THE AUTOMORPHISM GROUPS OF CERTAIN SINGULAR K3 SURFACES
AND AN ENRIQUES SURFACE

ICHIRO SHIMADA

ABSTRACT. We present finite sets of generators of the full automorphism groups of three singular
K3 surfaces, on which the alternating group of degree 6 acts symplectically. We also present a finite
set of generators of the full automorphism group of an associated Enriques surface, on which the
Mathieu group Mio acts.

1. INTRODUCTION

For a complex K3 surface X, we denote by Sx the Néron-Severi lattice of X with the intersection
form (, )s: Sx x Sx — Z, and by T the orthogonal complement of Sx in H?(X,Z) with respect
to the cup-product. We call T'x the transcendental lattice of X. A complex K3 surface is said to be
singular if the rank of Sx attains the possible maximum 20. By the result of Shioda and Inose [36],
the isomorphism class of a singular K3 surface X is determined uniquely by its transcendental lattice
T'x with the orientation given by the class [wx] € Tx ® C of a nowhere-vanishing holomorphic 2-form
wx on X. Shioda and Inose [36] also showed that the automorphism group Aut(X) of a singular K3
surface X is infinite. It is an important problem to determine the structure of the automorphism
groups of singular K3 surfaces.

In this paper, we study the automorphism groups of the following three singular K3 surfaces Xy,
X1, Xo; the Gram matrices of the transcendental lattice Ty := Tx, of X} is

(1.1) l6 g] for k =0, [2 0] for k =1,

0 0 12 1 8

2 1] for k = 2.

(Note that the inversion of the orientation of Ty does not affect the isomorphism class of the singular
K3 surface in these three cases. See, for example, [35].) These three K3 surfaces have a common
feature in that they admit a symplectic action by the alternating group g of degree 6. By the
classification due to Mukai [20], we know that 2g is one of the eleven maximal finite groups that act
symplectically on complex K3 surfaces. (See also Kondo [17] and Xiao [41].) It was proved in [14]
that every K3 surface with a symplectic action by 2 is singular. A characterization of singular K3
surfaces with a symplectic action by 2g is given in [10] (see also Remark 4.4).

The purpose of this paper is to present a finite set of generators of the full automorphism group
Aut(Xy) of Xy for k = 0,1,2. Moreover, we describe the action of Aut(X}) on the Néron-Severi
lattice Sy := Sx,. Furthermore, we calculate the automorphism group Aut(Z;) of an Enriques
surface Zy whose universal cover is Xj.
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Let X be a K3 surface. We let Aut(X) act on X from the left, and hence on Sx from the right
by the pull-back. We denote by

vx: Aut(X) = O(Sx)

the natural representation of Aut(X) on Sx, where O(Sx) is the orthogonal group of the lattice Sx.
Since the action of Aut(X) on H?(X,C) preserves the one-dimensional subspace H*?(X), we also
have a natural representation

Ax: Aut(X) — GL(H*Y(X)) = C*.

An automorphism g € Aut(X) is said to be symplectic if Ax(g) = 1, whereas we say that g is purely
non-symplectic if the order of g is > 1 and equal to the order of Ax(g) € C*. For a subgroup G of
Aut(X), the subgroup Ker A\x NG consisting of symplectic automorphisms belonging to G is called
the symplectic subgroup of G. Let « € Aut(X) be an involution. If ¢ is symplectic, then the quotient
X/{(¢) is birational to a K3 surface. Otherwise, X/(¢) is birational to either an Enriques surface or
a rational surface. According to these cases, we say that ¢ is an Enriques involution or a rational
involution.

Recall that the Néron-Severi lattice Sx is canonically isomorphic to the Picard group of X. A
vector h € Sx with n := (h,h)s > 0 is called a polarization of degree n if the complete linear
system |L| associated with a line bundle £, — X whose class is h is non-empty and has no fixed-
components. For a polarization h € Sx, we denote the automorphism group of the projective model
of the polarized K3 surface (X, h) by

Aut(X,h):={geAuwt(X) | W9 =h}.

It is easy to see that Aut(X,h) is a finite group. Let h € Sx be a polarization of degree 2. Then the
Galois transformation of the generically finite morphism X — P2 of degree 2 induced by |L| gives
rise to a rational involution

7(h): X - X

of X, which we call the double-plane involution associated with h.

Let X, (k= 0,1,2) be the three singular K3 surfaces defined above. Recall that Sy, is the Néron-
Severi lattice of X. We have the following:

Proposition 1.1. The action px, of Aut(Xy) on Sk is faithful.
Hence Aut(Xy) can be regarded as a subgroup of the orthogonal group O(Sy).

Our main results are as follows:

Theorem 1.2. (0) The group Aut(Xy) is generated by a purely non-symplectic automorphism p(()o)

of order 4 and 3 + 12 double-plane involutions
1 3 7 (1 (12
(A, e, TS, L (RS,

There exists an ample class ag € Sy with {(ag, ag)s = 20 such that Aut(Xo, ag) is a finite group of order
1440. This group Aut(Xo,ao) is generated by péo) and T(hgl]), .. .,T(h([)3]). The symplectic subgroup
of Aut(Xo, ap) is isomorphic to As. There exists a unique Enriques involution 580) in Aut(Xo,ap),

and the center of Aut(Xo, ap) is generated by 580).
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(1) The group Aut(X,) is generated by a symplectic involution 054) and 3+ (12 — 1) double-plane
involutions
1 3 7 (1 7 (3 7 (5 5 (12
sy, @, 2B, 2B, (B, (R,

There exists an ample class a; € Sy with {a1,a1)s = 30 such that Aut(Xy,ay) is isomorphic to the
group PGLy(Fg) of order 720. This group Aut(Xy,ay) is generated by T(h[lll), . .,T(h[lg]), and its
symplectic subgroup is isomorphic to PSLo(Fg) = 2s.

(2) The group Aut(Xs) is generated by 3 + 7 double-plane involutions

i, e, 2By, L (B).

There exists an ample class as € Sy with {(as,a2)s = 12 such that Aut(Xa,as) is isomorphic to
the group PGLo(Fg). This group Aut(Xs,as) is generated by T(h[;]), e ,T(h[;]), and its symplectic
subgroup is isomorphic to PSLa(Fg) = .

Remark 1.3. Part of the assertion on Aut(Xy, ap) in Theorem 1.2 was proved in [14], and the group
structure of Aut(Xy,ap) was completely determined in [15]. The problem of determining the full
automorphism group Aut(Xy) was suggested in [14].

In fact, in Corollary 3.5, we give an explicit basis of S by means of a Shioda-Inose elliptic fibration
on X, (see Definition 3.1). Using this basis, we obtain automorphisms generating Aut(X}y) in the
form of 20 x 20 matrices belonging to O(Sy) by Borcherds method ([1], [2]). We then extract geometric
properties of these automorphisms from their matrix representations computationally. Because of the
size of the data, however, it is impossible to present all of these matrices in this paper. Instead, in
Tables 8.3, 8.4 and 8.5, we give the polarizations hg] and ﬁfj) of degree 2 that appear in Theorem 1.2
in the form of row vectors, from which we can recover the matrices of T(hg]) and T(ﬁ,(;)) by the
method described in Section 7. Moreover, we present the AD E-type of the singularities of the branch
curve of the double covering X; — P? induced by these polarizations. The matrices of the purely
non-symplectic automorphism p(()O) € Aut(Xp), the Enriques involution 5(()0) € Aut(Xp), and the
symplectic involution a§4) € Aut(X;) are given in Tables 8.2, 8.1 and 8.6, respectively. We also
present the ample classes aj in Table 5.2. For the readers’ convenience, we put the matrices of the
generators of Aut(X}y) and other computational data in the author’s web paper [33].

Let X be a K3 surface, and let P(X) denote the connected component of {x € Sx @ R| (x,x)s > 0}
containing an ample class. We put

N(X):={zeP(X) | (,C)s >0 for any curve C on X }.

Then Aut(X) acts on N(X). Next we investigate this action for X = Xy, X7, Xo.

Let L be an even hyperbolic lattice with the symmetric bilinear form { , )z, and let P(L) be one
of the two connected components of {x € L @ R|(z,z) > 0}, which we call a positive cone of L. We
let the orthogonal group O(L) on L from the right, and put

OF(L):={geO(L) | P(L)!=P(L) },

which is a subgroup of O(L) with index 2. For v € L ® R with (v,v);, < 0, we denote by (v)* the
real hyperplane

(v)* ={zeP(L) | (z,0)r =0}
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of P(L). We put
R(L):={reLl | {r,r)p=-2}
Let W(L) denote the subgroup of O (L) generated by all the reflections
Srrx x4 (x,r) T

in the mirrors (r)* for r € R(L). We call W(L) the Weyl group of L. The closure in P(L) of each
connected component of the complement

PN U )t

reR(L)

of the union of the mirrors of W(L) is a standard fundamental domain of the action of W(L) on
P(L).

We denote by LY the dual lattice Hom(L,Z) of L, which contains L as a submodule of finite index
and hence is canonically embedded into L ® Q. A closed subset ¥ of P(L) with non-empty interior
is said to be a chamber if there exists a set A of LV such that (v,v)y < 0 for every v € A, such that
the family of hyperplanes {(v)* |v € A} is locally finite in (L), and such that

Y={xzeP(L) | (z,v) >0 foranyv e A }

holds. Let ¥ be a chamber. A hyperplane (v)* of P(L) is said to be a wall of ¥ if (v)* is disjoint
from the interior of ¥ and (v) N'Y contains a non-empty open subset of (v)*. Then there exists a
unique subset A(X) of LV consisting of all primitive vectors v in LY such that the hyperplane (v)*
is a wall of 3, and such that (x,v); > 0 holds for an interior point = of ¥; that is, A(X) is the set of
primitive outward defining vectors of walls of 3. We say that X is finite if A(X) is finite.

By Riemann-Roch theorem, we know that the cone N(X) is a chamber in the positive cone P(X)
containing an ample class of X, and that N(X) is a standard fundamental domain of the action of
the Weyl group W (Sx) on P(X). Moreover A(N(X)) is equal to the set of all primitive vectors
v € SY such that nv is the class of a smooth rational curve on X for some positive integer n. (See,
for example, [25].)

The next result describes the chamber N(X}) of the three singular K3 surfaces Xj.

Theorem 1.4. Let k be 0, 1 or 2, and let ay, be the ample class of Xy given in Theorem 1.2. Then
there exists a finite chamber D) in P(X},) with the following properties;

(i) the ample class ay is in the interior of DO and the stabilizer subgroup
{ g€ Aut(Xy) | DO = DO }

of D) in Aut(Xy) coincides with Aut(Xy,ay),

(i) D© s contained in N(X}), and N(Xy) is the union of all D9, where g ranges through
Aut(Xp),

(iii) if g € Aut(X}) is not contained in Aut(Xy,ay), then D9 is disjoint from the interior of
DO and

(iv) if (v)* is a wall of D) that is not a wall of N(X}), then there exists a unique chamber of
the form D9 with g € Aut(X}) such that the intersection (v)* N D© N DO contains a
non-empty open subset of (’U)L.
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Therefore N(X}) is tessellated by the chambers D)9 where ¢ runs through a complete set of
representatives of Aut(Xy, ax)\ Aut(Xy). In fact, this tessellation extends to a tessellation of P(X})
by the chambers D(®)9, where g runs through a complete set of representatives of Aut(D()\O*(S},),
where

Aut(D©®) :={ g€ OF(Sg) | D9 =DO}

is the stabilizer subgroup of D(® in O%(S;). We call each chamber D(9 in this tessellation an
induced chamber. (See Definition 5.6 for a more general definition.) For a wall (v)* of D(® that is
not a wall of N(X}), the induced chamber D9 such that (v)+ N D N D9 contains a non-empty
open subset of (v)* is called the induced chamber adjacent to D) across (v)*.

In fact, we can write all elements of the set A(D(®)) explicitly in terms of the fixed basis of Sj,. Note
that Aut(Xy, ax) acts on A(D®). We describe this action and clarify the meaning of the generators

of Aut(X}) given in Theorem 1.2.

Theorem 1.5. Let D) be the finite chamber in N(X},) given in Theorem 1.4. The set A(D©)) is
decomposed into the orbits o; in Table 1.1 under the action of Aut(Xy,ar).

If v € 0y, then v is the class of a smooth rational curve on Xy, and hence (v)* is a wall of N(X4).
)

If k=1 and v € o), then 2v is the class of a smooth rational curve on X1, and hence (v)*© is a wall

of N(Xy).

Suppose that i > 0. Then there exists a vector v; € 0; such that the involution T(fl,(j)), or 054) n
the case k = 1 and i = 4, in Theorem 1.2 maps D) to the induced chamber D in N(X},) adjacent
to D) across the wall (v;)™*.

In Table 1.1, the cardinality |o;| of each orbit o; is presented. The rational number v indicates the
square-norm (v, v)g of the primitive vectors v € 0;, and « indicates (ay,v)s for v € o;.
An involution of X}, that maps D(® to the adjacent chamber D) is not unique. For i > 0, we put

Involsff) = {1 € Aut(Xy) | ¢ is of order 2 and maps D to D }.

