Z is the discriminant
form of R. Hence γS 7→ −γR gives an anti-isomorphism qSX

∼= −qR. The graph of
this anti-isomorphism in (S∨

X/SX)× (R∨/R) yields an even unimodular overlattice
L26 of the orthogonal direct sum SX⊕R. Indeed, L26 is generated in S∨

X⊕R∨ over
SX ⊕R by the vector v12/12 + γ̃R. From this point forward, we regard SX and R
as primitive sublattices of L26 via this embedding (SX ⊕R) ↪→ L26.

Let P26 ⊂ L26⊗R denote the positive cone of L26 containing the positive cone PX

of SX . We refer to an L26/L26-chamber as a Conway chamber, as its structure was
determined by Conway [10]. The tessellation of P26 by Conway chambers induces a
tessellation of PX by L26/SX -chambers. Each SX/SX -chamber, including the nef-
and-big cone NX , is also tessellated by L26/SX -chambers. For every g ∈ Aut(X),
its action η(g) ∈ O(qSX

) on the discriminant form qSX
is in {±1}, and hence the

action of g on SX extends to an action on L26. Consequently, the action of Aut(X)
on NX preserves the tessellation of NX by L26/SX -chambers. We put

(3.7) VX := the set of L26/SX -chambers contained in NX .

Our goal is to analyze the action of Aut(X) on NX via the the action of Aut(X)
on VX .

Definition 3.9. Let D be an element of VX , and f a face of D. We say that f
is inner if the set D(f) of all L26/SX -chambers containing f is a subset of VX .
Otherwise, we say that f is outer.

Suppose that w = D ∩ (v)⊥ is a wall of D ∈ VX , where v ∈ S∨
X is the primitive

defining vector (see Section 3.1). Then w is inner if and only if the L26/SX -chamber
adjacent to D across the wall w belongs to VX . It is also obvious that w is outer if
and only if v is equal to αC for some α ∈ Q>0 and C ∈ Rats(X).

We put
R26 := { r ∈ L26 | 〈r, r〉 = −2 }.

Recall that a32 ∈ SX is an ample class with 〈a32, a32〉 = 32, which we regard as a
vector of L26 by the embedding SX ↪→ L26.
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Proposition 3.10. The ample class a32 is an interior point of an L26/SX-chamber.

Proof. By direct computation, we verify that the set { r ∈ R26 | 〈r, a32〉 = 0 } is
equal to the set

{ r ∈ R26 | 〈r, v〉 = 0 for all v ∈ SX } = { r ∈ R26 | r ∈ R } ∼= { r ∈ R | 〈r, r〉 = −2 }

of roots of R. This implies that, if r ∈ R26 satisfies 〈r, a32〉 = 0, then we have
PX ⊂ (r)⊥ in P26. □

Definition 3.11. A vector w of L26 is called a Weyl vector if

(i) w is non-zero, primitive in L26, and of square-norm 0,
(ii) w is contained in the closure of P26 in L26 ⊗ R, and
(iii) the negative-definite even unimodular lattice [Zw]⊥/Zw of rank 24 contains

no vectors of square-norm −2.
For a Weyl vector w, we call a (−2)-vector r ∈ R26 of L26 a Leech root of w if
〈r,w〉 = 1 holds.

Conway [10] proved that the mapping w 7→ C(w), where

C(w) := {x ∈ P26 | 〈x, r〉 ≥ 0 for all Leech roots r of w },

is a bijection from the set of Weyl vectors to the set of Conway chambers. Moreover,
he showed that C(w)∩ (r)⊥ is a wall of the Conway chamber C(w) for each Leech
roots r of w; that is, C(w) ∩ (r)⊥ contains a nonempty open subset of (r)⊥ for
every Leech root r of w.

We put

aR := [−5,−5,−9,−7,−4,−1,−1] ∈ R,

which is a vector of R satisfying 〈aR, fj〉 = 1 for j = 1, . . . , 7. Since 〈aR, aR〉 = −32,
the vector

w0 := a32 + aR

of L26 is of square-norm 0. We verify that w0 is a primitive vector in L26, and that
the negative-definite even unimodular lattice [Zw0]

⊥/Zw0 has no (−2)-vectors.
Thus, we confirm that w0 is a Weyl vector.

Proposition 3.12. The closed subset

D0 := PX ∩C(w0)

of PX is the L26/SX-chamber containing a32 in its interior.

Proof. We have already proved that a32 is an interior point of a certain L26/SX -
chamber in PX . Thus, it suffices to show that a32 lies in C(w0). Since w0 ∈ L26

is a primitive vector with square-norm 0 and we have L26 = L∨
26, there exists a

vector w′
0 ∈ L26 such that 〈w′

0,w
′
0〉 = 0 and 〈w0,w

′
0〉 = 1. Then w0 and w′

0

span a hyperbolic plane Uw in L26, and its orthogonal complement Λ := U⊥
w is

isomorphic to the negative-definite Leech lattice [Zw0]
⊥/Zw0. Thus we can write

L26 = Uw ⊕ Λ. The Leech roots with respect to w0 are given by

rλ :=

(
−2− 〈λ, λ〉

2

)
w0 +w′

0 + λ, where λ ∈ Λ.

We put

aL := 2w0 +w′
0.
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Since 〈aL,aL〉 > 0 and 〈aL, rλ〉 > 0 for any λ ∈ Λ, it follows that aL is an interior
point of C(w0). Then we confirm that the set

Sep(aL, a32) := { r ∈ R26 | 〈aL, r〉 > 0, 〈a32, r〉 < 0 }

of (−2)-vectors in L26 separating aL and a32 is empty. Therefore a32 belongs to
the Conway chamber C(w0). □

Remark 3.13. The order of the Weyl group W (R) of the root lattice R of type
D5 +A2 is 11, 520. Consequently, there exist exactly 11, 520 Conway chambers C′

such that D0 = PX ∩C′.

Starting from D0, we execute the algorithm described in Section 5 of [23], and
obtain the orbit decomposition of VX under the action of Aut(X), where VX is the
set of L26/SX -chambers contained in NX (see (3.7)). As a result, we obtain the
following facts.

( 1 ) The L26/SX -chamber D0 has 80 walls. Let w1, . . . , w80 be the walls of D0,
and let vi ∈ S∨

X be the primitive defining vector of wi. (See Section 3.1 for the
definition of the primitive defining vector.) The values

n(wi) := 〈vi, vi〉 and a(wi) := 〈a32, vi〉

for each wall wi are given in Table 3.3.

( 2 ) The group

O(SX , D0) := { g ∈ O(SX ,PX) | Dg
0 = D0 }

is of order 32, and is equal to

O(SX , a32) := { g ∈ O(SX ,PX) | ag32 = a32 }.

