ON CHARACTERISTIC POLYNOMIALS OF AUTOMORPHISMS OF ENRIQUES SURFACES

SIMON BRANDHORST, SŁAWOMIR RAMS, AND ICHIRO SHIMADA

Abstract

Let f be an automorphism of a complex Enriques surface Y and let p_{f} denote the characteristic polynomial of the isometry f^{*} of the numerical Néron-Severi lattice of Y induced by f. We combine a modification of McMullen's method with Borcherd's method to prove that the modulo- 2 reduction $\left(p_{f}(x) \bmod 2\right)$ is a product of modulo- 2 reductions of (some of) the five cyclotomic polynomials Φ_{m}, where $m \leq 9$ and m is odd. We study Enriques surfaces that realize modulo-2 reductions of Φ_{7}, Φ_{9} and show that each of the five polynomials $\left(\Phi_{m}(x) \bmod 2\right)$ is a factor of the modulo- 2 reduction $\left(p_{f}(x) \bmod 2\right)$ for a complex Enriques surface.

1. Introduction

The subject of this note are isometries of the numerical Néron-Severi lattices induced by automorphisms of Enriques surfaces. To state our results, let Y (resp. X) be a complex Enriques surface (resp. its K3 cover) and let $\operatorname{Num}(Y)$ be the numerical Néron-Severi lattice of Y (i.e. $\operatorname{Num}(Y):=$ $\mathrm{NS}(Y) /$ Tors $)$. Each automorphism $f \in \operatorname{Aut}(Y)$ induces an isometry $f^{*} \in$ $\mathrm{O}(\operatorname{Num}(Y))$. Let $p_{f}(x)$ be its characteristic polynomial. As it was already observed by Oguiso ([23, Lemma 4.1]), no degree-5 irreducible polynomials can appear in a factorization of the modulo- 2 reduction $\left(p_{f}(x) \bmod 2\right)$. An attempt to characterize all factors of $\left(p_{f}(x) \bmod 2\right)$ was made in [14]. In this

[^0]Simon Brandhorst. Fachbereich Mathematik, Saarland University, Campus E2.4 Zi. 222, 66123 Saarbrücken, Germany. brandhorst@math.uni-sb.de

Sławomir Rams. Institute of Mathematics, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Kraków, Poland. slawomir.rams@uj.edu.pl

Ichiro Shimada. Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan. ichiro-shimada@hiroshima-u.ac.jp
S. B. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 286237555 - TRR 195. S. R. is supported by the National Science Centre, Poland, OPUS grant no. 2017/25/B/ST1/00853. I. S. is supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.
paper, we give a complete answer to the question which factors do appear in the modulo- 2 reduction $\left(p_{f}(x) \bmod 2\right)$ for an automorphism $f \in \operatorname{Aut}(Y)$, i.e. we prove the following theorem.

Theorem 1.1. Let f be an automorphism of a complex Enriques surface Y and let p_{f} be the characteristic polynomial of the isometry $f^{*}: \operatorname{Num}(Y) \rightarrow$ Num(Y).
a) The modulo-2 reduction $\left(p_{f}(x) \bmod 2\right)$ is a product of (some of) the following polynomials:

$$
\begin{aligned}
& F_{1}(x)=x+1, \quad F_{3}(x)=x^{2}+x+1, \quad F_{5}(x)=x^{4}+x^{3}+x^{2}+x+1, \\
& F_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1, \quad F_{9}(x)=x^{6}+x^{3}+1
\end{aligned}
$$

b) Each of the five polynomials $F_{1}, F_{3}, F_{5}, F_{7}, F_{9}$ does appear in the factorization of the modulo-2 reduction $\left(p_{f}(x) \bmod 2\right)$ for an automorphism f of a complex Enriques surface. Any realization of F_{9} is by a semi-symplectic automorphism.

Recall that the proof of [14, Theorem 1.2] shows that each factor of $\left(p_{f}(x) \bmod 2\right)$ either equals one of the five polynomials listed in Thm 1.1, or it is the modulo-2 reduction F_{15} of the cyclotomic polynomial $\Phi_{15} \in \mathbb{Z}[x]$. Moreover, examples with factors F_{1}, F_{3}, F_{5} were given in 9 (see also [14, Example 3.1]), whereas the question if F_{7}, F_{9} and F_{15} can appear in the factorization of the modulo-2 reduction of p_{f} for an automorphism $f \in \operatorname{Aut}(Y)$ was left open (c.f. [14, Example 3.1.b]).