Proposition 1.6. The set Invols}co) of involutions in Aut(Xy, ax) has the cardinality

vols”)| = 91 = 4541+ 45,
Invols'”| = 81 = 45+ 0+ 36,
Invols”)| = 81 = 45+ 0+ 36,

where the right-hand summation means

(the number of symplectic involutions)
+  (the number of Enriques involutions)
+

(the number of rational involutions)

In Table 1.1, the cardinality of the set Invols ,(f) is also presented for ¢ > 0 in the same manner.
Remark that Invols (14) contains no rational involutions, and hence we have to put the symplectic
involution 0%4) in the set of generators of Aut(X;) in Theorem 1.2. Note that, for + € Invols](j) with

i > 0, the vector

(1) . ¢
a;’ = aj,
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Q)

orbit  |os] v ! |Invols,(f)\ (a;,’, ar)s
k=0
00 60 -2 2
01 40 -3/2 3 10=0+0+10 32
02 180 —4/3 4 4=0+0+4 44
03 10 —1 4 24=1240+12 52
04 144 -5/6 5 6=0+0+6 80
05 144 —-5/6 5 6=0+0+6 80
06 240 -2/3 6 4=0+4+0+4 128
o7 360 —-2/3 6 4=0+0+4 128
08 180 -1/3 6 4=04+0+4 236
09 240 -1/6 7 4=0+0+4 608
o0 240 -1/6 7 4=04+0+4 608
o1 720 -1/6 7 2=0+0+2 608
o12 720 -1/6 7 2=0+0+2 608
k=1
00 45 -2 2
oh 45 —1/2 7
01 10 -3/2 3 12=0+0+12 42
02 30 —-4/3 4 10=0+0+10 54
03 T2 —5/4 5 6=0+0+6 70
04 60 -1 6 6=6+0+0 102
05 12 -5/6 5 16=0+1415 90
o6 40 —3/4 6 6=0+0+6 126
o7 120 -7/12 7 4=0+0+4 198
08 120 —-7/12 7 4=0+0+4 198
09 120 -1/3 8 4=04+0+4 414
o0 180 -—-1/3 8 4=0+0+4 414
o1 120 -1/12 8 4=0+0+4 1566
o12 120 -1/12 8 4=0+0+4 1566
k=2
00 36 -2 1
oo 12 —4/3 2 16=0+1+15 18
02 40 —-6/5 3 6=0+0+6 27
03 90 —4/5 4 4=0+0+4 52
04 30 -8/15 4 10=0+1+49 72
05 30 —-8/15 4 10=0+1+49 72
o6 120 —2/15 5 4=0+0-+4 387
o7 120 —-2/15 5 4=0+0+4 387

TABLE 1.1. The orbit decomposition of A(D®) by Aut(Xy, ax)

is an interior point of the adjacent chamber D) and does not depend on the choice of ¢ € Invols ,(f).

The column (ag), ax)s shows the degree of a,(f) with respect to a.

As a corollary, we obtain the following:
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Corollary 1.7. The action of Aut(Xy) on the set of smooth rational curves on Xy, is transitive for
k=0 and k = 2, whereas this action has exactly two orbits for k = 1.

Borcherds method ([1], [2]) has been applied to the studies of the automorphism groups of K3
surfaces by several authors. We briefly review these works. In [16], Kondo applied it to the Kummer
surface associated with the Jacobian variety of a generic genus 2 curve. In [7], Kondo and Dolgachev
applied it to the supersingular K3 surface in characteristic 2 with the Artin invariant 1. In [8], Keum
and Dolgachev applied it to the quartic Hessian surface. In [13], Kondo and Keum applied it to
the Kummer surfaces associated with the product of elliptic curves. In [18], Kondo and the author
applied it to the supersingular K3 surface in characteristic 3 with the Artin invariant 1. In [39],
Ujikawa applied it to the singular K3 surface whose transcendental lattice is of discriminant 7. The
singular K3 surfaces whose transcendental lattices are of discriminant 3 and 4 had been studied by
Vinberg [40] by another method. On the other hand, in [11], we have shown that, in some cases,
Borcherds method requires too much computation to be completed.

The complexity of our results suggests that the computer-aided calculation is indispensable in
the study of automorphism groups of K3 surfaces. The procedure to execute Borcherds method on
a computer has been already described in [32]. In fact, a part of the result on Aut(X3) has been
obtained in [32]. In [32], however, we did not discuss the problem of converting a matrix in O(Sx)
to a geometric automorphism of X. In the present article, we give a method to derive geometric
information of automorphisms from their action on Sx. It turns out that the notion of splitting
lines ([31], [34]) is useful to describe the geometry of double plane models of X}, associated with the
double-plane involutions of Xj. See Section 9 for examples.

The Enriques involution 580) in Aut(Xo, ag) has been detected also by Mukai and Ohashi [21]. The
Enriques surface

Zy = Xo/ ()

plays an important role in their classification of finite semi-symplectic automorphism groups of En-
riques surfaces.

By the explicit description of Aut(Xy) and the chamber D) in N(X,) presented above, we can
calculate the full automorphism group Aut(Zp) of the Enriques surface Zy. Let Sz denote the Néron-
Severi lattice of Zy with the intersection form ( , )z. Then Sz is an even unimodular hyperbolic
lattice of rank 10. We have the following:

Proposition 1.8. The natural homomorphism
wz: Aut(Zp) — O(Sz)
s injective.
Therefore we can regard Aut(Zy) as a subgroup of O(Sz). Let Cen(séo)) be the centralizer subgroup
{ g€ Aut(Xo) | gei’ =29}

of 580) in Aut(Xp). Since X is the universal covering of Zy, we have a natural surjective homomor-
phism
¢: Cen(el) = Aut(Zo),
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which induces an isomorphism Cen(aéo))/@éo)) X Aut(Zp). By Theorem 1.2 (0), we have Aut(Xo, ag) C
Cen(zsg))). The subgroup ¢(Aut(Xo,ag)) of Aut(Zy) with order 720 is generated by

12 g, D), < g, <rng?).
We have the following:

Theorem 1.9. The finite subgroup ((Aut(Xo,ag)) of Aut(Zy) is isomorphic to the Mathieu group
Myo. The double-plane involution T(ilgg)) of Xo belongs to Cen(sgo)). The automorphism group
Aut(Zy) of Zy is generated by ((Aut(Xy,ap)) and C(T(ibég))).

In fact, we present the generators (1.2) and C(T(ﬁég))) of Aut(Zy) in the form of 10 x 10 matrices
with respect to a certain basis of Sz (see Table 10.4). Moreover, we describe a chamber Dg)) of Sz
that plays the same role to Aut(Zp) as the role D plays to Aut(Xp).

To the best knowledge of the author, Theorem 1.9 is the first example of the application of
Borcherds method to the study of automorphism groups of Enriques surfaces.

This paper is organized as follows. In Section 2, we fix notions and notation about lattices, and
present three elementary algorithms that are used throughout this paper. In Section 3, we give a basis
of Sk in Corollary 3.5, and a computational criterion for a vector in Sy to be nef in Corollary 3.6. In
Section 4, we give a computational characterization of the image of the natural homomorphism ¢ x,
from Aut(X}) to O(Sk) and prove Proposition 1.1. In Section 5, we confirm that the requirements to
use Borcherds method given in [32] are fulfilled in the cases of our singular K3 surfaces X}, obtain
a finite set of generators of Aut(Xy) in the form of matrices in O(Sj) by this method, and prove
Theorems 1.4 and 1.5. The embedding of Si into the even unimodular hyperbolic lattice Log of rank
26 given in Table 5.1 is the key of this method. In Section 6, we give an algorithm to calculate the set
of classes of smooth rational curves of a fixed degree on a polarized K3 surface. This algorithm plays
an important role in the study of splitting lines of double plane models of K3 surfaces. In Section 7,
we review a general theory of the involutions of K3 surfaces. In Section 8, we prove Theorem 1.2. In
Section 9, we investigate some automorphisms on X} in details by means of the notion of splitting
lines. In Section 10, we prove Proposition 1.8 and Theorem 1.9 on the Enriques surface Zj.

This work was partially completed during the author’s stay in National University of Singapore
in August 2014. He express his gratitude to this institution for its great hospitality. Thanks are also
due to Professors Shigeru Mukai, Hisanori Ohashi and De-Qi Zhang for discussions. The author also
thanks the referees of the first version of this paper for comments.

Conventions. Throughout this paper, we work over C. Every K3 surface is assumed to be
algebraic. The symbol Aut denotes a geometric automorphism group, whereas Aut denotes a lattice-
theoretic automorphism group.

2. COMPUTATIONAL TOOLS

2.1. Lattices. A lattice is a free Z-module L of finite rank with a non-degenerate symmetric bilinear
form (, )p: L x L — Z. Suppose that a basis eq,...,e, of a lattice L is given. The n X n matrix
((ei, ej) 1) is called the Gram matriz of L with respect to the basis ey, . .., e,. The discriminant disc L
of L is the determinant of a Gram matrix of L. The group of isometries of a lattice L is denoted by
O(L). We let O(L) act on L from the right, and, when a basis of L is given, each vector of L ® R is
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A o o o e °
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FIGURE 2.1. Indecomposable root systems

written as a row vector. A lattice L is even if (v,v)r, € 2Z holds for any v € L. The signature of a
lattice L is the signature of the real quadratic space L& R. A lattice L of rank n is hyperbolic if n > 1
and its signature is (1,n — 1), whereas L is negative-definite if its signature is (0,n). A negative-
definite lattice L is a root lattice if L is generated by the vectors in R(L) := {r € L|(r,r)p = —2}.
The classification of root lattices is well-known (see, for example, Ebeling [9]). The roots in the
indecomposable root systems of type A;, D,, and E, are labelled as in Figure 2.1. We denote by
L(m) the lattice obtained from L by multiplying ( , )z by m, and we put L~ := L(—1). For a subset
A of a lattice L, we denote by (A) the Z-submodule of L generated by the elements in A.
For an even lattice L, we denote by LV the dual lattice Hom(L,Z) of L, and by

qr: LY/L — Q/2Z

the discriminant form of L. See Nikulin [22] for the definition and basic properties of discriminant
forms. The automorphism group of the finite quadratic form ¢y, is denoted by O(gr). We have a
natural homomorphism 7z : O(L) — O(qr).

For square matrices My, ..., M, let diag(My, ..., M;) denote the square matrix obtained by putting
My, ..., M; diagonally in this order and putting 0 on the other part.

2.2. Three algorithms. We use the following algorithms throughout this paper. See Section 3
of [34] for the details. Let L be a lattice. We assume that the Gram matrix of L with respect to a
certain basis is given.

Algorithm 2.1. Suppose that L is negative-definite. Then, for a negative integer d, the finite set
{v € L|{v,v)r = d} can be effectively calculated. 1

Algorithm 2.2. Suppose that L is hyperbolic, and let a be a vector of L with (a,a)r, > 0. Then,
for integers b and d, the finite set

{vel| {av), =0, (v,v)p=4d}

can be effectively calculated. 1
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Algorithm 2.3. Suppose that L is hyperbolic. Let a1 and ag be vectors of L satisfying (a1, a1}y, > 0,
(as,a2)r, > 0 and (a1,as)r > 0. Then, for a negative integer d, the finite set

{vel | {a,v)r >0, (az,v)r <0, (v,v)p =d}

can be effectively calculated. ]

3. BASES OF THE NERON-SEVERI LATTICES

In order to express elements of Aut(X}) in the form of 20 x 20 matrices in O(Sy), we have to fix
a basis of Si. For this purpose, we review the theory of elliptic fibrations on K3 surfaces. See [37]
or [29] for the details.

Let ¢: X — P! be an elliptic fibration on a K3 surface X with a zero-section op: P! — X. We
denote by fy € Sx the class of a fiber of ¢, by z4 € Sx the class of the image of oo, and by MW
the Mordell-Weil group of ¢. We put

Ry :={veP | $~'(v) is reducible },

and, for v € Ry, let ©4, C Sx denote the sublattice spanned by the classes of irreducible components
of 7!(v) that are disjoint from 0. Then each O, is an indecomposable root lattice. We put

U¢ = <f¢,2¢>, @¢ = @ ®¢>,v~
vER
Then Uy is an even hyperbolic unimodular lattice of rank 2, and we have
(3.1) Op =(reSx|(r fo)s=(rzs)s =0, (r,r)g=-2).
The sublattice
Trivy := Uy @ O

of Sy is called the trivial sublattice of ¢. For each element o: P! — X of MW, let [0] € Sx denote
the class of the image of o. Then the mapping o — [0] mod Trivyg induces an isomorphism

(32) MW¢ = Sx/TriV¢.
Recall that a reducible fiber ¢! (v) is of type II* if and only if O, is the root lattice of type Es.

Definition 3.1. An elliptic fibration on a K3 surface is called a Shioda-Inose elliptic fibration if it
has a zero-section g and two singular fibers of type II*.

Shioda and Inose [36] showed that every singular K3 surface has a Shioda-Inose elliptic fibration.
Let X be a singular K3 surface with a Shioda-Inose elliptic fibration ¢: X — P!. Let v and v’ be the
two points in R, such that ¢~!(v) and ¢~1(v') are of type II*, and let ey, ..., es (resp. €},...,ek)
be the classes of the irreducible components of ¢~1(v) (resp. ¢~ (v')) disjoint from oy numbered in
such a way that their dual graph is as in Figure 2.1. Then the 18 vectors

(3.3) Jor 26, €1, €8,€1, ..., €5

span a hyperbolic unimodular sublattice Trivy := Uy @ Oy, ® Og . of Trivy. Let Vi denote the
orthogonal complement of TriviiJ in Sx, so that we have an orthogonal direct-sum decomposition

(3.4) Sx = Trivy, & V.
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Let V; be the sublattice of Vi, generated by the vectors r € Vi with (r,r)y = —2, where (, )y is the
symmetric bilinear form of the sublattice Vi of Sx. By (3.1) and (3.2), we obtain
(3.5) Oy =By ® Oy ©Vy, MW, =V, /V,.

We apply these results to our three singular K3 surfaces Xj.
Proposition 3.2. Let ¢: X — P* be a Shioda-Inose elliptic fibration on Xy. Then V, =T} .
Proof. By (3.4) and the fact that Trivj, is unimodular, we have ¢s, = qy,. Since H?(X,Z) with

the cup-product is an even unimodular overlattice of Sy @ T}, we have ¢s, = —gr, by Proposi-
tion 1.6.1 of [22]. Hence we have gy, = ap- Note that Vy is an even negative-definite lattice of rank
2 with discriminant 36 (resp. 24, resp. 15) if k = 0 (resp. k = 1, resp. k = 2). We can make a
complete list of isomorphism classes of negative-definite lattices of rank 2 with a fixed discriminant
d by the classical method of Gauss (see Chapter 15 of [6], for example). Looking at this list for

d = 36,24 and 15, we conclude that Vi, = T for k = 0,1, 2. |

Remark 3.3. In general, the isomorphism class of the lattice V; depends on the choice of the Shioda-
Inose elliptic fibration ¢. See, for example, [27] or [30].