Its subgroup

Aut(X,D0) := Aut(X) ∩O(SX , D0) = { g ∈ O(SX , D0) | η(g) ∈ {±1} }

is isomorphic to the dihedral group of order 16. We see that Aut(X,D0) is equal
to the group

Aut(X, a32) := { g ∈ Aut(X) | ag32 = a32 }
of the projective model ofX defined by a32. Table 3.3 shows the orbit decomposition
of the set of walls of D0 by the action of Aut(X,D0). In Table 3.4, the primitive
defining vector of a representative wall of each orbit oi is given. The orbits o5
and o6 merge into a single orbit under the action of O(SX , D0), as do the orbits
o9 and o10. Meanwhile, each of the other six orbits remains to be an orbit under
O(SX , D0).

( 3 ) Let w be a wall of D0. If w ∈ o1 ∪ o2, then w is an outer wall. Suppose
instead that w ∈ o3 ∪ · · · ∪ o10. Then the L26/SX -chamber adjacent to D0 across
the wall w is congruent to D0 by the action of Aut(X). In other words, the set

(3.8) Adj(w) :=

{
g ∈ Aut(X)

∣∣∣∣ Dg
0 is the L26/SX -chamber adjacent to

D0 across the wall w

}
is nonempty. Thus, by Proposition 4.1 of [9] (see also Proposition 5.1 of [23]), we
obtain the following result.
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orbit size n(wi) a(wi) in NX 〈a32, ag32〉
o1 8 −2 1 out 33
o2 16 −2 1 out 33
o3 4 −4/3 2 inn 38
o4 8 −1 5 inn 82
o5 8 −3/4 6 inn 128
o6 8 −3/4 6 inn 128
o7 8 −3/4 6 inn 128
o8 4 −1/3 6 inn 248
o9 8 −1/12 7 inn 1208
o10 8 −1/12 7 inn 1208

Table 3.3. Walls of D0

o1 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
o2 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
o3 : [−6,−6, 12, 8, 16, 24, 20, 15, 10, 5, 12, 8, 16, 24, 20, 15, 10, 5, 5/3]
o4 : [6, 5,−12,−8,−16,−24,−20,−15,−10,−5,−10,−7,−14,−20,−16,−12,−8,−4,−3/2]
o5 : [5, 5,−12,−8,−16,−24,−20,−15,−10,−5,−9,−6,−12,−18,−15,−12,−8,−4,−5/4]
o6 : [7, 6,−14,−10,−19,−28,−23,−18,−12,−6,−12,−8,−16,−24,−20,−15,−10,−5,−7/4]
o7 : [14, 12,−29,−19,−38,−57,−47,−36,−24,−12,−27,−18,−36,−54,−44,−33,−22,−11,−13/4]
o8 : [13, 12,−27,−18,−36,−54,−44,−33,−22,−11,−26,−18,−35,−52,−43,−33,−22,−11,−19/6]
o9 : [12, 11,−25,−17,−33,−49,−40,−30,−20,−10,−24,−16,−32,−48,−40,−30,−20,−10,−35/12]
o10 : [14, 12,−27,−18,−36,−54,−44,−33,−22,−11,−27,−18,−36,−54,−44,−33,−22,−11,−41/12]

Table 3.4. Primitive defining vectors of walls of D0

Proposition 3.14. (1) The group Aut(X) acts transitively on the set VX of L26/SX-
chambers contained in NX .

(2) From each orbit oν for ν = 3, . . . , 10, we choose a wall w(ν) ∈ oν , and an
element g(w(ν)) of Adj(w(ν)). Then Aut(X) is generated by the finite subgroup
Aut(X,D0) together with eight extra automorphisms g(w(ν)) for ν = 3, . . . , 10. □

See Remark 6.5 for a method to obtain a word of elements of Aut(X,D0) and
the automorphisms g(w(ν)) to express a given automorphism g ∈ Aut(X).

( 4 ) The outer walls in the orbit o1 are given asD0∩(C1)
⊥, where C1 ∈ Rats(X)

are the following 8 smooth rational curves:

(3.9) L0++, L0+−, L0−+, L0−−, M2+−, M2−+, M3++, M3−−.

The outer walls in o2 are given as D0 ∩ (C2)
⊥, where C2 ranges through the set

(3.10) {Lγ1γ2γ3
| γ1 6= 0 }.

( 5 ) In the rightmost column of Table 3.3, we present 〈a32, ag32〉, where g is
an isometry in O(SX ,PX) such that Dg

0 is adjacent to D0 across a wall w ∈ oν .
For a fixed wall w, the element g is unique up to the multiplication from the left
by elements of O(SX , D0) = O(SX , a32). Hence 〈a32, ag32〉 does not depend on the
choice of g.
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3.6. Proof of Corollary 1.3. Now we prove Corollary 1.3. Let C be an arbitrary
element of Rats(X), and set r := C. Then NX ∩ (r)⊥ contains a nonempty open
subset of (r)⊥, and hence there exists an L26/SX -chamber D ∈ VX such that
D ∩ (r)⊥ is a wall of D. By Proposition 3.14, there exists an automorphism g ∈
Aut(X) such that Dg = D0. Then D0 ∩ (rg)⊥ is an outer wall of D0. From (3.9)
and (3.10), there exists an automorphism g′ ∈ Aut(X,D0) such that

rgg
′
= L0++ or rgg

′
= L+0+.

By Fact (b) in Section 3.4, there exists an automorphism g′′ ∈ Aut(X,L32) such

that rgg
′g′′

= L0++. Consequently, Rats(X) forms a single orbit under the action
of Aut(X). □

4. Geometric description of generators

4.1. Goal. In Proposition 3.14, we provided a finite generating set of Aut(X) in
lattice-theoretic terms; that is, we presented a finite set of isometries of SX that
generate the subgroup Aut(X) of O(SX ,PX). In this section, we describe these
generators in terms of the geometry of X.

Definition 4.1. Let oν be an orbit of inner walls of D0 under the action of
Aut(X,D0). We say that g ∈ Aut(X) is a generator associated with oν if g ∈ Adj(w)
for a wall w ∈ oν , where Adj(w) is defined by (3.8).

The geometric origin of the finite subgroup Aut(X,L32) of order 48 is well un-
derstood. (See Section 3.4.) The intersection Aut(X,D0)∩Aut(X,L32) is of order
8, and an element g of Aut(X,L32) belongs to Aut(X,D0) if and only if its action
ρL(g) on the L-cube (see (3.4) and (3.5)) preserves the set {L0±±} of four vertices
and satisfies det(ρL(g)) = 1.

Our goal is to to provide a geometric description of

(a) an automorphism g[0] in Aut(X,D0) not belonging to Aut(X,L32), and
(b) generators g[3], . . . , g[10] associated with the orbits o3, . . . , o10 of inner walls.

Then Aut(X) is generated by Aut(X,L32) along with g[0], g[3], . . . , g[10].