To state the next theorem, we introduce some notation. Let us denote the covering involution of the double étale cover $\pi: X \rightarrow Y$ by ε. Moreover, we put $\tilde{f} \in \operatorname{Aut}(X)$ to denote a (non-unique) lift of an automorphism $f \in$ $\operatorname{Aut}(Y)$. Let $N:=\left(H^{2}(X, \mathbb{Z})^{\varepsilon}\right)^{\perp}$ be the orthogonal complement of the ε invariant sublattice $H^{2}(X, \mathbb{Z})^{\varepsilon}$ in the lattice $H^{2}(X, \mathbb{Z})$. Recall that N is stable under the cohomological action \tilde{f}^{*} and the restriction $f_{N}:=\left.\tilde{f}^{*}\right|_{N}$ is of finite order. Using Theorem 1.1, we can sharpen [14, Theorem 1.1] as well.

Theorem 1.2. Let Y be a complex Enriques surface and let f be an automorphism of Y. Then, the order of f_{N} is a divisor of at least one of the following five integers:

$$
36,48,56,84,120
$$

Among the 28 numbers that satisfy the above condition, at least the following 16 integers

$$
1, \ldots, 10,12,14,15,20,18,30
$$

are realized as orders.
Remark 1.3. We note that if the order of f_{N} is 7 or 9 , then the cyclic subgroup generated by f_{N} is unique up to conjugacy in the orthogonal group $\mathrm{O}(N)$. For the remaining 12 integers

$$
16,21,24,28,36,40,42,48,56,60,84,120,
$$

we do not know whether they arise as orders of f_{N} for some $f \in \operatorname{Aut}(Y)$.
Originally, our interest in the subject of this note was motivated by the question what constraints on the dynamical spectra of Enriques surfaces result from the existence of the double étale K3 cover (c.f. [23, Theorem 1.2]). Indeed, Theorem 1.1. a yields a new constraint on the Salem numbers that appear as the dynamical degrees of automorphisms of Enriques surfaces (e.g. it implies that none of the Salem numbers given as $\# 3,13,16,34,35$ in the table in [14, Appendix] can be the dynamical degree of an automorphism of a complex Enriques surface), whereas Theorem 1.1.b shows that the above constraint cannot be strengthened.

It should be mentioned that automorphism groups of Enriques surfaces remain a subject of intensive research. Much is known in the case of Enriques surfaces with finite automorphism groups (even in positive characteristic) and unnodal Enriques surfaces, but a general picture is still missing. In this context both the constraints given by Theorem 1.2 and the geometry of the families of Enriques surfaces discussed in Propositions 5.3, 4.1, 4.7 are of separate interest. Still, such considerations exceed the scope of this paper. We sketch our strategy for the proof of Theorem 1.1. The argument in 14 is based on criteria for a polynomial to be the characteristic polynomial of an isometry of a lattice. Unfortunately, all the six polynomials $F_{1}, \ldots, F_{9}, F_{15}$ do appear as factors of modulo-2 reductions of characteristic polynomials of isometries of the lattice $U \oplus E_{8}(-1)$ and the lattice N. Thus we need to take Hodge structures and the ample cone into account as well. In this note we apply a modification of McMullen's method (see [16], [17]) to obtain constraints on automorphisms of Enriques surfaces that can realize the factors F_{7}, F_{9}, F_{15}. In particular, we can rule out the existence of the highest-degree factor F_{15} (Prop. 3.1), and derive properties of the K3 covers of Enriques surfaces which realize F_{7} (Prop. 5.2) and F_{9} (Section 4). To go further with McMullen's method, one has to fix the characteristic polynomial p_{f}. However, there are infinitely many possibilities for p_{f}. We provide an algorithmic solution based on Borcherd's method ([1], [2]) and the ideas from [29] and [4] which allow us to avoid fixing p_{f}. As a result we find abstract Enriques surfaces realizing F_{7} and F_{9}. For the readers convenience, the algorithm is presented in Section 6 in pseudocode.

Notation: In this note, we work over the field of complex numbers \mathbb{C}. Given a prime p, \mathbb{Z}_{p} denotes the ring of p-adic integers. For a ring R, we denote by R^{\times}its group of units. For a group G and a prime p, G_{p} is the p-Sylow subgroup of G.