Proposition 3.4. Let ¢: X — P! be a Shioda-Inose elliptic fibration on X}, and let v and v’ be as
above.

(0) Suppose that k = 0. Then we have Ry = {v,v'}, and MW is a free Z-module of rank 2
generated by elements 01,09 such that the vectors

(3.6) s1i=[o1] = 3fp — 24, s2:=[02] =3fs— 2

form a basis of Vy with the Gram matriz

MO = =6 0 .
0 —6
(1) Suppose that k = 1. Then there exists a point v € P! such that Ry is equal to {v,v’',v"}, and
such that ¢~ (v") is of type 1o or II1. Let Cy be the irreducible component of ¢~ (v") disjoint from

the zero-section og. Then MWy is a free Z-module of rank 1 generated by an element oo such that
the vectors

(3.7) s1:=[C1], s2:=[02] —6f5 — 24

form a basis of Vi with the Gram matriz

M1 = —2 0 .
0 -—12
(2) Suppose that k = 2. Then there exists a point v € P! such that Ry is equal to {v,v’',v"}, and

such that =1 (v") is of type Iy or I11. Let Cy be the irreducible component of ¢~*(v") disjoint from
oo. Then MWy is a free Z-module of rank 1 generated by an element oo such that the vectors

(3.8) s1:=[C4], s2:=—([o2] —4fp — 24)

form a basis of Vy with the Gram matriz
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Proof. By Proposition 3.2, V, has a basis s1, so with respect to which the Gram matrix of Vy is Mj,.
Since
0 if k=0,
{reVe | (nrjv=-2}= _
{s1,—s1} ifk=1or2

we have
7.s1 ® Zsy if k=0,
MW, 2V /vy =4 7
75, if k=1or2,

where 55 := so mod (s1). By (3.5), the assertions on Ry, the type of ¢~!(v”) for k = 1 and 2, and
the structure of MW, are proved. Note that, for an arbitrary element 0 € MW, we have

([o],lol)s = =2, (o], fo)s =1, o] L O, [o] L Ogu,

and, when £ =1 or 2, we have
([0],C1)s =0 or 1.

The projection pry, ([o]) of [o] to Vi with respect to the orthogonal direct-sum decomposition (3.4) is

o] = (2 +([0], 20)5) [ — 24,

and its square-norm is —4 — 2([0], z¢) 5.

Suppose that k& = 0. Then we have generators o1,09 of MW, such that s; = pry([o1]) and
sy = pry([o2]). From (s1,s1)s = (s2,s2)s = —6, we obtain ([o1],24)s = ([02],24)s = 1 and the
equality (3.6) follows.

Suppose that £ = 1 or 2. Changing s1, s to —s1, —so if necessary, we can assume that s; = [C1].
Let o2 be a generator of MWy = Z. Then [C4] and pry ([o2]) generate V. In particular, we have
s = xpry ([oa]) + y[C1] for some z,y € Z. We put

t:=(lo2], 26)s, w:= (2], [Ch])s = ([02],51)s-
Note that ¢ € Z>o and u € {0,1}. Then we have
(39) <817 82>S = Tu— 2y>
(3.10) (59,80)g = a*(—4—2t) + 2xyu — 2>

Suppose that k£ = 1. If u = 1, then we obtain & = 2y from (3.9) and (s1,s2)s = 0, and hence
2?(=7/2—2t) = —12 holds from (3.10) and (sg, s3)s = —12. Since the equation z?(—7/2—2t) = —12
has no integer solutions, we have u = 0. Then y = 0 and 2?(—4 — 2t) = —12 hold. The only integer

solution of #2(—4 — 2t) = —12is t = 4 and x = £1. Therefore, changing sy to —ss if necessary, we
obtain (3.7). Suppose that k = 2. Since (s1,$2)s = —1, we obtain u = 1 and z = 2y — 1 from (3.9).
Substituting = 2y — 1 in (s2, s2)s = —8, we obtain a quadratic equation

(T+4t)y* — (T+4t)y+t—2=0,

which has an integer solution only when ¢ = 2. When ¢ = 2, we have (z,y) = (—1,0) or (1,1).
Changing so to —sg + s if necessary, we obtain (3.8). |

Corollary 3.5. The Néron-Severi lattice S, of Xi has a basis

/ !
(3.11) fo, 26,51, 52,€1,...,€8,€1,...,€s,
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where s1, So are obtained in Proposition 3.4. The Gram matriz of Sy with respect to this basis is
Gk: = diag(UellaMk7E§a E§)7

0 1
where Ugy := 1 5 ] , My, is defined in Proposition 3.4, and Eg is the Cartan matriz of type Eg
multiplied by —1.

Throughout this paper, we use the basis (3.11) of S, and the Gram matrix G of Si. Recall that
O(Sk) acts on Sy, from the right, so that we have

O(Sk) = { Ac GLQ()(Z) | A Gy, A= G }

Next we investigate the chamber

N(Xp) = {vePXy) | (v,C)s >0 for any curve C on Xy }
= {veP(Xg) | (v,C)s >0 for any smooth rational curve C on X}, }

in the positive cone P(Xy) of Si. By the definition of fy and z4, we see that the vector
ay = 2fp + 24

of square-norm 2 is nef, and hence is contained in N(X}). Moreover the set

(3.12) By :={[C] | C is a smooth rational curve on X with (a},C)s =10}

is equal to

(3.13) {{Z¢,€1,...,6876/1,...,6/8} if k=0,

{z4,51,€1,...,€s,€},...,e5} ifk=1or2.
Therefore we have the following criterion:

Corollary 3.6. A vector v € Sy with (v,v)s > 0 is nef if and only if the following conditions are
satisfied:

(1) (v,a})s >0, so that v € P(Xy),
(ii) the set {r € Si|(r,r)s = —2, (r,a})s >0, (r,v)s <0} is empty, and
(iii) (v,7m)s >0 for allr € By.

A nef vector v € Sy with (v,v)s > 0 is ample if and only if
{resy | (rnrys=-2, (rv)s=0}
15 empty.

Using Corollary 3.6 and Algorithms 2.2 and 2.3, we can determine whether a given vector v € Sy,
is nef or not, and ample or not.
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4. APPLICATION OF TORELLI THEOREM TO X}

Let X be a K3 surface. The second cohomology group H?(X,Z) considered as an even unimodular
lattice by the cup-product is denoted by Hx. By Proposition 1.6.1 of [22], the even unimodular
overlattice Hx of Sx @ Tx induces an isomorphism

O0m: qsx = —qrs.

We regard the nowhere-vanishing holomorphic 2-form wx on X as a vector of Tx ® C. If a Q-rational
subspace Ty of Hx ® Q satisfies wx € Tg ® C, then Ty contains T'x. From this minimality of T'x,
we see that, if v € O(Hx) preserves the subspace H??(X) = Cwyx of Hx ® C, then ~ preserves Tx.
Moreover v € O(Hx) satisfies w} = wx if and only if v acts on T'x trivially. We define the subgroup
Cx of O(Tx) by

(4.1) Cx ={7€0(Tx) | wy =Awx for some X\ € C* }.

For positive integers n, we define the subgroups Cx(n) of Cx by
Cx(n):={~v€0(Tx) | wk =Awx for some X\ € C* with \" =1}.

Then we have Cx (1) = {id}. We denote by

ns: O(Sx) — O(gsy), nr: O(Tx) — O(qry)

the natural homomorphisms, and by
6;1: O(qTx) = O(qSX)

the isomorphism induced by the isomorphism 05 : ¢gs, = —qr, . By the definition of §y, an isometry
v € O(Sx) of Sx extends to an isometry 5 of Hx that preserves the subspace H?%(X) = Cwx of
Hyx ® C if and only if

ns(7y) € g (nr(Cx))-

More precisely, an isometry v € O(Sx) extends to an isometry 4 of Hx that satisfies w; = lwx
with A" = 1 if and only if

1s(7) € 0 (N7 (Cx (n)))-

By Torelli theorem for complex algebraic K3 surfaces due to Piatetski-Shapiro and Shafarevich [24],
we have the following. Recall that we have the natural representations ¢x: Aut(X) — O(Sx) and
Ax: Aut(X) — GL(H?*%(X)) = C* of Aut(X).

Theorem 4.1. The kernel of vx is isomorphic to

{veclx | nr(y)=id }.

The image of vx is equal to

{7€0(Sx) | N(X)" = N(X) and 1s(y) € 6 (nr(Cx)) }-

More precisely, the image of the subgroup {g € Aut(X)|Ax(g)" =1} of Aut(X) by px is equal to

{7 €0(Sx) | N(X)” = N(X) and ns(y) € 55 (nr(Cx(n))) }-
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We apply Theorem 4.1 to our singular K3 surfaces Xy. Let 1, ¢ be the basis of T}, with the Gram
matrix (1.1). We denote by (, )r the symmetric bilinear form of Tj. We have

8 ifk=0, 16 if k=0,
|O(T%)| :{ |O(gr, )| ={

4 ifk=1,2, 4 ifk=1,2.
Since (wx,,wx, )T = 0, we see that wx, is equal to

t1 ++v/—1ty or t; —+/—1ts if k=0,
(4.2) t1 4+ /=61ty or t; —+/—6ty ifk=1,
8ty 4 (=14 /=15)ty or 8t; + (=1 —+/—15)ty ifk =2,
up to multiplicative constants, and the subgroup
Cr = Cx,
of O(Ty) defined by (4.1) is equal to

SHSE
Bt e

(Note that Cj does not depend on the choice of the two possibilities of wx, in (4.2).)
Proof of Proposition 1.1. By direct calculations, we see that n7 maps Ci, into O(gr, ) injectively. O

The embedding V = (s1,52) < S induces an isomorphism g¢g, = qy,. Let 6: g5, = —qr, be the
isomorphism induced from the isomorphism Vy = T, given by sy = 1, s3 = t2, and let

6" O(qu) = O(qsk)
be the isomorphism induced by 4.

Lemma 4.2. We have 63 (nr(C)) = 6*(nr(Ck)).

Proof. By direct calculations, we see that np(Cy) is a normal subgroup of O(gr, ). Since d3; and §*
are conjugate, we obtain the proof. ]

Therefore we can calculate the subgroups

Cr =0 (nr(Cr)),  Cp(n) =05 (nr(Ci(n))),

of O(gsy ), even though we do not know the isomorphism §z. Combining these with Proposition 1.1,
we obtain the following computational criterion:

Corollary 4.3. We put

Gr={7€0(S) | ns(y) €C; }.
Let a € N(Xy) be an ample class. Then, by the natural representation px,, the group Aut(Xy)
is identified with the subgroup {v € Gy |a” is ample} of O(Sy). Under this identification, for g €
Aut(Xy), we have Ax, (9)" =1 if and only if ns(g) € Cp.(n).
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Remark 4.4. Let Ay and As be the positive-definite even lattices of rank 3 with Gram matrices

2 1 0 6 0 3
1 8 0 |, 0 6 31|,
0 0 12 3 3 8

respectively. Suppose that X is a K3 surface on which 20 acts symplectically. Then
H*(X,Z)% = {v e H*X,Z)|v? = v for any g€ As}
is isomorphic to A; or Ay (see Table 10.3 of [10]). Hence X is singular, and its transcendental lattice
is isomorphic to the orthogonal complement of an invariant polarization in H?(X,Z)%s = A,.
5. BORCHERDS METHOD

Let Log be an even unimodular hyperbolic lattice of rank 26, which is unique up to isomorphism
(see, for example, Chapter V of [28]). We denote by (, )1, the symmetric bilinear form of Lag. We
choose a basis

(5.1) f,z,e1,...,es,€],...,e5,€e/,... el
of Log with respect to which the Gram matrix of Log is equal to
(5:2) diag(Uen, Eg, Eg, Eg),
where Uy and Eg are given in Corollary 3.5. We consider the vector wg € Lo that is written as
(5.3) wo = (61,30,—-68,—46,—91,—135, 110, —84, —57, —29,

—68,—46,-91, -135, —110, —84, —57, —29,

— 68, —46,—91,—135,—110, —84, —57, —29)
in terms of the basis (5.1).
Remark 5.1. In terms of the basis of Ly; = Lag dual to (5.1), we have

wo = (30,1,1,...,1)".

Note that we have (wg,wp)r, = 0. Let P(Log) be the positive cone of Log that contains wyg in its
closure. The real hyperplanes

(" ={z€P(Lz) | (1)L =0}

of P(Lgg), where r ranges through R(Log) = {r € Log | (r,7)r. = —2}, decompose P(Lgs) into the
union of chambers, each of which is a standard fundamental domain of the action of the Weyl group
W (Lgg) on P(Lag). We call these chambers Conway chambers. The action of OF(Lag) on P(Lag)
preserves this tessellation of P(Lgg) by Conway chambers.

Theorem 5.2. We put
Woi={r€Ls | (r,r)r=-2, (nwo)r =1}

Then the chamber
DO .= {2 € P(Lys) | (x,r)r >0 for all 7 € Wy }
of P(Lgg) is a Conway chamber, and (r)* is a wall of D©) for any r € Wy.
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Proof. By [5] and [3], it is enough to prove that (wg)*/(wg) is isomorphic the negative-definite Leech
lattice; that is, (wg)®/(wp) is an even negative-definite unimodular lattice with no vectors of square-
norm —2. The vector

wy = (62,30,—71,—48,—-95,—141, —115, —88, —60, —31,

— 68, —46,—-91, —135, -110, —84, —57, —29,

— 68,46, —91, 135, —110, —84, —57, —29)
satisfies (wo, wy)r = 1 and (w{, wj)r, = 0. Then the sublattice (wo, w() of Lag is an even unimodular
hyperbolic lattice of rank 2, and (wg)*/(wp) is isomorphic to the orthogonal complement of (wq, wy)
in Lyg. Hence (wg)*/(wp) is even, negative-definite and unimodular. Moreover we can calculate

a Gram matrix of (wg)*/{wg). Using Algorithm 2.1, we can confirm that (wg)*/(wg) contains no
vectors of square-norm —2. O

Corollary 5.3. Any Conway chamber is equal to D9 for some g € O™ (Lag).