4.2. Strategy. Let φ : X → P1 be a Jacobian fibration with the zero section z ∈
Rats(X). Let Eϕ be the generic fiber of φ, which is an elliptic curve defined over
the function field of P1 with the zero element z. We regard the Mordell-Weil group
MW(φ) of φ as a subgroup of Aut(X) by identifying a rational point s ∈ MW(φ)
of Eϕ with the translation x 7→ x +E s of Eϕ by s, where +E is the addition on
the elliptic curve Eϕ. We also have an involution ι(φ) ∈ Aut(X) coming from the
inversion x 7→ z −E x of Eϕ.

Suppose that we have a configuration

Θ = {C0, . . . , Cn}

of smooth rational curves Ci ∈ Rats(X) whose dual graph is a connected affine
Dynkin diagram of type Aℓ, Dm, or En. Then Θ yields an elliptic fibration

φΘ : X → P1

such that Θ is the set of irreducible components of a reducible fiber

φ−1
Θ (p) =

∑
aiCi,
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M1−− M1−+ L0−−M3++

Figure 4.1. Configuration for φ[0]

where the coefficients ai ∈ Z>0 are determined by the ADE-type of Θ. (See Table
4.1 of [23].) A smooth rational curve C is a section of φΘ if and only if∑

ai〈Ci, C〉 = 1.

Hence, by choosing an appropriate configuration of elements of Rats(X), we can
determine a Jacobian fibration of X along with some elements of its Mordell–Weil
group. The procedure for computing the Mordell–Weil group and its action on SX

is explained in [23]. The action of the inversion ι(φ) on SX is also easily computed.
In the following, we present many dual graphs of such configurations. In each

graph, we depict sections by black nodes, elements of Θ disjoint from the zero
section z by white nodes, and the element of Θ intersecting z by a gray node.
Hence the white nodes form a connected ordinary Dynkin diagram, and the black
node connected to the gray node is the zero section z.

4.3. The group Aut(X,D0). The configuration L32 contains a sub-configuration
depicted in Figure 4.1. The white node form a Dynkin diagram of type A1, and,
together with the gray node, they form an affine Dynkin diagram of type A1.
Therefore we obtain a Jacobian fibration

φ[0] : X → P1

with the zero section z := L0−−. This Jacobian fibration has four reducible fibers
of type A7+A7+A1+A1. The Mordell–Weil group MW(φ[0]) of φ[0] is isomorphic
to Z ⊕ Z/4Z. The section s := M3++ generates the free part of MW(φ[0]). Then
the product

g[0] := ι(φ[0]) · s

is an involution belonging to Aut(X,D0) \ (Aut(X,D0) ∩Aut(X,L32)).

Remark 4.2. The Jacobian fibration φ[0] has a beautiful property with respect to
L32. Since the reducible fibers of φ[0] is of type A7 + A7 + A1 + A1, there exist
20 smooth rational curves contained in fibers of φ[0]. All these 20 curves belong to
L32. The other 12 smooth rational curves in L32 are sections of φ[0]. The section
t = L0+− is a torsion section of order 4, and the following sections belong to L32:

as+E bt (a = {−1, 0, 1}, b ∈ {0, 1, 2, 3}), where s := M3++.

4.4. A generator associated with o3. Let g[3] be the involution in Aut(X,L32)
whose action on the L-cube makes the exchanges

L+++ ←→ L−−+, L++− ←→ L−−−,

and fixes the other four vertexes L+−± and L−+±. Then g[3] is a generator associ-
ated with the orbit o3.
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L0−−

L−−+ L−−0 L−−− L−0− L−+−
L0+−L0−+

L+−+ L++−

Figure 4.2. Configuration for φ[4]

L−−0

L+−− L0−− L−−− L−0− L−+−

L−−+ L−0+L+0−

Figure 4.3. Configuration for φ[5]

4.5. A generator associated with o4. The configuration L32 contains a sub-
configuration depicted in Figure 4.2. The seven white nodes form a Dynkin diagram
of type E7, and, together with the gray node, they form an affine Dynkin diagram
of type E7. Therefore we obtain a Jacobian fibration

φ[4] : X → P1

with the zero section L+−+. This Jacobian fibration has three reducible fibers of
type E7 +D5 +A5. The Mordell–Weil group of φ[4] is isomorphic to Z/2Z and its
non-trivial element is the section L++−. Let

g[4] : X → X

be the translation by the non-trivial torsion section L++−. Then g[4] is a generator
associated with the orbit o4.

4.6. Generators associated with o5 and o6. The configuration L32 contains a
sub-configuration depicted in Figure 4.3. The seven white and gray nodes form an
affine Dynkin diagram of type E6, and hence we obtain a Jacobian fibration

φ[5] : X → P1

with the zero section L−0+. This Jacobian fibration φ[5] has four reducible fibers of
type E6+E6+A2+A2. The Mordell–Weil group of φ[5] is isomorphic to Z⊕Z/3Z,
and the section L+0− is of order ∞. Let

g[5] : X → X

be the automorphism obtained by the translation by this section L+0−. Then g[5]

is a generator associated with the orbit o5. We put

g[6] := (g[5])−1.

Then g[6] is a generator associated with the orbit o6.
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L+−+

L−0− M2−+ L+0+ L+++ L0++

L0−+ L−−+L−−−

Figure 4.4. Configuration for φ[7]

L−−−

M2−+ L−0− L−+− L0+− L++− L++0 M3++

L+++ L0++

Figure 4.5. Configuration for φ[8]

4.7. A generator associated with o7. We consider the Jacobian fibration

φ[7] : X → P1

associated with the configuration whose dual graph is in Figure 4.4. The zero
section of φ[7] is L−−+. This Jacobian fibration φ[7] has four reducible fibers of
type E6+E6+A2+A2. The Mordell–Weil group of φ[7] is isomorphic to Z⊕Z/3Z,
and the section L−−− is of order ∞. The automorphism g[7] : X → X obtained by
the translation by this section L−−− is a generator associated with the orbit o7.

4.8. A generator associated with o8. We consider the Jacobian fibration

φ[8] : X → P1

associated with the configuration whose dual graph is in Figure 4.5. The zero section
of φ[8] is L0++. This Jacobian fibration has two reducible fibers of type D8 +D8.
The Mordell–Weil group of φ[8] is isomorphic to Z ⊕ Z/2Z. The automorphism
g[8] : X → X obtained by the inversion ι(φ[8]) of the generic fiber is a generator
associated with the orbit o8.

4.9. Generators associated with o9 and o10. We consider the Jacobian fibra-
tions

φ[9] : X → P1, φ[10] : X → P1

associated with the two configurations whose dual graphs are in Figures 4.6. Each
of these Jacobian fibrations has two reducible fibers of type E8 + E8, and their
Mordell–Weil groups are isomorphic to Z. The automorphisms g[9] : X → X and
g[10] : X → X obtained by the inversions ι(φ[9]) and ι(φ[10]) of the generic fiber of
φ[9] and of φ[10] are generators associated with the orbits o9 and o10, respectively.