2. Preliminaries

Basic notation. We maintain the notation of the previous section. In particular, $\pi: X \rightarrow Y$ is the K 3 cover of Y and ε is the covering involution
of π. Moreover, we have the finite index sublattice

$$
\begin{equation*}
M \oplus N \subseteq H^{2}(X, \mathbb{Z}) \tag{2.1}
\end{equation*}
$$

where $M:=H^{2}(X, \mathbb{Z})^{\varepsilon}$ coincides with the pullback of $H^{2}(Y, \mathbb{Z})$ by π and $N:=M^{\perp}$ (see e.g. [21]). In particular, we have $M \simeq U(2) \oplus E_{8}(-2)$ and $N \simeq U \oplus U(2) \oplus E_{8}(-2)$, where U (resp. E_{8}) denotes the unimodular hyperbolic plane (resp. the unique even unimodular positive-definite lattice of rank 8). Let f be an automorphism of Y. The sublattices M and N are preserved by the isometry $\tilde{f}^{*} \in \operatorname{Aut}\left(H^{2}(X, \mathbb{Z})\right)$, so as in [14] we can define the maps

$$
f_{M}:=\left.\tilde{f}^{*}\right|_{M} \text { and } f_{N}:=\left.\tilde{f}^{*}\right|_{N}
$$

and let $p_{M}, p_{N}\left(\right.$ resp. $\left.\mu_{M}, \mu_{N}\right)$ denote their characteristic (resp. minimal) polynomials. Then, (see [14, the proof of Lemma 2.2(a)], [24, Lemma 6.3]) we have

$$
\begin{equation*}
p_{M} \equiv p_{f} \bmod 2 \quad \text { and } \quad(x+1)^{2} \cdot p_{M} \equiv p_{N} \bmod 2 \tag{2.2}
\end{equation*}
$$

As we already mentioned, f_{N} is a map of finite order (see e.g. [23, Lemma 4.2]), so p_{N} is a product of cyclotomic polynomials.

Recall that (see [25, Prop 2.2], [15, Thm 1.1])

$$
\begin{equation*}
N \cap \operatorname{NS}(X) \text { contains no vectors of square }(-2) . \tag{2.3}
\end{equation*}
$$

For an automorphism f and an integer $k \in \mathbb{N}$ we define two lattices

$$
\begin{equation*}
N_{k}:=\operatorname{ker}\left(\Phi_{k}\left(f_{N}\right)\right) \quad \text { and } \quad M_{k}:=\operatorname{ker}\left(\Phi_{k}\left(f_{M}\right)\right) . \tag{2.4}
\end{equation*}
$$

where $\Phi_{k}(x)$ stands for the k-th cyclotomic polynomial. Finally, to simplify our notation we put

$$
F_{k}(x):=\left(\Phi_{k}(x) \bmod 2\right) .
$$

An automorphism f of an Enriques surface is called semi-symplectic, if it acts trivially on the global sections $H^{0}\left(Y, K_{Y}^{\otimes 2}\right)$ of the bi-canonical bundle. This is the case if and only if both lifts \tilde{f} and $\tilde{f} \circ \varepsilon$ of f act on $H^{0}\left(X, \Omega_{X}^{2}\right)$ as ± 1. We denote by $\operatorname{Aut}_{s}(Y)$ the subgroup of semi-symplectic automorphisms.

Lattice. Let $R \in\left\{\mathbb{Z}, \mathbb{Z}_{p}\right\}$ and K be the fraction field of R. An R-lattice is a finitely generated free R-module equipped with a non-degenerate symmetric K-valued bilinear form b. If the form is R valued, we call the lattice integral. If further $b(x, x) \in 2 R$ for every $x \in L$, the lattice is called even. The dual lattice of L is

$$
L^{\vee}=\{x \in L \mid b(x, L) \subseteq R\} .
$$

If L is integral, then $L \subseteq L^{\vee}$ and we call the quotient L^{\vee} / L the discriminant group of L. For $r \in R$, an R-lattice L is called r-modular if $r L^{\vee}=L$. If $r=1$, we call the lattice unimodular. The Gram matrix $G=\left(G_{i j}\right)$ with respect to an R-basis $\left(e_{1}, \ldots e_{n}\right)$ of L is defined by $G_{i j}=b\left(e_{i}, e_{j}\right)$. The determinant $\operatorname{det} L \in R / R^{\times 2}$ of L is the determinant of any Gram matrix. For $R=\mathbb{Z}$ we have $\left|L^{\vee} / L\right|=|\operatorname{det} L|$. The discriminant group carries the discriminant bilinear form induced by $b(x, y) \bmod R$ for $x, y \in L^{\vee}$. If L is an even lattice, its discriminant group moreover carries a torsion quadratic form
induced by $x \mapsto b(x, x) \bmod 2 R$, called discriminant form. We say that two R-lattices $(L, b),\left(L^{\prime}, b^{\prime}\right)$ are isomorphic if there is an R-linear isomorphism $\phi: L \rightarrow L^{\prime}$ such that $b(x, x)=b^{\prime}(\phi(x), \phi(x))$. For $r \in R$ we denote by $L(r)$ the lattice with the same underlying free module as L but with bilinear form $r b$.