Since the vectors in Wy span Lag, the vector wy is uniquely determined by the condition (wg, ), =
1 for any r € W,. Therefore D09 = DO’ implies wj = w§ .

Definition 5.4. We call the vector w{ the Weyl vector of the Conway chamber DO,
Let e : S — Log be the linear mapping given by
ex(fo) =f erlzp) =2, exle)) =€}, ex(e)) =ef,
and € (s1),ex(s2) are given in Table 5.1, in which [cq, ..., cs] denotes the vector
cie; + -+ cgeg

of Lag. We can easily confirm that e is a primitive embedding of the lattice Sy into Log by using
the Gram matrices (3.5) and (5.2). From now on, we consider Sj as a primitive sublattice of Log by
€r. Let Ry denote the orthogonal complement of Sy in Log. It turns out that Ry is a root lattice of

type
245 4+ 24, if k=0,

As+ A+ A iftk=1,
Ay + Ay if k=2.
By Proposition 1.6.1 of [22], the even unimodular overlattice Log of Si @ Ry induces an isomorphism
0L qr, = —4s,-
Then ¢, induces an isomorphism
67: Olgs,,) = Olqry.)-

Since Ry is negative-definite, we can calculate all elements of O(Ry) and their images by the natural
homomorphism ng: O(Ry) — O(gr,). We have

2304 if k=0,
|O(Ry)| = { 1152 if k=1,
2880 if k = 2,

and see that ng is surjective. In particular, by Proposition 1.4.2 of [22], the subgroup Gy of O(Sy)
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[ ao(s) | [3 24 6 66 4 2
| co(s2) | B |6 48 12 9 6 4 2
[ as) | _ [3 24 6 5 43 2
| ei(s2) | (64812 96 3 0
(ea(s) | _ [3 24 6 5 43 2
£a(s2) 6 4 8 12 10 7 4 1

TABLE 5.1. The embeddings

defined in Corollary 4.3 satisfies the following:
Proposition 5.5. Every element v € Gy, extends to an isometry 4 € O(Lag). O
It is easy to see that & maps P(X}) into P(Las).

Definition 5.6. A chamber D of P(X}y) is called an induced chamber if there exists a Conway
chamber D such that D = DN P(X}). In this case, we say that D is induced by D.

As will be seen in the proof of Theorems 1.4 and 1.5 below, this definition coincides with the
definition of induced chambers in Introduction.

By definition, P(X}) is tessellated by induced chambers, and for a wall (v)* of an induced chamber
D, we can define the induced chamber adjacent to D across the wall (v)*. By Proposition 5.5, we
have the following:

Corollary 5.7. The action of Gy, on P(X}) preserves the tessellation of P(Xy) by induced chambers.

If r € Sy, satisfies (r,7)s = —2, then we obviously have (r,r); = —2. Therefore a wall of N(X}) is
the intersection of a wall of a Conway chamber and P(X},). Hence, if D is an induced chamber, then
either D is contained in N(Xj) or the interior of D is disjoint from N(X}). Therefore N(X}) is also
tessellated by induced chambers.

We denote by

prg: L26®Q—> Sk@@
the orthogonal projection. Note that prg(Lag) is contained in S)/. For r € R(Lsg), we put
rg = prg(r).

Using the fact that Ry contains a vector of square-norm —2 and hence cannot be embedded into the
negative-definite Leech lattice, we have the following;:

Proposition 5.8 (Algorithm 5.8 in [32]). Suppose that the Weyl vector w of a Conway chamber D
1s given. Then the set

Ay :={reR(Ly) | (rnw)yr=1, (rs,rs)s <0 }

is finite and can be effectively calculated.
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a0 = (122, 60, —11, —17, —136, —92, —182, —270, —220, —168, —114, —58,
—136, —92, —182, —270, —220, —168, —114, —58)
ar = (122, 60, —29, —8, —136, —92, —182, —270, —220, —168, —114, —58,

—136, —92, —182, —270, —220, —168, —114, —58)
az = (61, 30, =12, —5, —68, —46, —91, —135, —110, —84, —57, —29,
—68, —46, —91, —135, —110, —84, —57, —29)

TABLE 5.2. The ample vectors ag

We put
2prg(wo) ifk=0or1,
ap =

prg(wg) if k=2.
Then ay, is a primitive vector of Sy, contained in P(X}). Its coordinates with respect to the basis (3.11)
are given in Table 5.2. The square-norm (ay,ax)s is given in Theorem 1.2.
Proposition 5.9. The closed subset

DO .= DO N P(Xy)

of P(Xy) is an induced chamber that contains ay in its interior and is contained in N(Xy). In

particular, ay € Sk is ample.

Proof. For a vector 7 € Log with (r,7);, = —2, the subset (r)* NP(Xy) = {x € P(Xx)| (rs,z)s = 0}
of P(X}) is equal to

the real hyperplane (rg)* of P(X}) if (rs,rs)s <0,

P(Xk) if rg =0,

] if r¢ #0 and (rg,rs)s > 0.
Moreover, because the embedding ¢, maps P(Xy) into P(Lgg), if r € Wy satisfies rg # 0 and

(rg,rs)s > 0, then every point x of P(X}) satisfies (rg,z)s > 0. Note that » € Wy satisfies rg = 0
if and only if r € Ry.

We first show that ay is an interior point of the closed subset D(®) of P(X}). We calculate the
finite set Ay, = {r € Wy | (rs,rs)s < 0} by Proposition 5.8, and confirm that
(ag,r)r, >0 for all r € A,,.

Therefore, by the above consideration, we see that (ax,rs)s = (ak,r)r > 0 for any r € Wy with
rs # 0. Hence ay, is an interior point of D). Therefore D) is an induced chamber.
Next we show that a is ample. It is easy to see that (a},axr)s > 0, where aj, is the nef vector
2fy + z4. By Algorithms 2.2 and 2.3, we see that
{resk | (rays >0, (rag)s <0, (r,r)s=-2}=0,
(ag,m)s >0 for any r € By,
{reSg | (rnag)s=0, (rnrs=-2}=0,

where By, is defined by (3.12) and given in (3.13). By Corollary 3.6, we see that ay is ample. Since
N(X}) and the interior of D(®) have a common point ay, we see that D(®) is contained in N(X},). O
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Proof of Theorems 1.4 and 1.5. By the results proved so far, the assumptions required to use the
main algorithm (Algorithm 6.1) of [32] are satisfied.

We calculate the set A(D(®)) of primitive outward defining vectors of walls of D(®) from the set
A, above by Algorithm 3.17 of [32]. Since A(D(?)) generate S ® R, we can calculate the finite

group

(5.4) Aut(D©®) :={~ € 0(S;) | D7 =D}

by Algorithm 3.18 of [32]. Since ay is an interior point of D) and the action of G} preserves the
decomposition of P(X%) into the union of induced chambers by Proposition 5.5, we have

Aut(Xy,ar) = Aut(D(O)) N Gy.

Indeed, ay is proportional to the sum of the vectors in the orbit oy calculated bellow. Thus we can
calculate all elements of the finite group Aut(Xy, a) in the form of matrices. Thus we obtain the set
Invols ,(CO) of involutions in Aut(Xy,ar).

We then calculate the orbits of the action of Aut(Xy,ax) on A(D®). Let o; be an orbit. We
choose a vector v; € o,. Suppose that there exists a positive integer n such that nv, € Sy and
n%(vi,v;)s = —2. Then (v;)* = (nv;)* is a wall of N(X}). This occurs only when o; = o or (k =1
and o; = o). Suppose that there exists no such positive integer n. Then the induced chamber D
adjacent to D) across the wall (v;)* is contained in N(X}). By Algorithm 5.14 of [32], we calculate
the Weyl vector w; € Log such that the corresponding Conway chamber D) induces D). From
w;, we calculate A(D®) by Algorithms 3.17 and 5.8 of [32]. We then use Algorithm 3.19 of [32] to
search for an element '7,(5) € G}, such that D7 ¥ = DO. Tt turns out that there does exist such

an isometry '?,(f). Hence all induced chambers in N(X}) are congruent under the action of Gy, and

Aut(Xy) is generated by Aut(Xk,ar) and the isometries '?,(f). Finally, we calculate the set

Involsg) ={g- '?Ef) | g € Aut(Xy,ar), and g- ’?g) is of order 2 }
of involutions in Gy, that map D© to D®. O

Remark 5.10. The index of Aut(Xy,ay) in the stabilizer subgroup Aut(D®) of D in O(S}) is 4
for k =0, and is 2 for £ = 1 and k = 2. Under the action of this larger group Aut(D(O)), the orbits
o0; fuse as follows:

for k=0: 00, 01, 02, 03, 04 U 05, 0, 07, 08, 09 U010, 011 U012,

/
for k=1: 0o, Oq, 01, 02, 03, 04, O5, Og, o7 Uos, 09, 010, 011 U 012,
for k=2: 0g, 01, 02, 03, 04U 05, 0g U 07.

By the work in this section, we have obtained a finite set of generators of Aut(Xy) in the form of
matrices in O(Sy). Our next task is to realize them geometrically.

6. SMOOTH RATIONAL CURVES ON A K3 SURFACE

From now on to Section 9, we omit the subscript S in (, )g.
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6.1. An algorithm to calculate the classes of smooth rational curves. In order to obtain
geometric information of an automorphism g of a K3 surface X from its action v — v9 on the
Néron-Severi lattice Sx of X, we introduce the following computational tool.

Proposition 6.1. Let h € Sx be a polarization of degree n := {(h,h) > 0. Suppose that an ample
class a € Sx is given. Then, for each non-negative integer d, we can calculate effectively the set

Ca(h) :={[I'] € Sx | T is a smooth rational curve on X such that (h,I') =d }.
First we prove two lemmas. In the following, we fix a nef class h € Sx and an ample class a € Sx.

Lemma 6.2. Let D be an effective divisor on X with (D, D) <0, and let
D=Ty+ -+, +M

be a decomposition of D such that Ty, ..., Ty, are smooth rational curves and either M = 0 or M
is effective with no fized components in |M|. Then there exists a smooth rational curve T'; among
To,..., Iy such that (D,T;) < 0.

Proof. If (D,T;) >0 for i =0,...,m, then (D, D) = Y(D,T;) + (D, M) > 0. 0

Lemma 6.3. Suppose that v € Sx satisfies (v,v) = —2 and {a,v) > 0. Then the following conditions
are equivalent:
(i) The vector v is not the class of a smooth rational curve.

(ii) There exists a smooth rational curve T' satisfying the following:
<a7 I‘> < <a7 U>7 <h7 F> S <h7 v>’ <U7F> < 0'

Suppose further that h is a polarization of degree n := (h,h) > 0 and that (h,v) > 0. Then the above
two conditions are equivalent to the following:

(iii) There exists a smooth rational curve T satisfying the following:

Proof. By (v,v) = —2 and (a,v) > 0, there exists an effective divisor D such that v is the class of
D. Let D=Ty+---4+T,, + M be a decomposition of D such that I'g,..., [, are smooth rational
curves and either M = 0 or M is effective with no fixed components in |M|. By Lemma 6.2, we can
assume that (v,T) = (D,Tg) < 0. Since h is nef, we have (h,To) < (h, D).

Suppose that D is not irreducible. Then m > 0 or M # 0. In either case, we have (a,To) < (a, D).
Hence (ii) holds by taking I'g as I'. Suppose that (ii) holds. Since (D,I") < 0, I' is one of T, ..., I',.
Since (a,I") < {a, D), we have D # I, and hence D is not irreducible. Thus the first part of Lemma 6.3
is proved.

Suppose that h is a polarization and that d := (h,v) > 0. The implication (iii) = (ii) is obvious.
We assume (i) and prove that (iii) holds. If M # 0, then (h, M) > 0. Hence we have (h,T'g) < d, and
(iii) holds by taking I'y as I'. Therefore we can assume that M = 0 and m > 0. If (h,Ty) < d, then
(iii) holds by taking 'y as I'. Therefore we further assume that (h,I'g) = d. Then we have

(6.1) (h,T;)=0<d for i=1,...,m.
If (v,T;) < 0 for some ¢ > 0, then (iii) holds by taking I'; as I". Therefore we assume
(6.2) (v,I;) >0 fori=1,...,m,
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and derive a contradiction. For simplicity, we put

J m
Ej = ZFZ, E]‘ = Z Fi-
=0

i=j+1
Note that I'g is distinct from any of I'v, ..., I',,. Since (I';,I'g) > 0 for ¢ > 0 and
<’U,F0> = <D,F0> = -2+ <Eo,ro> < 0,

we have (Zg,Tg) = 0or 1. If (Z¢,Tg) = 0, then (D, D) = —2 implies that (Zy, Zg) = 0. Since the class
of Zy belongs to the orthogonal complement [h]* of h in Sy by (6.1), and [h]* is negative-definite
because (h, h) > 0, we obtain Zg = 0, which contradicts the assumption (i). Hence (Zo,T¢) = 1, and
therefore there exists a curve I'; among I'y,...,T,,, say I'1, such that

(To,T1) =1, To,T) =0 (i=2,...,m).

We consider the following property Py:
(a) {Toy.- s et N {Ths1,-. -, I} =0,
(b) To,...,T'y form an Ay q-configuration of smooth rational curves.
(c) (I,T';) =0ifi <k and j > k.
(d) (Eg,Tw) =1.
We have shown that the property Py holds. (The property (c) is vacuous for Fy.)

Claim 6.4. Suppose that the property Py holds. Then, after renumbering of I'y41,...,1T,, the
property Pjy1 holds.