5. Faces of D0

We investigate the faces of D0 of codimension ≥ 2. This leads to the following:
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L0−−

M2+− L+0− L+−− L+−0 L+−+ L0−+ L−−+ L−−0 M3++

L0−−

M2−+ L−0− L−−− L−−0 L−−+ L0−+ L+−+ L+−0 M3−−

Figure 4.6. Configurations for φ[9] and φ[10]

(a) The orbit decomposition by Aut(X) of the set C(τ) of ADE-configurations of
smooth rational curves on X with a fixed ADE-type τ (Theorem 1.2).

(b) A presentation of Aut(X) in terms of generators and relations (Theorem 6.6).

5.1. Enumeration of faces of D0. Using the standard algorithm of linear pro-
gramming, we can calculate the set Fµ(D0) of faces of D0 with codimension µ by
induction on µ. See [13] for the algorithm. Since the size of the set Fµ(D0) grows
rapidly with µ as is indicated in the table below, we stopped the computation at
µ = 5. In the table below, the number of Aut(X,D0)-orbits in Fµ(D0) is also
given.

µ 1 2 3 4 5

|Fµ(D0)| 80 1746 20228 150750 793280
orbits 10 128 1322 9578 49880.

For each wall w of D0, we choose an isometry gw ∈ O(SX ,PX) such that Dgw
0 is

the L26/SX -chamber adjacent to D0 across the wall w and that

(5.1) η(gw) ∈ {±1}.
When w is an inner wall of D0, any element of Adj(w) defined by (3.8) can be
taken as gw. When w is an outer wall of D0, we can choose gw to be the reflection
sr : x 7→ x + 〈x, r〉r with respect to the (−2)-vector r such that w = D0 ∩ (r)⊥.
(Note that η(sr) = 1.)

Recall that, for a face f of an L26/SX -chamber, we denote by D(f) the set of
L26/SX -chambers containing f . Suppose that f ∈ Fµ(D0). We explain a method
for enumerating all the elements of D(f). Since D0 ∈ D(f), we initialize

G = [id], A = [a32], i = 1,

where id is the identity element of O(SX ,PX). We then expand the list G of
elements of O(SX ,PX) maintaining the following properties:

(a) If g is a member of G, then Dg
0 ∈ D(f) holds.

(b) If g and g′ are distinct members of G, then Dg
0 6= Dg′

0 holds. Note that the

condition Dg
0 6= Dg′

0 is equivalent to the condition ag32 6= ag
′

32.
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µ τ |Fµ(D0, τ)| orbits

1 A1 24 2
2 2A1 276 23
2 A2 32 3
3 3A1 1936 126
3 A1 +A2 592 37
3 A3 712 45

µ τ |Fµ(D0, τ)| orbits

4 4A1 8802 572
4 2A1 +A2 5056 322
4 A1 +A3 10760 673
4 2A2 384 32
4 A4 96 8
4 D4 160 10

Table 5.1. Sizes of Fµ(D0, τ) and the number of Aut(X,D0)-orbits

The procedure goes as follows. While the counter i is ≤ |G|, we repeat the following.
Let gi be the ith element of G, so that we have Dgi

0 ∈ D(f). We put

f ′ := f (gi
−1) ∈ Fµ(D0).

If a wall w of D0 passes through f ′, then Dgwgi
0 is an element of D(f) adjacent to

Dgi
0 across the wall wgi of Dgi

0 . For each wall w of D0, if w ⊃ f ′ and agwgi
32 /∈ A,

then we append gwgi to G, and agwgi
32 to A. After doing this task for all walls w of

D0, we increment the counter i by 1.
When this procedure terminates, the set D(f) is equal to {Dg

0 | g ∈ G }. Then
we can compute the set

D(f) ∩ VX = {D ∈ D(f) | D ⊂ NX }.
We can also compute the set

(5.2) C(f) := {C ∈ Rats(X) | (C)⊥ ⊃ f }.

Remark 5.1. For D ∈ D(f), let g(D) denote the element of G such that D = D
g(D)
0 .

Since the choice of gw satisfies (5.1), we have η(g(D)) ∈ {±1}. In particular, we
have

D ∈ D(f) ∩ VX ⇐⇒ g(D) ∈ Aut(X)

by Proposition 3.8.

Computing these data for all f ∈ Fµ(D0) and examining the dual graph of C(f)
for each f , we calculate the subset

Fµ(D0, τ) := { f ∈ Fµ(D0) | C(f) ∈ C(τ) }
of Fµ(D0) for each ADE-type τ . The group Aut(X,D0) acts on Fµ(D0, τ). The
sizes of the set Fµ(D0, τ) and the numbers of Aut(X,D0)-orbits in Fµ(D0, τ) are
given in Table 5.1.

5.2. Faces of codimension 2. We examine the set F2(D0). The faces in F2(D0)
are classified into 12 types, which are illustrated in Figure 5.1. We choose a general
point p of f , and consider a small disk ∆ centered at p within a 2-dimensional
linear subspace in PX intersecting f at p orthogonally. In Figure 5.1, we depict the
intersections of ∆ with the L26/SX -chambers D ∈ D(f) containing f . The dark
gray sector is ∆∩D0, and the dark and light gray sectors are ∆∩D with D ⊂ NX .
Thick lines indicate ∆∩ (C)⊥, where C ∈ Rats(X) is a smooth rational curves such
that (C)⊥ ⊃ f .

The type is denoted as σ := nlr, where n is the size of the set D(f), l is the
size of D(f) ∩ VX , and r is the number of C ∈ C(f) such that (C)⊥ ∩ D0 is a
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821 841 840 880a 880b

612 631 630 660

412 421 440

Figure 5.1. Types of codimension-2 faces of D0

wall of D0. The size of the set F2(D0)σ of faces of type σ is listed in the second
column of Table 5.2. The group Aut(X,D0) acts on F2(D0)σ. The numbers of
Aut(X,D0)-orbits in F2(D0)σ are also presented.

We index the L26/SX -chambers D ∈ D(f) as D0, . . . , Dn−1, starting D0 and
proceeding around f . Then the dihedral angle θi of Di at p for i = 0, 1, . . . , n/2−1
are given in the third column of Table 5.2 by means of the rational number

(cos θi)
2 =

〈v, v′〉2

〈v, v〉〈v′, v′〉
,

where (v)⊥ ∩Di and (v′)⊥ ∩Di are the two walls of Di containing f . The fourth
column of Table 5.2 provides all possible pairs kk′ = {k, k′} of the indexes of orbits
ok and ok′ to which the walls (v)⊥ ∩D0 and (v′)⊥ ∩D0 of D0 containing f belong.
Here the index 10 of o10 is denoted by t so that 1t and 2t mean {1, 10} and {2, 10},
respectively.

Let w ∈ F1(D0) be a wall of D0 that belongs to the orbit oi. The numbers and
types of codimension-2 faces f ∈ F2(D0) such that f ⊂ w are given in Table 5.3.