Proof of Claim 6.4. Since (E;, ) =1 and T'y, ¢ {T11,...,T'}, there exists a unique element, say
k41, in the set {T'yq1,...,1T,} such that (I'y,I'kq1) = 1 and (I'x,I';) = 0 for j > k + 1. Then we
have that

(6.3) Tit1 ¢ {Trya,..., I}y

that T'o,...,Tky1 form an Ajyo-configuration of smooth rational curves, and that (I';,T';) = 0 if
it < k+1and j > k+1. Therefore it is enough to show that (Ex11,'x4+1) = 1. We have (X, Xg) = —2
by (b) for the property Py, and (Xx, =) = 1 by (c) and (d) for Py. From D? = (3, +Z1)% = -2, we
obtain 7 = —2. By Lemma 6.2, there exists an irreducible component I'; of =, such that (S, ;) < 0.
If I > k + 1, then we have (I';,I';) = 0 for ¢ < k, and hence (D,T';) = (2, I'}) <0, which contradicts
the assumption (6.2). Hence we have [ = k + 1. From

(Eks Thr1) = =2+ (Ekg1, Dry1) <0

and (Ex41,Tk41) > 0 by (6.3), we see that (Ep41,Tky1) = 0 or 1. If (Egy1,Tk41) = 0, then
(Eks1, k1) = 0 by (c) for Pyy1 and, from D? = (Zp11 + Spy1)? = —2 and E%H = —2 by (b) for
Py+1, we have E%H = 0. Since the class of Zx,; belongs to the negative-definite lattice [h]1, we
have Zx41 = 0, and hence D = ¥i ;. Then (D,T'y 1) < 0, which contradicts the assumption (6.2).
Therefore (Zp41, Try1) = 1. |

Since the property Py holds, the property P,, holds by Claim 6.4, which says that I'g, ..., I",, form
an A, 1-configuration. This contradicts (6.2) for i = m. O
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Proof of Proposition 6.1. Since (h,h) > 0, we can calculate the finite set
Vi:={veSx | (h,o)=d, (a,v) >0, (v,v) =-2}
by Algorithm 2.2. Suppose that d = 0. We decompose V, into the disjoint union of subsets
Wolow] :={veVy | (a,v) =a; }
with 0 < ag < -+ < ay. We calculate Cy[ey;] inductively on ¢ by setting Colag] := Vo[ay], and

Colai] :=={ v € Vo[a;] | there exist no vectors v in U Cola;] such that (v,v) <0 }.
j<i
Then the union of Cylay],...,Colan] is the set Co(h). Suppose that d > 0 and that the set Cq (h) is
calculated for every d’ < d. Then
{v eV, | there exist no vectors + in U Caq(h) such that (v,v) <0}
d'<d
is the set C4(h). O

Suppose that h € Sx is a polarization of degree n := (h, h) > 0. Let
Oy X 2 X, — P2

be the Stein factorization of the morphism ®;, induced by the complete linear system |L},| associated
with a line bundle £, — X whose class is h. Then X}, has only rational double points as its
singularities, and pj, is the minimal resolution of singularities. The set Cy(h) is equal to the set of
classes of smooth rational curves contracted by pp,. In particular, the dual graph of Cy(h) is a disjoint
union of indecomposable root systems of type A;, D,, or E, (see Figure 2.1). We can calculate the
ADE-type of the singular points Sing(X}) of X}, from Cy(h).

The set Cy(h) is the set of classes of smooth rational curves that are mapped to lines in P+7/2
isomorphically by ®,; that is, C;(h) is the set of classes of lines of the polarized K3 surface (X, h).

6.2. Application to projective models.

Definition 6.5. Let (X, h) and (X', h') be polarized K3 surfaces. We say that (X, h) and (X', h’)
have the same line configuration if there exists a bijection

a: Co(h) UCi(R) =% Co(R')UCL(R)
such that we have
(6.4) (a(r), 'y = (r,h) for any r € Co(h) UCy(h),
(that is, a(Co(h)) = Co(h’) and a(Cy1(h)) = C1 (k') hold), and
(6.5) {a(r),a(r")) = (r,r") for any r,7" € Co(h) UCy1(h).
We say that the line configuration on (X, h) is full if the union of Cy(h) and C;(h) generates Sx.

Proposition 6.6. Suppose that X is singular and that the line configuration on (X, h) is full. Then,
up to isomorphism, there exist only a finite number of polarized K3 surfaces (X', h') that have the
same line configuration as (X, h). Moreover all such polarized K3 surfaces (X', h') satisfy (h',h') =
(h,h).
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Proof. Suppose that (X', h’) has the same line configuration as (X, h), and let a be a bijection from
Co(h) UCy(h) to Co(h') U Cy1(h') satisfying (6.4) and (6.5). Let S” be the sublattice of Sx+ generated
by the union of Co(h') and C;(h'). Then « induces an isometry & from Sx to S”. Therefore X' is
singular and

discTx = —disc Sx» = —disc SX/m2 = discTX/mz,

where m is the index of S” in Sx . Since the number of isomorphism classes of definite lattices of
a fixed discriminant is finite, the number of isomorphism classes of singular K3 surfaces X’ that
admit a polarization A’ with the same line configuration as (X, h) is finite. Note that the isometry
a: Sx = S maps h to h', because h is uniquely determined by Co(h) and C;(h) as a unique vector
satisfying (r,h) = 0 for any r € Co(h) and (r,h) = 1 for any r € Ci(h). In particular, we have
(h,h)y = (h',h'). For a fixed K3 surface X', the number of polarizations h’ with a fixed degree is
finite up to Aut(X’) by Sterk [38]. O

We apply this consideration to our singular K3 surfaces Xj. Recall that the inversion of the
orientation of T} yields a singular K3 surface isomorphic to Xy.

Proposition 6.7. Let h be a polarization on Xy of degree n := (h,h) > 0 such that the line con-
figuration on (X, h) is full. Suppose that (X', h’) has the same line configuration as (X, h). Then
20
either X' is isomorphic to Xy, or k =0 and X' is the singular K3 surface with Tx' = [ 0 9 1 .
Proof. Since X’ is a singular K3 surface by Proposition 6.6, we have discTx: = 0 or 3 mod 4. By
the proof of Proposition 6.6, we see that disc Tx: = disc T}, /m?, and if m = 1, then Tx: = T}, by the
proof of Proposition 3.2. O

Therefore, if the line configuration of (X, h) is full, then we can determine the projective model
of the polarized K3 surface (X, h) up to finite possibilities.

7. INVOLUTIONS OF K3 SURFACES

Let X be a K3 surface such that the representation ¢x: Aut(X) — O(Sx) is injective. Suppose
that we are given the action of an involution ¢ € Aut(X) on Sx as a matrix. In this section, we
discuss a method to obtain geometric properties of ¢ from this matrix.

7.1. Types of the involution. Note that we have Ax(¢t) = £1, where Ax is the natural represen-
tation of Aut(X) on H*%(X). Since we have assumed that px is injective, we can determine, by
Theorem 4.1, whether ¢ is symplectic or not by seeing whether ns(px(¢)) € O(gsy ) is the identity or
not.

Suppose that ¢ is not symplectic. Then we can determine whether ¢ is Enriques or rational by the
following:

Proposition 7.1 (Keum [12]). Let ¢: X — X be an involution. We put
St i={veSx|v =0}, Sy:={veSx|v'=-v}

Let S%(1/2) denote the Q-lattice obtained from the lattice S; by multiplying the symmetric bilinear
form with 1/2. Then v is an Enriques involution if and only if S%(1/2) is an even unimodular
hyperbolic lattice of rank 10 and S contains no vectors r with (r,r) = —2.
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Remark 7.2. Since S;g contains an ample class, its orthogonal complement S’ is negative-definite.
Therefore we can calculate {r € S | (r,r) = —2} by Algorithm 2.1.

7.2. Polarizations of degree 2. We have the following:

Proposition 7.3 (Theorem 5 of [19], Proposition 0.1 of [23]). Let h € Sx be a nef class with
n:= (h,h) >0, and let L, — X be a line bundle whose class is h. Let

|Ln| = M|+ Z

be the decomposition of the complete linear system |Ly,| into the movable part |M| and the sum Z of
the fized components. Then either one of the following holds:

(i) Z is empty, and |Ly| defines a morphism ®;,: X — P72, In other words, h is a polarization
of degree n.

(ii) Z is a smooth rational curve, and |M| contains a member mE, where m = 1+n/2 and E is
a smooth curve of genus 1 satisfying (E,Z) = 1. The complete linear system |E| defines an
elliptic fibration ¢: X — P! with a zero-section Z. In other words, we have h = mfy + z4,
where fgy and z4 are defined in Section 3.

Corollary 7.4. Let h € Sx be a nef class with n := (h,h) > 0. Then h is a polarization of degree n
if and only if the set

Froi={feSx | {fm=1(ff=0}

is empty.

Proof. If the case (ii) of Proposition 7.3 holds, then the class fy of E is an element of Fj. Suppose
that the case (i) of Proposition 7.3 holds and that F;, contains an element f. Then dim |[£/]| > 0 and
the movable part of |£¢| contains a curve that is mapped to a line in P'+7/2 by @), isomorphically,
which is absurd. ]

Remark 7.5. Since (h, h) > 0, we can calculate F}, by Algorithm 2.2.

Suppose that a polarization h € Sx of degree 2 is given, and let 7(h) € Aut(X) be the associated
double-plane involution. We can calculate the matrix of the action of 7(h) on Sx by the following
method, provided that we have an ample class a € Sx. Let

o, X 2 X, T p?

be the Stein factorization of the morphism @}, induced by the complete linear system |Ly|, and let By,
be the branch curve of 7, : X;, — P2, which is a plane curve of degree 6 with only simple singularities.
Recall that the dual graph of the set Co(h) of classes of smooth rational curves contracted by the
minimal resolution of singularities pj, is a disjoint union of indecomposable root systems of type A,
D,, or E,, in Figure 2.1. The action of 7(h) on each indecomposable root system R is given as follows.

o If R is of type A, then 7(h) maps a; to aj41—;.

o If R is of type Do, then 7(h) acts on R as the identity, whereas if R is of type Dag11, then
7(h) interchanges d; and dy and fixes ds, ..., dog41-

o If R is of type Eg, then 7(h) fixes e1, e4, and interchanges e; and eg_; for i = 2,3. If R is of
type E7 or Eg, then 7(h) acts on R as the identity.
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The eigenspace (Sx ® Q)T of the action of 7(h) on Sx ® Q with the eigenvalue 1 is generated over
Q by the class h and the classes in the set

{r+ r7() | 7€ Co(h)},

and the eigenspace (Sx ® Q)™ with the eigenvalue —1 is orthogonal to (Sx ® Q)". Therefore we can
determine the action of 7(h) on Sx ® Q and hence on Sx from the set Cy(h).

Conversely, suppose that the matrix ¢px (1) € O(Sx) of an involution ¢ € Aut(X) is given. We
search for a polarization h of degree 2 such that 7(h) = ¢. Such a polarization does not necessarily
exist. If it exists, however, we can detect it by the following method, with the help of an ample class
a € Sx. Let d be a positive integer. We calculate the finite set {v € Sx | (v,v) = 2,{(v,a) = d} by
Algorithm 2.2, and its subset

He={veSx | (v,v)=2, (v,a)=d, v'=v}.

For each h € H4, we see whether h is nef or not by Corollary 3.6. If h is nef, then we see whether h is
a polarization of degree 2 or not by Corollary 7.4. If h is a polarization of degree 2, then we calculate
the matrix ¢x(7(h)) by the method described above. If ¢ x(7(h)) is equal to px (i), then we have
7(h) = ¢. (Recall that we have assumed that ¢x is injective.) We start from d = 1 and repeat this
process until we find the desired polarization h.

Remark 7.6. It often happens that two different polarizations of degree 2 yield the same double-plane
involution. Let h € Sx be a polarization of degree 2. The morphism ®;,: X — P? factors as

X 45 F 2 p

where ¢ is the quotient morphism by 7(h). Then F is a smooth rational surface and f is a succession
of blowing-downs of (—1)-curves. There can exist a birational morphism 3’: F — P? other than 3.
Let b/ € Sx be the class of the pull-back of a line on P? by 3’ oq. Then A’ is a polarization of degree
2 with 7(h) = 7(h'). See Section 9.5 for a concrete example.

7.3. Splitting lines.

Definition 7.7. Let (X, h) be a polarized K3 surface of degree 2. A line £ on P? is a splitting line
for (X, h) if the strict transform of ¢ by ®; has two irreducible components.

Let B be a reduced projective plane curve of degree 6. A line { is a splitting line for B if £ is not
an irreducible component of B and the intersection multiplicity of £ and B at each intersection point
is even.

By definition, a line ¢ is splitting for (X, h) if and only if £ is splitting for the branch curve By of
7n: X, — P2, Let I’ be a smooth rational curve on X such that [I'] € C;(h). If [[]7®) = [T, then
®;, maps I to a line component of By, isomorphically. If [[']7(*) # [T'], then ®;, maps I to a splitting
line for Bj, isomorphically.

8. PROOF OF THEOREM 1.2, PROPOSITION 1.6 AND TABLE 1.1

In the proof of Theorems 1.4 and 1.5 in Section 5, we have already calculated, in the form of ma-
trices, all the elements of the finite group Aut(Xyg, ax), the set Invols Eﬂo) of involutions in Aut(Xk, a),
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[405 200 —35 —57 —451 —303 —606 —902 —736 —560 —377 —194 —451 —303 —606 —902 —736 —560 —377 —1947
o 5 -1 -1 -12 -8 -16 -24 -20 -15 -10 -5 -—-12 -8 -—-16 —-24 —-20 -—15 —-10 -5
426 210 —37 —60 —474 —318 —636 —948 —774 —588 —396 —204 —474 —318 —636 —948 —774 —588 —396 —204
690 342 —60 —97 —768 —516 —1032 —1536 —1254 —954 —642 —330 —768 —516 —1032 —1536 —1254 —954 —642 —330
0O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0O 0 O 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
4 7 -1 -2 -15 -10 -20 -30 —-24 -—-18 -—-12 -6 —17 —-12 -23 —-34 —-28 -—-21 —-14 -7
22 11 -2 -3 -25 —-17 —-34 -50 —41 -31 -21 -—-11 -—-24 -16 —-32 —48 -39 -30 -21 -—11
21 10 -2 -3 —-24 -—-16 -—-32 —-48 -39 -30 -20 -10 -22 -—-15 —-30 —44 —-36 —27 —-18 -9
4 7 -1 -2 -15 -10 —-20 —-30 —-25 —-19 —-13 -7 —17 —11 —22 —33 —27 —21 —14 —7

0O 0 O 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
22 11 -2 -3 —-24 —-16 —-32 —48 -39 -30 -20 —-10 —-26 —17 —-34 —51 —41 -31 —-21 —11
0O 0 O 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0O 0 O 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 7 -1 -2 -17 —-12 -23 -34 -—-28 -21 -—-14 -7 -15 —-10 —-20 —-30 —24 -—18 —-12 -6

22 11 -2 -3 —24 —-16 -—-32 —48 -39 -30 —-21 —-11 —-25 —17 —-34 —-50 —41 —-31 —-21 -—11
21 10 -2 -3 —22 —-15 —-30 —44 —-36 —-27 —-18 -9 —-24 —-16 —-32 —48 -39 —-30 —-20 -—-10
14 7 -1 -2 -17 —-11 -—-22 -33 -—-27 -—-21 —-14 -7 —-15 —-10 —-20 —-30 —25 —19 —-13 -7
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L22 11 -2 -3 -—-26 —17 -34 -51 —41 -31 -21 —-11 -—-24 —-16 —-32 —48 -39 —-30 —-20 —10 ]

TABLE 8.1. The Enriques involution Eéo)

and the set Invols ,(j) of involutions that map the induced chamber D(® to the adjacent induced cham-
ber D@ for i > 0. By the method described in Section 7, we determine the types of the involutions
in Invols ,(j). Thus we prove Proposition 1.6 and complete Table 1.1.