5.3. Orbit decomposition of C(τ) by Aut(X). We present a method to cal-
culate the orbit decomposition of the action of Aut(X) on the set C(τ) of ADE-
configurations of smooth rational curves of type τ . This method requires the sets
Fµ(D0) and Fµ+1(D0) of all faces of codimension µ and µ+1, where µ is the Milnor
number of τ . From the set F1(D0), . . . , F5(D0), we obtain the orbit decomposition
of C(τ) for all ADE-types τ with µ ≤ 4, proving Theorem 1.2.

Let C = {C1, . . . , Cµ} be an element of C(τ). We define

PC = (C1)
⊥ ∩ · · · ∩ (Cµ)

⊥,



26 ICHIRO SHIMADA

type σ |F2(D0)σ| orbits (cos θi)
2 pairs of walls

412 244 21 0 0 11, 12, 22
421 1096 73 0 0 13, . . . , 19, 1t, 23, . . . , 29, 2t
440 88 8 0 0 34, 35, 36, 37
612 32 3 1/4 1/4 1/4 12, 22
631 8 1 3/8 3/8 1/16 13
630 4 1 1/16 3/8 3/8 33
660 2 1 1/4 1/4 1/4 33
821 32 2 1/2 1/2 1/2 1/2 14, 24
841 112 8 2/3 2/3 1/3 1/3 15, 16, 25, 26, 27
840 112 8 1/3 2/3 2/3 1/3 45, 46, 47
880a 8 1 1/4 3/4 3/4 1/4 38
880b 8 1 3/4 1/4 1/4 3/4 34

Table 5.2. Data of codimension-2 faces of D0

orbit total number types and numbers

o1 77 (412)
21(421)

45(612)
2(631)

1(821)
2(841)

6

o2 74 (412)
20(421)

46(612)
3(821)

1(841)
4

o3 53 (421)
22(440)

22(631)
2(630)

2(660)
1(880a)

2(880b)
2

o4 42 (421)
20(440)

3(821)
4(840)

14(880b)
1

o5 32 (421)
19(440)

3(841)
5(840)

5

o6 32 (421)
19(440)

3(841)
5(840)

5

o7 30 (421)
20(440)

2(841)
4(840)

4

o8 22 (421)
20(880a)

2

o9 19 (421)
19

o10 19 (421)
19

Table 5.3. Faces of codimension 2 that bound a wall

which is a linear subspace of codimension µ in PX .

Proposition 5.2. The intersection PC ∩ NX is a face of codimension µ of the
SX/SX-chamber NX .

Proof. Since 〈a,Ci〉 > 0 for any ample class a, it follows that PC is disjoint from
the interior of NX . It suffices to show that there exists a point p on PC such that
〈p, C ′〉 > 0 holds for any smooth rational curve C ′ on X that is not a member of
C. We define mij := 〈Ci, Cj〉, and consider the µ× µ matrix M := (mij), which is
the Gram matrix of the negative-definite root lattice of type τ with respect to the
standard basis. It is well known that every entry of the inverse matrix M−1 is ≤ 0.
Fixing an ample class a, we define t1, . . . , tµ ∈ Q by t1

...
tµ

 = M−1

 〈a,C1〉
...

〈a,Cµ〉

 .
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Since 〈a,Ci〉 > 0 for i = 1, . . . , µ, we have ti ≤ 0 for i = 1, . . . , µ. We put

p := a− (t1C1 + · · ·+ tµCµ).

Then we have 〈p, Ci〉 = 0 for i = 1, . . . , µ, and

〈p, p〉 = 〈p, a〉 = 〈a, a〉 − (t1〈C1, a〉+ · · ·+ tµ〈Cµ, a〉) > 0.

Thus we have p ∈ PC . For any C ′ ∈ Rats(X) such that C ′ /∈ C, we have 〈a,C ′〉 > 0
and 〈Ci, C

′〉 ≥ 0 for i = 1, . . . , µ. Hence 〈p, C ′〉 > 0 holds. Therefore a small
neighborhood of p in PC is contained in PC ∩NX . □

Let [C]⊥ be the orthogonal complement of the sublattice [C] of SX generated
by the elements of C. Then [C]⊥ is a primitive sublattice of SX with signature
(1, 18− µ), and

PC := PX ∩ ([C]⊥ ⊗ R)
is a positive cone of [C]⊥. The tessellation of PX by the SX/SX -chambers in-
duces a tessellation of PC by the SX/[C]⊥-chambers, and PC ∩NX is one of these
SX/[C]⊥-chambers. On the other hand, since SX is embedded primitively into
L26 in Section 3.5, we can regard [C]⊥ as a primitive sublattice of L26, and every
SX/[C]⊥-chamber is tessellated by L26/[C]⊥-chambers. Note that every L26/[C]⊥-
chamber is of the form PC∩D, whereD is an L26/SX -chamber and PC∩D is a face of
D with supporting linear subspace PC . The algorithm below is Borcherds’ method
applied to the tessellation of the SX/[C]⊥-chamber PC ∩NX by L26/[C]⊥-chambers
PC ∩D.

We consider the map

(5.3) Fµ(D0, τ) → C(τ)

given by f 7→ C(f), where C(f) is defined by (5.2). Let C be an arbitrary element of
C(τ). By Proposition 5.2, there exists an element D of VX such that fD := PC ∩D
is a face of D with supporting linear subspace PC . Since Aut(X) acts on VX

transitively, there exists an automorphism g ∈ Aut(X) such that Dg = D0. Then
we have fg

D ∈ Fµ(D0, τ), and the mapping (5.3) maps fg
D to Cg. Therefore the

mapping (5.3) induces a surjective map

(5.4) Fµ(D0, τ) →→ C(τ)/Aut(X).

Fix an element C of C(τ). We define

ṼC := {D ∈ VX | PC ∩D is a face of D with supporting linear subspace PC }
= {D ∈ VX | PC ∩D contains a nonempty open subset of PC },

VC := {PC ∩D | D ∈ ṼC }.

Then the stabilizer subgroup

Aut(X, C) := { g ∈ Aut(X) | g preserves C }

of C acts on ṼC .

Remark 5.3. The mapping D 7→ PC ∩D from ṼC to VC may not be a bijection. For
example, when τ = 2A1, if PC ∩ D0 is a codimension-2 face of D0 with type 821
(see Figure 5.1), then there exists an L26/SX -chamber D′ such that D′ 6= D0 and
that PC ∩D′ = PC ∩D0.
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For D ∈ ṼC , there exists an automorphism g(D) ∈ Aut(X) such that D = D
g(D)
0 .