We prove the assertions on X in Theorem 1.2. The cardinalities of the conjugacy classes of

Aut(Xo,ap) are as follows:

order‘l 2 2 2 3 4 4 4 4 5 6 8 8 8 8 10
card.‘l 45 45 1 80 180 180 90 90 144 80 90 90 90 90 144.

The center of Aut(Xy, ag) is therefore a cyclic group of order 2 generated by 580) given in Table 8.1. By
Proposition 7.1, we see that 5((30) is an Enriques involution. One of the two conjugacy classes of order
2 with cardinality 45 consists of symplectic involutions, and the other consists of rational involutions.

The matrix pgo) in Table 8.2 is an element of Aut(Xy, ag) with order 4. Since ng (p(()o)) € O(gs,) is of

order 4, we see that péo) is purely non-symplectic. There exist three double-plane involutions T(h([)l]),
T(hg]), T(hgﬂ) in Aut(Xg, aq), where the polarizations hg] of degree 2 are given in Table 8.3, such

that T(h([)l]), 7'(h£)2])7 T(hg))]) and pgo) generate Aut(Xy, ag). The subgroup
Aut(Xo,a0) := (r(ht),7(hg"), 7(hg")
of Aut(Xo, ag) is of index 2 and consists of elements g € Aut(Xo, ag) with Ax,(g)?> = 1. The mapping
7(hy') = ((12)(34), 1), 7(hg") = ((35)(46), 1), 7(h") = ((23)(56), ~1))
induces an isomorphism from Aut(Xy, ag)’ to s x{£1}. By this isomorphism, the Enriques involution
5(()0) is mapped to (id, —1), apd the symplectic subgroup of Aut(Xy,ap)’ is mapped to g x {1}. For

i=1,...,12, the set Involséz) contains a double-plane involution T(iL(()i)), where the polarization iL(()i)

of degree 2 is given in Table 8.3.
Next we prove the assertions on X; and X5 in Theorem 1.2. Suppose that &k = 1 or 2. Then the
cardinalities of the conjugacy classes of Aut(Xy,ay) are as follows:

order [1 2 2 3 4 5 5 8 8 10 10
card. [1 45 36 80 90 72 72 90 90 72 72.
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[ 318 159 —29 —46 —342 —236 —465 —684 —560 —430 —289 —148 —350 —237 —474 —700 —569 —438 —296 —148
(O] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
324 162 —30 —47 —348 —240 —474 —696 —570 —438 —294 —150 —354 —240 —480 —-708 —576 —444 —300 —150
540 270 —49 —78 —582 —402 —792 —1164 —954 —732 —492 —252 —594 —402 —804 —1188 —966 —744 —504 —252
21 10 -2 -3 —-22 —-15 —-30 —44 -36 —27 —-18 -9 —24 —-16 —32 —48 -39 —-30 —-20 -—-10

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
21 10 -2 -3 -22 -—-15 -30 —44 -36 -—28 -—-19 -10 —-24 -—-16 —-32 —47 —-38 —-29 —-20 -10
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 6 -1 -2 -14 -10 -19 -28 -23 -18 -12 -6 —-14 -10 -19 -—-28 —-23 —18 —12 -6
0o o0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

22 11 -2 -3 —-25 —-17 -34 -50 —-41 -31 -—-21 —-11 —-24 —-17 —-33 —48 -39 —-30 —-20 -10
20 10 -2 -3 —-22 —-15 —-29 —43 -35 —-27 —-18 -9 —21 —14 —28 —42 —-34 —-26 —-18 -9
8 4 -1 -1 -8 -6 —-11 —-16 —-13 —-10 -7 —4 -9 -6 —-12 —-18 —15 —12 -8 —4
(O] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

22 11 -2 -3 -25 -—17 -34 -50 —41 -32 -22 -—-11 -24 -16 —-32 —48 -39 -30 -20 -10
2 6 -1 -2 -12 -8 -16 -—-24 -20 -15 -10 -5 —-13 -9 -—-18 -—-26 —-21 —-16 —11 —6

0o o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
22 11 -2 -3 —-24 -—-17 —-33 —48 -39 -30 -20 —-10 -—-25 —17 —-34 —-50 —41 -31 -—-21 -—11
(O] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

L12 6 -1 -2 -13 -9 -18 -26 -—-21 -16 -11 -6 -—12 -8 —-16 -—-24 -—-20 -15 -—-10 -5 |

TABLE 8.2. The purely non-symplectic automorphism p(()o) of order 4

The conjugacy class of order 2 with cardinality 45 consists of symplectic involutions, and the class of
order 2 with cardinality 36 consists of rational involutions. There exist three double-plane involutions
T(hg]), T(hf]), T(hf]) in Aut(Xy, ai), where the polarizations hE:] of degree 2 are given in Tables 8.4
and 8.5. These three involutions generate Aut(Xy, ax), and the mapping

0 1++v2 0 2++2
1

[1]
h —
7(hy,’) ll 0 0

, () [

, T(hES’])HV ﬂ]

1 1

induces an isomorphism from Aut(Xg, a;) to PGLy(Fg). Except for the case k = 1 and i = 4, the set
Invols ,(j) contains a double-plane involution T(iz,(;)), where the polarization l~z,(;) of degree 2 is given in
Tables 8.4 and 8.5. The set Invols §4) consists of 6 symplectic involutions, one of which is the matrix
054) given in Table 8.6.

Remark 8.1. According to [4], there exist exactly three non-splitting extensions of the cyclic group of
order 2 by 2Ag; namely, the symmetric group Gg, the Mathieu group M, and the projective general
linear group PGLy(Fy). In [6, Chapter 10, Section 1.5], these three groups are distinguished by the
numbers of conjugacy classes of elements of order 3 and 5: &g has two classes of order 3 and one of
order 5, Mjo has one of each, and PGL2(Fy) has one of order 3 and two of order 5.

9. EXAMPLES

In this section, we investigate projective geometry of some of the automorphisms that appear in
Theorem 1.2.

9.1. The purely non-symplectic automorphism ,080). We investigate the purely non-symplectic

automorphism péo) of order 4 in Aut(Xy, ag). The vector
h, = (88,43, —8, —12, —98, —66, —131, —195, —159, —121, —82, —42,
—99, —67, —133, —197, —161, —123, —84, —43)

of Sp with (h,, h,) = 4 is invariant under the action of péo). By Corollary 3.6, we see that h, is nef,
and by Corollary 7.4, we see that h, is a polarization of degree 4. Moreover, by Algorithm 2.2, we
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h Sing(Xp)  (h, ao)

h[oll = (43, 21, —4, —6, —47, —32, —63, —93, —76, —58, —39, —20, 245 + TA; 10
—48, —33, —65, —96, —78, —60, —40, —20)

riF = (64, 32, —6, —9, =71, —47, —94, —140,—114, —87, —59, —30,  2As + TA; 10
—71, —48, —95, —141,—115, —88, —60, —30)

h([)3] = (49, 24, —4, —7, —56, —38, —75, —111, —90, —69, —47, —24,  2Ag + TAq 10
—54, —36, —72, —107, —87, —66, —45, —23)

R(Y = (64, 32, —6, —9, —71, —48, —95, —140,—114, —87, —59, —30, Ao + 847 10
71, —48, —95, —141,—115, —87, —59, —30)

ﬁ((f) = (57, 28, —5, —8, —64, —43, —86, —127,—103, —78, —52, —26,  4Ag +4A; 12
—64, —43, —85, —127,—103, —78, —53, —27)

R = (64, 32, —6, —9, —72, —48, —96, —142,—116, —89, —60, —31,  3As + 64; 12
—69, —47, —93, —138,—113, —86, —59, —30)

R(Y = (74, 37, —7, =10, —83, —56, —111,—164,—134,—103, =69, —35,  5Aa +4A; 14
—82, —55, —110,—164,—134,—103, —70, —36)

iLEf) = (80, 40, —7, —11, —91, —61, —122,—181,—147,—112, =75, —38,  5Ag + 4A; 14
—89, —60, —119,—178,—145,—110, —75, —38)

h{® =(176, 88, —16,—25,—193,—130,—260,—383,—312,—238,~161, —81,  3A3 + 64; 22
—197,—134,—264,—391,—318,—243,—165, —84)

R(D =(140, 70, —13,-20,—153,—102,—204,—303,—245,—187,—127, —64,  4A3 +4A; 22
—155,—105,—209,—310,—254,—194,—131, —67)

ibés) =(152, 76, —14,—21,—173,—115,—230,—342,—277,—212,— 144, —72, 3A4+ Ay + A; 24
—167,—113,—222,—331,—270,—208,— 142, —73)

R(? =(252,126,—22,-35,—284,-191,-382,—563,—456,—349,-237,—121,  3As +3A4; 34
—280,—-191,—378,—560, —457, — 350,238, —121)

R(M) = (148, 74, —13,—21,—171,—114,—228,—338,—-272,—206,— 140, =70,  3A5 + 34, 34
—160,—108,—212,—316,—260,—199,—134, —69)

ﬂéll):(304,152,727,742,—341,—231,7456,7677,7551,7420,7284,7142, Dy +2A5 + Az 38
—340,—230,—455,—680,—554, —424, —288,—147)

h('?) =(206,103,-19,—29,-231,—156,—312,—457,—371,-285,—193, —97, Dy + 2A5 + Az 38
—224,—153,—300,—447,—365,—278,—191, —98)

TABLE 8.3. The polarizations hg] and Bff) of degree 2

have
{vesy | (v,v) =0, (hp,v)=2 }=0.

Hence, by Theorem 5.2 of Saint-Donat [26], the polarization h, is not hyperelliptic; that is, h, is the

class of the pull-back of a hyperplane section by a birational morphism from X, to a normal quartic
surface Y C P? given by |Lh,|. Since h, is invariant under the action of péo), we conclude that péo) is
induced by a projective linear automorphism of P? that leaves Y invariant. By a direct calculation,
we see that the line configuration of (Xo, h,) is full, and hence, up to finite possibilities, the projective
equivalence class of the quartic surface ¥ is determined by the line configuration of (Xo,h,). We

describe this line configuration in details, hoping that we can obtain a defining equation of Y in
future. Let S be a set on which the group (péo)> of order 4 acts transitively. By S = [so, $1, S2, s3], we

mean that |S| = 4 and that p(()o) maps s; to s;4+1 for ¢ = 0,1,2 and s3 to sg, and by S = [so, s1], we
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h Sing(Xp) (h,a1)
rlY = (30, 15, =7, —2, —33, —22, —44, —66, —54, —41, —28, —14, 4Ag +5A; 12
—34, —23, —45, —67, —55, —42, —28, —14)

Rl = (30, 15, =7, —2, —34, —23, —45, —67, —55, —42, —28, —14, 449 + 54, 12
—33, —22, —44, —66, —54, —41, —28, —14)

rl¥l = (43, 21, —10, =3, —46, —31, —62, —92, —75, —57, —39, —20, 4As + 5A; 12
—49, —33, —66, —98, —80, —61, —41, —21)

R = (45, 22, =11, -3, —50, —34, —67, —99, —81, —62, —42, —21, 3Ag + 64, 12
—49, —33, —65, —97, —79, —61, —42, —21)

R{? = (43, 21, —10, -3, —48, —33, —65, —96, —79, —60, —40, —20, Ag+4Ay+24; 14
—47, —32, —63, —93, —76, —58, —40, —20)

R(® = (46, 23, —11, -3, —50, —34, —68, —100, —81, —62, —42, —21, 5A3 4+ 44, 14

R = (46, 23, —11,
m(® = (76, 38, —18,
R{" =(106, 53, —25,
R(® = (04, 47, —22,

(9
R =(110, 55, —26,

R{*O =(124, 62, —29,

—52, —36, —70, —103, —84, —64, —44, —22)

—3, —52, —36, —70, —104, —85,

—65, —44, —23,

—49, —34, —67, —98, —80, —62, —42, —21)

—5, —84, —57, —112,—-167,—136,—103, —70, —35,
—86, —59, —116,—170,—138,—106, —72, —36)

—7, —119, —81, —159,—235,—-192,—146, —99, —50,
—117, —81, —159,—234,—192,—147, —99, —51)

—6, —104, —71, —140,—208,—169,—130, —88, —44,
—106, —73, —143,—211,—173,—132, —91, —47)

—8, —121, —84, —164,—241,—197,—150,—102, —51,
—120, —80, —160,—237,—193,—149,—102, —51)

—8, —138, —95, —186,—276,—225,—171,—116, —58,
—139, —95, —190,—278,—227,—172,—117, —59)

R{") =(217,108,—51,—15,—239,— 166, — 325, — 477, —390, — 296, —202, — 101,
—239,-166,—325,—477,—390, —296, —202, —101)

R{® —(250,125,~59,~17,—277,—185,—370,—548, —449, 343,231, —119,
—276,—191,—375,— 552, — 453, —348, —236, — 118)