Then
(PC ∩D)(g(D)−1) = PC(g(D)−1) ∩D0

is a face of D0 of codimension µ, and this face is a member of Fµ(D0, τ). Recall that

Aut(X,D0) acts on Fµ(D0, τ). The choice of g(D) ∈ Aut(X) such that D = D
g(D)
0

is unique up to the left multiplication of elements of Aut(X,D0). More generally, if

D′ ∈ ṼC is equal to Dγ for an element γ ∈ Aut(X, C), then there exists an element
h ∈ Aut(X,D0) such that hg(D)γ = g(D′). Since

(PC ∩D′)(g(D
′)−1) = (PC ∩D′)(γ

−1g(D)−1h−1) = (PC ∩D)(g(D)−1h−1),

the mapping D 7→ (PC ∩D)(g(D)−1) induces a mapping

ΦC : ṼC → Fµ(D0, τ)/Aut(X,D0)

that factors through the natural projection

ṼC →→ ṼC/Aut(X, C).
Proposition 5.4. For C ∈ C(τ) and C′ ∈ C(τ), the following are equivalent:

(i) C and C′ are in the same Aut(X)-orbit.
(ii) The images of ΦC and of ΦC′ are the same.
(iii) The images of ΦC and of ΦC′ have nonempty intersection.

Proof. Suppose that C′ = Cα for some α ∈ Aut(X). We have PC′
(α−1) = PC . For

D ∈ ṼC , we have Dα ∈ ṼC′ and ΦC(D) = ΦC′(Dα), because g(Dα) = hg(D)α for
some h ∈ Aut(X,D0). Thus, the image of ΦC is contained in the image of ΦC′ .
Therefore (i) implies (ii).

The implication (ii) =⇒ (iii) is obvious. The implication (iii) =⇒ (i) follows
from the fact that, if f is an element of the Aut(X,D0)-orbit ΦC(D), then C and
C(f) are in the same Aut(X)-orbit, because the supporting linear subspace PC of
the face PC ∩D of D is mapped to the supporting linear subspace PC(f) of the face
f of D0 by an element of Aut(X). □

As is seen from the surjectivity of the map (5.4), every Aut(X)-orbit in C(τ)
contains a configuration C(f) for some f ∈ Fµ(D0, τ). Hence, calculating the
images of ΦC(f) for all f ∈ Fµ(D0, τ), we obtain the orbit decomposition of C(τ)
by Aut(X).

The images of ΦC(f) for faces f ∈ Fµ(D0, τ) are computed as follows. The

idea is to calculate the orbit decomposition of ṼC under the action of Aut(X, C) by
Borcherds’ method. For simplicity, we put

[F ] := Fµ(D0, τ)/Aut(X,D0),

and for f ∈ Fµ(D0, τ), let [f ] ∈ [F ] denote the Aut(X,D0)-orbit containing f . We
construct a graph whose set of nodes is [F ] and whose set of edges is defined as

follows. Let f be an element of Fµ(D0, τ). We have D0 ∈ ṼC(f), and ΦC(f) maps

D0 to [f ], as PC(f) ∩D0 = f . Using the set Fµ+1(D0), we compute the set

Fµ+1〈f〉 := {ϕ ∈ Fµ+1(D0) | f ⊃ ϕ },
which is the set of all walls of the L26/[C(f)]⊥-chamber f = PC(f) ∩D0. For each

ϕ ∈ Fµ+1〈f〉, we calculate the set D(ϕ) and subsequently compute the subset

D(f, ϕ) := ṼC(f) ∩ D(ϕ).
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For an L26/SX -chamber D, we have D ∈ D(f, ϕ) if and only if PC(f) ∩ D is an

L26/[C(f)]⊥-chamber that is contained in PC(f)∩NX and that is either equal to f or
adjacent to f across the wall ϕ. For each D ∈ D(f, ϕ), we choose an automorphism

g(D) ∈ Aut(X) such that D = D
g(D)
0 , and consider the face

f ′ := (PC(f))
(g(D)−1) ∩D0.

Then f ′ is an element of Fµ(D0, τ) and [f ′] ∈ [F ] does not depend on the choice
of g(D). If [f ′] 6= [f ], we connect the nodes [f ] and [f ′] by an edge. Performing
this procedure for all [f ] ∈ [F ] , ϕ ∈ Fµ+1〈f〉 and D ∈ D(f, ϕ), we obtain a graph
structure on [F ].

Since any pair of elements of VC(f) (that is, any pair of L26/[C(f)]⊥-chambers

contained in PC(f) ∩ NX) is connected by the adjacency relation of L26/[C(f)]⊥-
chambers, it follows that the image of ΦC(f) is precisely the connected component
of the graph [F ] containing the node [f ].

Therefore the number of Aut(X)-orbits in C(τ) is equal to the number of con-
nected components of the graph [F ]. Using this method, we obtain a proof of
Theorem 1.2.

Example 5.5. We consider the case where τ = 2A1. The number of nodes of the
graph [F ] = F2(D0, 2A1)/Aut(X,D0) is 23, and this graph has two connected com-
ponents [F ]21 and [F ]2 of size 21 and 2, respectively. Every face in the connected
component [F ]21 is of type 412, whereas every face in the connected component
[F ]2 is of type 821. Hence Aut(X) partitions the set C(2A1) of pairs of disjoint
smooth rational curves into two orbits C(2A1)21 and C(2A1)2, which correspond to
the connected components [F ]21 and [F ]2, respectively.

The linear subspace

(L−−−)
⊥ ∩ (L−0+)

⊥

of PX is a supporting linear subspace of a face of D0 with type 412. Hence the pair
{L−−−, L−0+} is a member of the orbit C(2A1)21.

Let L′ be the image of the smooth rational curve L+−− by the automorphism
g[4] ∈ Aut(X) of order 2 given in Section 4.5. Then the linear subspace

(L+−−)
⊥ ∩ (L′)⊥

of PX is a supporting linear subspace of a face of D0 with type 821. Hence the pair
{L+−−, L

′} is a member of the orbit C(2A1)2. (Note that, for every face f of type
821, there exists a wall in the orbit o4 passing through f . See Table 5.2.)

6. Relations

It is well known that a set of defining relations of a group acting on a space of
constant curvature can be derived from the shape of a fundamental domain. See, for
example, the survey [28]. In our current setting involving Aut(X) and D0, however,
we cannot apply this theory directly because of the following reasons. First, the
cone D0 is not a fundamental domain; it has a non-trivial automorphism group
Aut(X,D0). Second, not all codimension-2 faces contribute to relations as D0 has
outer faces. Hence we provide a detailed explanation how to obtain a set of defining
relations for Aut(X) from D0. The main result of this section is Theorem 6.6.

Remark 6.1. In [13], we have treated the case where Aut(X,D0) is trivial.
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For simplicity, we put

Γ0 := Aut(X,D0).

Recall from (3.8) that we have defined Adj(w) for each inner wall w of D0. For
h ∈ Γ0 and g ∈ Adj(w), we have hg ∈ Adj(w), and this action of Γ0 on Adj(w)
by the multiplication from the left is free and simply transitive. Note that Γ0 and
these Adj(w) are pairwise disjoint. We put

ΓA :=
⊔

w : inner

Adj(w) and Γ := Γ0 t ΓA.

Since D0 has exactly 56 inner walls, we have |Γ| = |Γ0|+ 56× |Γ0| = 912.

Lemma 6.2. The subset ΓA of Aut(X) is closed under the operation g 7→ g−1.
Hence so is Γ = Γ0 t ΓA.

Proof. Suppose that g ∈ Adj(w), where w is an inner wall of D0. Then D0 and

Dg
0 are adjacent across w. Hence D

(g−1)
0 and D0 are adjacent across w(g−1). Since

D
(g−1)
0 ⊂ NX , the wall w(g−1) of D0 is inner, and we have g−1 ∈ Adj(w(g−1)). □

We consider Γ as an alphabet, and denote by Γ∗ the set of finite sequences of
elements of Γ. An element of Γ∗ is called a word. Note that the empty sequence
ε := [ ] is also a word. The conjunction of two words u and v is denoted by u · v
or by uv. We have seen in Proposition 3.14 that the multiplication map

m : Γ∗ → Aut(X)

given by [γ1, . . . , γn] 7→ γ1 · · · γn is surjective. See Remark 6.5.

Definition 6.3. A pair {w,w′} of words is called a relation if m(w) = m(w′)
holds. Let R be a set of relations. The R-equivalence relation is the minimal
equivalence relation on Γ∗ that satisfies the following: if two words u and v have
decompositions u = a ·w · b and v = a ·w′ · b with {w,w′} ∈ R, then u and v are
R-equivalent.

Note that, for any set of relations R, if two words u and v are R-equivalent,
then we have m(u) = m(v).

Definition 6.4. We say that a set of relations R is a set of defining relations if
every word in the fiber

K := m−1(1)

of the map m over 1 ∈ Aut(X) is R-equivalent to the empty word ε.

Our goal is to exhibit a finite set of defining relations.
Let Rtriv be the set of relations consisting of the following pairs of words:

{[1], ε},
{[γ, γ−1], [1]} (γ ∈ Γ),

{[h, h′], [hh′]} (h, h′ ∈ Γ0),

{[h, g], [hg]} (h ∈ Γ0, g ∈ ΓA).

Here, in the pair {[h, h′], [hh′]}, the word [h, h′] is of length 2, whereas [hh′] is the
word consisting of a single letter hh′ ∈ Γ0. The same remark is applied to the pair
{[h, g], [hg]}.
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A word u is said to be of gh-form if it is of the form

[gN , . . . , g1, h] (gN , . . . , g1 ∈ ΓA, h ∈ Γ0).

We allow N to be 0, so that [h] is (and hence [1] is) of gh-form for any h ∈ Γ0. It is
easy to see that every word is Rtriv-equivalent to a word of gh-form. For example,
for g1, g2 ∈ ΓA and h ∈ Γ0, the word [g1, h, g2] is Rtriv-equivalent to the word
[g1, hg2, 1], which is of gh-form.

Let N be a non-negative integer. A chamber path of length N is a sequence

λ := (D(N), . . . , D(0))

of L26/SX -chambers D(k) such that

(i) each D(k) is contained in NX , and
(ii) D(k) and D(k−1) are distinct and adjacent for k = 1, . . . , N .

A chamber path is read from right to left, so that the chamber path λ above is
from D(0) to D(N). Let

λ′ := (D′(N ′), . . . , D′(0))

be a chamber path of length N ′ such that D′(0) = D(N). Then the conjunction

λ′ · λ := (D′(N ′), . . . , D′(0), D(N−1), . . . , D(0))

is defined and is a chamber path of length N ′ +N . A chamber loop is a chamber
path (D(N), . . . , D(0)) such that D(N) = D(0). In this case, we say that D(0) is the
base point of the chamber loop.

Let u = [gN , . . . , g1, h] be a word of gh-form. Then we have a chamber path

λ(u) = (D(N), . . . , D(0))

from D(0) = D0 to D(N) = D
m(u)
0 defined by

D(0) := Dh
0 , D(1) := Dg1h

0 , . . . D(k) := Dgk···g1h
0 , . . . D(N) := DgN ···g1h

0 .

We call λ(u) the chamber path associated with u. If u ∈ K = m−1(1), then λ(u) is
a chamber loop with the base point D0.

Conversely, let λ = (D(N), . . . , D(0)) be a chamber path of length N starting
from D(0) = D0. We define

W(λ) := {u ∈ Γ∗ | u is of gh-form such that λ(u) = λ }.

A word u = [gN , . . . , g1, h] of gh-form is in W(λ) if and only if

(6.1) D(k) = Dgk···g1h
0

holds for k = 0, . . . , N . Here we set g0 = h. The elements of W(λ) can be enumer-
ated by the following method. First choose g0 = h arbitrarily from Γ0. Suppose
that gm, . . . , g1, h have been obtained such that (6.1) holds for k = 0, . . . ,m. Let
w(m) be the wall between D(m) and D(m+1). Then

wm := (w(m))(gm···g1h)−1

is an inner wall of D0. We choose gm+1 from Adj(wm) arbitrarily, and append it
to the beginning of the sequence gm, . . . , g1, h. By iterating this process until we
reach m+1 = N , we obtain a word inW(λ). Repeating this process for all possible
choices of h ∈ Γ0 and gm+1 ∈ Adj(wm), we obtain all words in W(λ). Therefore
the size of the set W(λ) is equal to |Γ0|N+1.
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Figure 6.1. λ+(f) and λ−(f)

Now suppose that λ is a chamber loop with the base point D0. Then, for any
u ∈ W(λ), we have m(u) ∈ Γ0, and the map m induces a surjection from W(λ)
onto Γ0. We define

WK(λ) :=W(λ) ∩ K.
The size of the set WK(λ) is equal to |Γ0|N . In particular, if N = 0, then WK(λ)
is equal to {[1]}.

Remark 6.5. Suppose that g ∈ Aut(X) is given. Then a word u ∈ Γ∗ satisfying
m(u) = g can be obtained by means of the following method. We choose a chamber
path λ = (D(N), . . . , D(0)) from D(0) = D0 to D(N) = Dg

0 , and compute an element

u′ = [gN , . . . , g1, 1]

of W(λ) using the method above. Since Dg
0 = D(N) = D

m(u′)
0 , there exists an

element h ∈ Γ0 such that g = h ·m(u′). Then the word u := [h, gN , . . . , g1] satisfies
m(u) = g.

Let D(0) be an L26/SX -chamber contained in NX , and let f be an inner face
of D(0) of codimension 2. Recall that D(f) is the set of L26/SX -chambers D such
that D ⊃ f . We have D(0) ∈ D(f). Since f is inner, we have D(f) ⊂ VX . Then we
have two chamber loops λ(f)+ and λ(f)− with the base point D(0) such that

(i) every chamber in the loop belongs to D(f), and
(ii) each element of D(f) \ {D(0)} appears in the loop exactly once.

See Figure 6.1. These two loops differ only in the direction to which the loop goes
around f . We call these loops the simple chamber loops around f with the base
point D(0).