2A5 + 345 + 24,

3A3 + 3As

2A4 +2A3 + Az

244 +2A3 + A2

2A5 + 245

2A5 + 243

24

240

TABLE 8.4. The polarizations h[f] and izgi) of degree 2

16

18

22

22

54

54

mean that |S| = 2 and that p(()o) interchanges sg and s;. We denote by cyc(a, b, ¢, d) the cyclic matrix

From the set Cy(h,), we see that Sing(Y") consists of 6 ordinary nodes, and the group (p,

[l N ST =
QO L 2 o
_L X o0

Q o O

(0)

) decomposes

Sing(Y') into two orbits [po, p1, p2, p3] and [qo, ¢1]. From the set C1(h,), we see that Y contains exactly

36 lines, and they are decomposed into 9 orbits

L= [0, 05, 00, 0]

(i=0,...,8)
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h Sing(Xn) (h, az)

nll = (37,18, -7, —3, —41, —28, —55, —82, —67, —51, —35, —18,  5Ay + 54, 7
—42, —20, —57, —84, —68, —52, —35, —18)

rlF = (25,12, -5, —2, —27, —18, —36, —54, —44, —34, —23, —12, 5As + 5A; 7
—28, —19, —38, —56, —46, —35, —24, —12)

wBl = (36, 18, —7, —3, —40, —27, —54, —80, —65, —50, —34, —17, 5A +5A; 7
—40, —27, —54, —80, —65, —49, —33, —17)

AV = (24,12, =5, —2, —25, —17, —33, —49, —40, —31, —21, —11, 243 + 342 +24; 8
—27, —18, —36, —54, —44, —34, —23, —12)

;42): (34,17, =7, —3, —37, —25, —49, —73, —60, —46, —32, —16, 3A3 + 3A2 9
36, —24, —48, —72, —59, —45, —31, —16)

h$P = (65, 32,12, —6, —70, —48, —94, —140,—114, —87, —60, —30, 3A4 + Ay + A; 12
73, —49, —97, —145,-118, —91, —62, —32)

A{D = (56, 28,—11, —5, —61, —41, —81, —121, —98, —74, —50, —25, As + 244+ Az 13
—61, —41, —82, —122,-101, —77, —53, —28)

géS): (44, 22, —9, —4, —46, —31, —61, —91, —75, —57, —38, —19, A +2A4+ A 13
—49, —32, —64, —96, —78, —60, —42, —21)

{9 =(126,63,—26,~11,—138, —95, —185,—275,—222,—169,— 116, —58, 249 27
_136, —89, — 178,267,220, 168,116, —58)

h{" =(145,70,—28,—13,—160,—110,—215,—320, — 260,200, — 135, — 70, 249 27
—160,—105,—210,—315,—255,—195,—130,—65)

TABLE 8.5. The polarizations h[zi] and iLgi) of degree 2

[ 624 312 —145 —43 —720 —495 —968 —1440 —1164 —888 —612 —306 —658 —456 —890 —1316 —1084 —824 —564 —2827]
0o o0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
580 290 —135 —40 —668 —460 —898 —1336 —1080 —824 —568 —284 —612 —424 —828 —1224 —1008 —766 —524 —262
1032516 —240 —71 —1188 —816 —1596 —2376 —1920 —1464 —1008 —504 —1092 —756 —1476 —2184 —1800 —1368 —936 —468

0o o0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 22 —-11 -3 —-52 —-36 —-70 —104 -84 —64 —44 —22 —46 -—-32 —-62 —92 —76 —58 —40 —-20
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 28 —-13 —4 —-66 —45 —-88 —131 —-106 —-81 —56 —28 —61 —42 —82 —122 —100 —-76 —52 —26
0o o0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0o 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
60 30 —-14 -4 -70 —48 -—-94 -—140 -—-113 —-86 —-59 —-30 —-64 —44 —-86 —127 —-104 —-79 —-54 -—-27
0o o0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

44 22 -10 -3 —-52 —-36 —-70 —104 -84 —-64 —44 —-22 —46 -—-31 —-62 —-92 -—-76 —58 —40 -—-20
6 8 -4 -1 -—-18 —-12 -—-24 -36 -30 -23 -—-16 -8 —17 —12 —-23 —-34 -—28 —21 —14 -7

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
56 28 —13 —4 —64 —44 —-86 —128 —-104 —-79 —-54 -—-27 —-59 —41 —-80 —118 —97 —-74 —51 —26
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
44 22 —-10 -3 —-52 —-36 —-70 —104 —84 —64 —44 —22 —46 -—-32 —62 —-92 -—-76 —58 —39 —20
L O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
. . (@)
TABLE 8.6. The symplectic involution o

of length 4 by <p80)>. We can choose the element ¢; € [; in such a way that
0 ifi=0,1,

{qo} ifi =2,3,

{po} ifi=4,5,6,7,
{po,q}y ifi=38.

Sll’lg(Y) N Ki =

31
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iNj O 1 2 3 4 5 6 7 8
0 Cy Cy C3 Cy Cs Cy Cg Co

1 Ci Cs C5 Cy Csg Cy Cq
2 Cy C3 Cg Cy C3 Cy
3 Cs Cy Cy C7 4
4 Co Cy Cy Cy
5 Cs Cy Cy
6 Cy Cg
7 Cy

TABLE 9.1. The intersection of lines on the quartic surface model Y of X

The intersection pattern of lines in the orbits I; and I; is given by the cyclic matrix

My = cye((G, £5), (G, 05), (6, 2, (03, 2")),

where ¢ C X is the strict transform of a line £ C Y. We have

cye(—2,0,1,0) ifi=0,1,4,5,6,7,
M;; = { cye(—=2,1,0,1) ifi=2,
cyc(—2,0,0,0) ifi=3,8.

We put
Cy :=cyc(0,0,1,0), Cs:=cyc(0,0,0,1), C3:=cyc(L,0,0,0),
Cy :=c¢yc(0,0,0,0), Cs:=cyc(1,0,0,1), Cg:=cyc(0,1,1,0),
C7 :=cyc(1,1,0,0), Cg:=cyc(0,1,0,0), Cy:=cyc(0,0,1,1).

Then the matrices M;; for i # j are given in Table 9.1.

9.2. The double-plane involutions T(hg]). The three double-plane involutions T(hgl]), 7'(h£)2])7

T(h([)g]) of Xy are conjugate in Aut(Xo,ag). Hence there exist a sextic double plane Y — P? and
three isomorphisms all: X, ™ Y for i = 1,2,3 such that T(hg]) = (a)= o 7y o all holds for
i = 1,2,3, where Y is the minimal resolution of singularities of Y and 7y is the involution of Y
induced by Gal(Y/P?). By a direct calculation, we see that the line configuration of (Xo, h([)i]) is full,
and hence, up to finite possibilities, the projective equivalence class of the sextic double plane Y — P?
is determined by the line configuration of (X, hg ]). Let B C P? denote the branch curve of Y — P2
From Co(hg]), we see that Sing(B) consists of two ordinary cusps qo,q1 and seven ordinary nodes
ng,...,Ne. The set Cl(hg]) consists of 38 elements, and the action of (T(hg]» decomposes C’l(h([)i])
into the union of 19 orbits of length 2. Hence B does not contain a line as an irreducible component.
Therefore B is irreducible, and B has 19 splitting lines. From the intersection pairing between Co(hg ])
and Cl(hg ]), we see that, under suitable numbering of ordinary nodes ny, ..., ng, these splitting lines
are

Loo, ..., Los, L10, .., L16, Mo12, M034, Mo56, M135, M246,

where Sing(B) N ¢;; = {q;,n;} and Sing(B) N myjr = {ni, n;, nx}
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9.3. The double-plane involution T(ﬁél)). Next we examine the double-plane involution T(iNL(()l))
of X that maps the induced chamber D to the induced chamber D) adjacent to D(© across the
wall (v1)*, where

20, = (64, 32, —6, —9, —72, —48, —96, —142, —116, —88, —60, —30,
—70, —48, —94, —140, —114, —86, —58, —30).

As in the previous subsection, we denote by B the branch curve of the sextic double plane ¥ — P2
associated with the polarization Bél) of Xg given in Table 8.3. By a direct calculation, we see that the
line configuration of (X, l~1(()1)) is full, and hence, up to finite possibilities, the projective equivalence
class of Y — P? is determined by the line configuration on (Xo, il(()l)). From Co(iz(()l)), we see that
Sing(B) cousists of one ordinary cusp gg and eight ordinary nodes ny, . ..,n7. The set C; (izél)) consists
of 48 elements, and the action of <T(Bél))> decomposes Cl(ﬁél)) into the union of 24 orbits of length
2. Hence B does not have a line as an irreducible component, and B has 24 splitting lines. We put

7 :={{0,1,5}, {0,2,6}, {0,3,4}, {1,2,4}, {1,3,7}, {2,5,7}, {3,5,6}, {4,6,7}}.
Under suitable numbering of the ordinary nodes ny, ..., n7, the splitting lines are
Loy (1=0,...,7), 4 (i=0,...,7), miyr ({3,5,k} €T),
where
Sing(B) N lo; = {qo,ni}, Sing(B) N = {n;}, Sing(B) Nmijr = {ni,nj,n}.

Since a triplet of ordinary nodes of B is collinear, we conclude that B is irreducible. Note that, if
three ordinary nodes n;,n;,ny are on a line £ C P2, then / is splitting for B, and hence {i,j,k} € T.
Therefore no three of ng, ny,n2, ns are collinear. Choosing homogeneous coordinates of P? in such a
way that

ng=1[1:0:0], ny=1[0:1:0], ng=[0:0:1], ng=[1:1:1],
we see that

ng=0:1:1], ns=[1:9:0], ng=1[1,0,7], nr=1[1:n:1],
where 7 is a root of 22 — 2z 4+ 1 = 0.

9.4. The symplectic involution UYL). We examine the symplectic involution 054) on X7 that maps

the induced chamber D) to the induced chamber D™ adjacent to D(®) across the wall (v4)*, where
24 = (44, 22, —10, —3, —52, —36, —70, —104, —84, —64, —44, —22,
—46, —32, —62, —92, —76, —58, —40, —20).
Consider the vector
he = (60, 30, —14, —4, —69, —47, —92, —137, —111, —85, —58, —29,
—65, —45, —87, —129, —106, —81, —55, —28)

of Sy with (hy, hs) = 2. By Corollary 3.6, we see that h, is nef, and by Corollary 7.4, we see that h,

(4)
1

is a polarization of degree 2. The polarization h, is invariant under o, ’, and hence 7(h,) and 054)

commute. The symplectic involution 054) induces a commutative diagram
Y — Y
\J \J

P2 — P2
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on the sextic double plane Y — P2 associated with h,. Let B be the branch curve of Y — P2, which
is invariant under the action of & on P?. By a direct calculation, we see that the line configuration
of (X1, hy) is full, and hence the projective equivalence class of the double plane Y is determined by
the line configuration of (X1, h,) up to finite possibilities. From Co(h. ), we see that Sing(B) consists
of seven ordinary cusps qo, q1, ¢}, 92, @5, g3, ¢5- In particular, B is irreducible. The involution & of P2
fixes go and interchanges ¢; and ¢} for i = 1,2,3. From C;(h,), we see that B has 10 splitting lines
Ly, ..., %g. Under suitable numbering, we have

lo N Sing(B) = {q0, 91,41}, £1 NSing(B) = {qo, 42,93},
> N Sing(B) = {qo, ¢3¢}, 3N Sing(B) = {q1, a2, 5},
¢y N Sing(B) = {q1, ¢}, ¢5 N Sing(B) q1, G2},

e N Sing(B) = {q1, 93,93}, {7 NSing(B) = {g3,45},
ls N Sing(B) = 0, £y N Sing(B) = (.

{
{
{
{
0

The involution & fixes £y and ¢7, and interchanges two lines in the pairs {¢1, l2}, {¢3, %5}, {¢4, 5} and
{ls, 4y}

9.5. The double-plane involutions T(ﬁgn)), r(ﬁ§12)), T(ﬁéﬁ)), T(B§7)). These four double-plane
involutions have the following common feature. We say that a projective plane curve B of degree 6
is of type LQ if the following hold;

(i) B is the union of a line L and an irreducible quintic curve @,
(ii) L and @ intersect at a point Py with intersection multiplicity 5,
(iii) @ is smooth at Py,
(iv) the singular locus Sing(Q) of @ consists of a point P; of type Ag, and
(v) the line £ passing through Py and P; intersects @) at P; with intersection multiplicity 4.

If B is of type L@, then the ADFE-type of Sing(B) is 2Ag, and the line ¢ in the condition (v) is
splitting for B.

Let h be 135“), Bgm), BgG) or 5(27). Weput k=11if his iﬁ“) or 13512), and k=21if his ﬁgﬁ) or izg),
so that h € S, and 7(h) € Aut(Xy). The dual graph of the set Co(h) is a root system of type 2Ag.
The set Cy(h) consists of 3 elements, and (7(h)) decomposes it into the union of two orbits of length
1 and 2. The union of Co(h) and C;(h) generates a sublattice of rank 19 in Si. Hence, unfortunately,
the line configuration of (Xg, h) is not full. The branch curve of (X, h) is of type LQ.

We consider two vectors

Wo= (172, 83, —34, —15, —191, —131, —257, —382, —310, —238, —161, —83,
—189, —124, —248, —372, —301, —230, —154, —77),
B’ = (183, 88, —36, —16, —200, —138, —269, —400, —325, —250, —169, —88,
—204, —134, —268, —401, —325, —249, —166, —83)

in Sy of square-norm 2. By Corollaries 3.6 and 7.4, we see that they are polarizations of degree 2. We
have 7(h') = 7(h") = r(l}g)). Unfortunately again, the line configurations of (X5, h’) and (X2, ")
are not full. The ADE-type of the singularities of the branch curve of (X5, /') is Eg + A11, whereas
that of (Xa,h”) is A15 + As.
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fi=(,0,2 -1,0,0,0,0 —4, 0,0, 0, —4, -1, —2, =8, —6, —3, —4, —5)
f2 :=(0,1,1, 0, 0,0,0,0 -3,0,0,0, -3, -1, =2, —6, =5, —3, =3, —3)
fs =(0, 0,3, -1, 0, 0, 0, 0, —6, 0, 0, 0, —4, 0, 0, —8, —6, —2, —4, —6)
fa =(0,0, 0, 0, 1,0,0,0, 0, 00,0, 0, 0, O, O, 0, 0O, 1, 0)
fs =(0, 0,0, 0, 0,1,0,0, 0, 0,0,0, 0, 1, 0O, O, 0, 0O, 0O, 0)
fe¢ :=(0, 0,0, 0, 0,0,1,0, 1, 0,0,0, 0, -1, -1, 0, =1, 0, 0, 0)
f =(0, 0,0, 0, 0,0,0,1, 0, 0,0,0, 0, 0, 0, 0, 0, 0, —1, —1)
fs =(0, 0,0, 0, 0,0, 0,0, 0, 1,0,0, -1, 0, 0, -1, 0, —1, 0, 1)
fo :=(0, 0,0, 0, 0,0,0,0 0, 0,1,0, 1, 0, 0, 0, 0, 0, 0, 0)

fio :==(0, 0,0, 0, 0,000, 0, 0,0,1, -1, 0, 0, —1, 0, 0, 0, 0)

TABLE 10.1. A basis of Sy

10. THE AUTOMORPHISM GROUP OF THE ENRIQUES SURFACE Z

In this section, we compute the automorphism group Aut(Zp) of the Enriques surface Z; :=
Xo/(séo)>, and prove Proposition 1.8 and Theorem 1.9.

We put
" RO _ RO
Sy ={veSy|vo =v}, Sy :={veSy|vo =—v}
They are orthogonal complement to each other in Sy. Let m: Xy — Zy be the universal covering
of Zy by Xo. Then the pull-back by 7 identifies the primitive sublattice Sq of Sy with the lattice
Sz(2). From the matrix representation (Table 8.1) of 880), we see that Sy is generated by the vectors
f1,---, f10 given in Table 10.1. From now on, we consider fi,..., fio as a basis of Sz by 7*. The

Gram matrix
(fis f5)2) = ({fi fi)s/2)
of Sz with respect to this basis is given in Table 10.2.
Note that we have
Cen(=y”) = { g € Aut(Xo) | (S5)7 =S5 }.
Hence we have a natural action
¥: Cen(e”) = O(S)
of Cen(aéo)) on Sy . With the identifications O(S§) = O(Sz) by 7* and Cen(e(()o))/<€(()0)> = Aut(Zp)
by (, we see that Proposition 1.8 follows from

(10.1) Ker = (e{”).

Suppose that g € Ker so that g acts on Sy trivially. Since 5(()0) € Aut(Xo, ap), we have ag € Sy and
hence af = ag. Consequently, we have Ker ) C Aut(Xo, ag). Calculating ¥(g) for the 1440 elements
of Aut(Xo, ag) by means of their matrix representations, we prove (10.1) and hence Proposition 1.8.
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-54 -30 -7 0 0 6 -5 1 0 -2
-30 —20 -45 0 0 4 -3 0 0 -1
-78 —45 —-114 0 0 9 -7 1 0 -3

0 0 0 -2 0 0 1 0 0 O

0 0 0 0 -2 1 0 0 0 O

6 4 9 o0 1 -4 1 2 0 1
-5 -3 -7 1 0 1 -2 1 0 0

1 0 1 o0 0 2 1 -4 1 -1

0 0 0 o 0o o0 0 1 -2 1

| 2 -1 -3 0 ©0 1 0 -1 1 -2

TABLE 10.2. The Gram matrix of Sz

[1076 533 —101 —148 —1217 —817 —1624 —2398 —1955 —1502 —1012 —522 —1176 —802 —1593 —2352 —1924 —1460 —996 —500]
21 10 -2 -3 -—-23 -—-15 -—-30 —45 -—-37 -—-28 -—-19 -—-10 -23 —-16 —-31 —46 —-38 —29 —20 -—10
1224 606 —115 —168 —1386 —930 —1848 —2730 —2226 —1710 —1152 —594 —1338 —912 —1812 —2676 —2190 —1662 —1134 —570
1794 888 —168 —247 —2028 —1362 —2706 —3996 —3258 —2502 —1686 —870 —1962 —1338 —2658 —3924 —3210 —2436 —1662 —834
73 36 -7 —-10 -83 —-56 -—111 —-164 —-133 —-102 —-69 —-36 —-79 —54 —107 —158 —129 —-98 —67 —34
20 10 -2 -3 -—-22 -—15 -—-29 —-43 -35 -—-27 -—18 -9 -—-21 —14 —28 —42 -34 -26 -—-18 -9
66 33 -6 -9 -75 -50 -—100 -—148 -—-120 -92 -—-62 -—-32 -73 -—-50 -—-99 -—146 -—-120 -91 —-62 31
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
21 10 -2 -3 —-24 —-16 —32 —48 -39 -30 —-20 -10 -—-22 —-15 —-30 —44 —-36 —27 —18 -9
74 37 -7 -10 -83 —-56 -—111 -—-164 —-134 -—-103 —-70 —-36 —82 —56 —111 —164 —134 —-102 —-70 -—-35

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
65 32 -6 -9 -—-74 —-49 -98 -—145 -118 -91 -—-62 -—-32 -—-71 —48 —-96 —142 -116 —-88 —60 —-30
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

23 11 -2 -3 -—-27 —-18 -3 —-53 —43 -33 -—-22 -—-11 -—-26 —18 —-35 —52 —42 —-32 —22 -—11
64 32 -6 -9 —-72 —48 —-96 —142 -—-116 -89 —-60 —-31 —-69 —47 —94 —138 —-113 —-86 —59 —30
22 1 -2 -3 -—-25 —-17 —-33 —-49 —-40 -31 -—-21 -—-11 -25 —17 —-33 —49 —40 -30 —-20 -—10
73 36 -7 -10 -82 -55 -—110 -162 -132 -101 —-68 —-35 —-80 —54 —108 —160 —131 —100 —68 —34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
65 32 -6 -9 -74 -50 -—-99 -—146 -119 -92 -—-62 -—-32 -—-70 —48 —-95 -—140 -115 -—-88 —60 —30
8 4 -1 -1 —8 —5 —-10 —15 —12 -9 —6 -3 =10 -7 —-14 =20 —-16 —12 —8 —4

TABLE 10.3. The involution T(izé?’))

By Remark 8.1, in order to prove the first assertion of Theorem 1.9, it is enough to show that
C(Aut(Xo, ap)) = Aut(Xo, ao)/<€éo)> is a non-splitting extension of Z/2Z by s and to calculate the
conjugacy classes of this group. Since the symplectic subgroup of Aut(Xo,ag) is isomorphic to 2,
we see that ((Aut(Xy,ag)) contains a normal subgroup isomorphic to 2g as a subgroup of index 2.
By direct calculations, we confirm that every element of order 2 of ((Aut(Xy,aq)) belongs to this
normal subgroup. Hence the extension is non-splitting. The conjugacy classes of ((Aut(Xo,ag)) are
calculated as follows:

oder |1 2 3 4 4 5 8 8
card. [ 1 45 80 90 180 144 90 90.

Therefore ((Aut(Xo, ap)) is isomorphic to Mjig.
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r 76 40 —67 -85 —56 —116 —170 —108 —71 = —34 T
43 23 —-38 —49 —-32  —67 —97 —62 —41  —-20
110 58 —97 —124 —82 —170 —248 —158 —104 —50
21 10 —18 —22 —15 —30 —44 —27 —18 -9
0)y _ 0 0 0 0 0 0 0 0 1 0
¢leg ™) = 12 5 —10 —11 -8 —15 —22 —14 —10 -5
—-12 -5 10 13 9 18 26 16 11 6
—-30 —15 26 31 22 42 62 39 26 13
30 15 —26 —33 —23 —45 —66 —41 —28  —15
L o 0 0 -2 -1 -2 -3 -2 -1 o |
ro74 37 —64 —91 —58 —121 —176 —112 —74 —36 1
43 21 -37 —-54 —-35 —73 —105 —67 —45 —23
96 48 —83 —120 —76 —160 —232 —148 —98 —48
22 1 —-19 —-26 —17 —34 —51 —31  —21 —11
[y _ 14 7 -12 —-17 —-12  -23 —34 —-21  —14 -7
rhg ™)) = 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
—14 -7 12 17 11 21 32 20 13 7
0 0 0 0 0 0 0 0 1 0
L -9 -5 8 11 8 15 22 14 9 5
r 109 54 —94 —-130 —91 —178 —258 —165 —112 —59 7
79 39 —68 -93 —64 —125 —183 —116 —79 —42
166 82 —143 —198 —138 —270 —392 —250 —170 —90
34 16 —29 —37 —26 —50 —74 —46 -31  —16
21\, _ 43 21 —37 —49 —33 —65 —96 —60 —40  —20
Clrlhg ) = —-13 -6 11 17 11 22 33 21 14 7
—21  —10 18 23 16 31 46 28 19 10
0 0 0 -2 -1 -2 —4 -2 -2 -1
0 0 0 0 0 0 0 0 1 0
L —1 -1 1 1 1 1 2 1 0 o |
ro142 69 —122 —163 —106 —215 —320 —201 —138 —69 1
94 46 —-81 —106 —70 —141 —209 —132 —90 —45
206 100 —177 —236 —154 —312 —464 —292 —200 —100
30 15 —26 —35 —24 —48 —70 —44 —30 —15
C(T(h[S])) _ 35 17 -30 -39 —27 —53 —78 —49 —34 —17
0 —21  —10 18 22 15 30 45 28 20 10
—21  —10 18 24 17 33 48 30 20 10
-2 -2 2 5 3 6 9 6 4 2
44 22 —38 —51 —35 —-68 —101 —63 —43 —22
L —22 -—11 19 26 18 35 51 32 22 12
r 581 290 —502 —666 —446 —888 —1310 —822  —554 —286 1
315 157  —272 —360 —241  —479 —707 —443  —299 —155
830 414 —717 —950 —636 —1266 —1868 —1172 —790 —408
138 68 —119 —157 —106 —210 —310 —194 —131  —68
4(7()3(3))) _ 43 21 —37 —49 —33 —65 —96 —60 —40 —20
0 —73  —36 63 82 55 110 161 101 68 35
-73  —36 63 82 55 109 162 101 68 35
60 30 —52 —66 —44 —88 —130 —81 —55 —28
0 0 0 0 0 0 0 0 1 0
L 43 21 —37 —49 —32 —65 —96 —60 —41 —21

TABLE 10.4. Generators of Aut(Zy)

The second assertion of Theorem 1.9 is confirmed by a direct calculation from the matrix repre-

sentation (Table 8.1) of 8[()0) and the matrix representation (Table 10.3) of T(il(()g)). In fact, we see
that every element of the set Invols(()g) commutes with 580).

In order to prove the third assertion of Theorem 1.9, we consider the positive cone

P(Zo) == (Sz @ R) N P(Xo)

37
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0 1
0 0
0 0
—15, —10,

0
0
0
—24,

—14,
—10,
—14,
—14,
—13,
~12,

-20,
—15,
—21,
—21,
—18,
—18,

—32,
—24,
—34,
—33,
—30,
—30,

—27, —18,

—44,

—30, —20,

—48,

~101, —63,

—68,

TABLE 10.5. The orbit og

—174,
—72,

—80,
—78,
—118,

—52,
—48,
—56,
—54,
—52,
—80,

—116,

—78,
—176,
—118,

—170,
—108,

~112,
—174,

—74,

—60,

TABLE 10.6. The orbit o3
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of Sz that contains an ample class. (Recall that we consider Sz as a Z-submodule of Sy by 7*.) We
put

DY) = P(Z)n DO,
where D is the induced chamber in N(X;) given in Theorem 1.4. Let
prz: So®@R — Sz®@R
be the orthogonal projection. Then we have
DY ={wxeP(Z) | (uz)z>0 forany u e pry(AD))}

Since the interior point ag of D(©) belongs to Sz, the closed subset D(ZO) of P(Zp) also contains ag in
its interior, and hence D(ZO) is a chamber of P(Zy). Moreover the finite group ((Aut(Xo, ap)) acts on
D(ZO). For v € A(D®), the hyperplane

(prz(v))* = (v)* NP(Z)

of P(Zp) is a wall of Dg)) if and only if the solution of the linear programing to minimize (pr,(v), z)z
under the condition

(W', xz)z >0 for all u' € pry(A(D®)) not proporsional to pr,(v)

is unbounded to —oo, where the variable z ranges through Sz ® Q. (See Section 3 of [32]). By
this method, we see that the set of primitive outward defining vectors of walls of D(ZO) consists of 40
vectors, and they are decomposed into the two orbits 09 and o3 of cardinalities 30 and 10 under the

action of {(Aut(Xo,ap)), where

oo={2pry(r) | r€o0}, 03={2pry(v) | veos}.

Here we use the dual basis of Sz not with respect to ( , )g|s, but with respect to ( , )z . (Recall

that we have |og| = 60 and |og| = 10.) The involution C(T(il(()3))) maps Dg)) to a chamber of P(Z)

adjacent to D(ZO) across the wall defined by a vector

(52, 26, —45, —60, —40, —80, —118, —74, —50, —26)

in 63 isomorphically. In particular, the cone N(Zy) := P(Zp) N N(Xp) in P(Zy) is tessellated by

chambers congruent to D(ZO) under the action of Aut(Zy). Thus Theorem 1.9 is proved.

Remark 10.1. The matrix representations of the generators
Cee™). Crthgh). Cr(hgh). C(rhg). C(r(hg?))
of Aut(Zy) with respect to the basis f1,..., fio of Sz are given Table 10.4.
Remark 10.2. The interior point ag of Dg)) is written as
(122,60, —105,—136,—92, —182, —270, —168, —114, —58)

with respect to the basis fi,..., fip of Sz. The elements of the orbits 69 and 63 are given in

Tables 10.5 and 10.6. By these data and the Gram matrix (Table 10.2) of Sz, we can completely

determine the shape of the chamber Dg)).
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