Suppose that f0 is an inner face of D0 of codimension 2. In other words, f0 is of
type 440, 660, 880a, or 880b (see Figure 5.1). Let λ(f0)

+ and λ(f0)
− be the simple

chamber loops around f0 with the base point D0. Then, for any word u belonging
toW(λ(f0)

+) orW(λ(f0)
−), we have m(u) ∈ Γ0. We define a set of relations Rface

as
Rface :=

⋃
f0

{ {u, [m(u)]} | u ∈ W(λ(f0)
+) ∪W(λ(f0)

−) },

where f0 ranges over the set of inner faces of D0 of codimension 2.

Theorem 6.6. The set Rtriv ∪Rface is a set of defining relations of Aut(X) with
respect to the generating set Γ = Γ0 t ΓA.

To prove this, we introduce additional definitions and propositions. Let

(6.2) λ = (D(N), . . . , D(0)) with D(N) = D(0) = D0
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· · ·D(k−2)D(k+2)· · ·

D(k)

D(k+1) = D(k−1)λ

· · · D(k+2) D(k−2) · · ·D(k−1)λ′

Figure 6.2. λ⇒I λ
′

be a chamber loop with the base point D0. We say that λ is reduced to a cham-
ber loop λ′ by a type-I-move and write λ ⇒I λ′ if there exists a subsequence
(D(k+1), D(k), D(k−1)) in λ such that D(k+1) = D(k−1) and that λ′ is obtained
from λ by removing the two chambers D(k+1) and D(k). See Figure 6.2. We say
that two chamber loops λ,λ′ with the base point D0 are connected by a type-I-move
if either λ⇒I λ

′ or λ′ ⇒I λ.

Proposition 6.7. Suppose that chamber loops λ and λ′ with the base point D0 are
connected by a type-I-move. Then, for each word u ∈ WK(λ), there exists a word
u′ ∈ WK(λ

′) that is Rtriv-equivalent to u.

Proof. Let λ be as in (6.2), and we put u = [gN , . . . , g1, h] with g0 = h.
Suppose that λ⇒I λ

′ as is shown in Figure 6.2. Then D(k+1) = D(k−1) implies
that gk+1gk ∈ Γ0. We put h′ := gk+1gk, and let u′ be a word obtained from u
by removing the two letters gk+1, gk and replacing gk−1 with h′gk−1. Then we see
that u′ is Rtriv-equivalent to u, using the relation {[h′, g−1

k ], [gk+1]}. It is easy to
see that u′ belongs to WK(λ

′).
Conversely, suppose that λ′ ⇒I λ. We assume that λ′ is obtained from λ by

putting D′′, D′ on the left of a chamber D(k) in λ, where D′′ = D(k) and D′ is
adjacent to D(k) = D′′. Let w′ be the wall between D(k) and D′, and define

γk := (gk . . . g1h)
−1.

Then (w′)γk is an inner wall of D0 = (D(k))γk . We choose an arbitrary element g′

from Adj((w′)γk). Then we have D′ = Dg′gk...g1h
0 . We make a word u′ by putting

g′−1, g′ on the left of the letter gk in u. Then u′ is Rtriv-equivalent to u, and u′

belongs to WK(λ
′). □

We say that a chamber loop λ as in (6.2) is reduced to a chamber loop λ′ by a
type-II-move and write λ⇒II λ

′ if there exists a subsequence

ρ = (D(m), . . . , D(k)) with m > k

in λ such that

(i) D(m) = D(k),
(ii) ρ is a simple chamber loop with the base point D(k) around an inner face f

of D(k) of codimension 2, and
(iii) λ′ is obtained from λ by removing the chambers D(m−1), . . . , D(k).

See Figure 6.3. We say that two chamber loops λ,λ′ with the base point D0 are
connected by a type-II-move if either λ⇒II λ

′ or λ′ ⇒II λ.
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· · ·D(k−1)

D(k+1)D(m−1)

D(m+1)· · ·

f

D(m) = D(k)λ

· · · D(m+1) D(k−1) · · ·D(m)λ′

Figure 6.3. λ⇒II λ
′

Proposition 6.8. Suppose that chamber loops λ and λ′ with the base point D0 are
connected by a type-II-move. Then, for each word u ∈ WK(λ), there exists a word
u′ ∈ WK(λ

′) that is (Rtriv ∪Rface)-equivalent to u.

Proof. Let λ be as in (6.2), and we put u = [gN , . . . , g1, h] with g0 = h.
Suppose that λ⇒II λ

′ as is shown in Figure 6.3. Then D(m) = D(k) implies

h′ := gm · · · gk+1 ∈ Γ0.

We define

γk := (gk . . . g1h)
−1.

Then fγk is an inner face of D0, and the simple chamber loop ρ = (D(m), . . . , D(k))
around f is mapped by γk to a simple chamber loop ργk around fγk with the base
point D0. Moreover, the word [gm, . . . , gk+1, 1] of gh-form is an element of W(ργk).
In particular, we have

{ [gm, . . . , gk+1, 1], [h
′] } ∈ Rface.

Let u′ be a word obtained from u by removing the letters gm, . . . , gk+1 and replacing
gk by h′gk. Then u′ is (Rtriv ∪Rface)-equivalent to u, and we have u′ ∈ WK(λ

′).
Conversely, suppose that λ′ ⇒II λ. We assume that λ′ is obtained from λ by

putting a sequence D′(n), . . . , D′(1) on the left of a chamber D(k) in λ, where

ρ′ = (D′(n), D′(n−1), . . . , D′(1), D′(0)) with D′(n) = D(k) and D′(0) := D(k)

is a simple chamber loop around an inner face f of D(k). Again, we put γk :=
(gk . . . g1h)

−1. Then fγk is an inner face of D0 = (D(k))γk , and γk maps ρ′ to a
simple chamber loop ρ′γk around the inner face fγk of D0. Then W(ρ′γk) contains
a word of the form

v := [g′n, . . . , g
′
1, 1].

We have m(v) ∈ Γ0. Since n > 0, by replacing g′n with m(v)−1g′n if necessary, we
can assume that

g′n · · · · · g′1 = 1,

and we have {v, [1]} ∈ Rface. We make a word u′ from u by putting g′n, . . . , g
′
1 on

the left of the letter gk in u. Then u′ is (Rtriv ∪ Rface)-equivalent to u, and u′

belongs to WK(λ
′). □
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Proof of Theorem 6.6. Let u be a word in K. We show that u is (Rtriv ∪ Rface)-
equivalent to an empty word ε = [ ]. Since every word is Rtriv-equivalent to a word
of gh-form, we can assume that u is of gh-form. Let λ0 := λ(u) be the chamber
loop with the base point D0 associated with u. Since the nef-and-big cone NX is
simply connected, there exists a sequence

λ0, λ1, . . . , λn = (D0)

of chamber loops with the base point D0 such that, for i = 1, . . . , n, the two loops
λi−1 and λi are connected by either a type-I-move or a type-II-move, and that
the last chamber loop λn is the loop (D0) of length 0. Since u ∈ WK(λ0) and
WK(λn) = {[1]}, Propositions 6.7 and 6.8 imply that u is (Rtriv∪Rface)-equivalent
to [1], and hence to ε. □
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