Let $L, L^{\prime}, L^{\prime \prime}$ be lattices. The orthogonal direct sum of two lattices is denoted by $L \oplus L^{\prime}$. A sublattice $L^{\prime} \subseteq L$ is called primitive if L / L^{\prime} is torsion free. This is equivalent to $\left(L^{\prime} \otimes K\right) \cap L=L^{\prime}$. We call

$$
L^{\prime} \oplus L^{\prime \prime} \subseteq L
$$

a primitive extension if $L^{\prime}, L^{\prime \prime}$ are primitive sublattices of L and $\operatorname{rank} L^{\prime}+$ $\operatorname{rank} L^{\prime \prime}=\operatorname{rank} L$. The finite group $L^{\prime \prime} /\left(L \oplus L^{\prime}\right)$ is the glue of the primitive extension. For any prime p dividing its order, we say that L and L^{\prime} are glued above/over p. The signature (pair) $\left(s_{+}, s_{-}\right)$of a \mathbb{Z}-lattice L is the signature of $L \otimes \mathbb{R}$ where s_{+}is the number of positive and s_{-}is the number of negative eigenvalues of a Gram matrix. We denote by U the even unimodular lattice of signature $(1,1)$. Moreover, $A_{n}(n \in \mathbb{N})$, (resp. $D_{n}(n \geq 4), E_{6}, E_{7}$, $\left.E_{8}\right)$ stands for the positive definite root lattice with the respective Dynkin diagram.

Genus. Two \mathbb{Z}-lattices L and L^{\prime} are in the same genus if $L \otimes \mathbb{R} \cong L^{\prime} \otimes \mathbb{R}$ and for all prime numbers p we have $L \otimes \mathbb{Z}_{p} \cong L^{\prime} \otimes \mathbb{Z}_{p}$. The genus is an effectively computable invariant and has a compact description in terms of the so called genus symbols introduced by Conway and Sloane (see [8, Chapter 15]).
Definition 2.1. A 2-adic lattice all of whose Jordan constituents are even is called completely even.

We denote by n_{q} the rank of a q-modular Jordan constituent and by $\epsilon_{q} \in\{ \pm 1\}$ its unit square class. Two completely even lattices are isomorphic if and only if they have the same symbols $q^{\epsilon_{q} n_{q}}$ for all prime powers q. If the lattices in question are not completely even, the symbol involves an additional quantity called the oddity. However, in this note (almost) all lattices considered are completely even.

Note that Conway and Sloane give necessary and sufficient conditions on when a collection of local symbols defines a non-empty genus [8, Thm 15.11 on p. 383].

Remark 2.2. The genus symbols and their relation with discriminant forms are implemented in sageMath [27] by the first author. For instance the function sage.quadratic_forms.genera.genus.all_genera_by_det returns all (valid) genus symbols of a given signature, determinant and level. This allows us to avoid checking the existence conditions for a genus symbol by hand.

It is possible to compute all classes in a definite genus using Kneser's neighboring algorithm 28 and Siegel's mass formula. An indefinite lattice is usually unique in its genus. Similarly roots can be found using short
vector enumerators [6, §.2.7.3]. We used the implementation provided by PARI [26] via sageMath.

For later reference we state (without proofs) two immediate lemmas which relate the genus symbols with primitive extensions and isometries.

Lemma 2.3. Let L and L^{\prime} be completely even p-adic lattices with symbols $\left(\epsilon_{q}, n_{q}\right)_{q}$ respectively $\left(\epsilon_{q}^{\prime}, n_{q}^{\prime}\right)_{q}$ then $L \oplus L^{\prime}$ has symbol $\left(\epsilon_{q} \epsilon_{q}^{\prime}, n_{q}+n_{q}^{\prime}\right)$.
Lemma 2.4. Let L and L^{\prime} be completely even p-adic lattices with symbols $\left(\epsilon_{q}, n_{q}\right)_{q}$ and $\left(\epsilon_{q}^{\prime}, n_{q}^{\prime}\right)_{q}$. Then there is a primitive extension $L \oplus L^{\prime} \subseteq L^{\prime \prime}$ with $L^{\prime \prime}$ unimodular if and only if for all $q>1 n_{q}^{\prime}=n_{q}$ and $\epsilon_{q}^{\prime}=\delta^{n_{q}} \epsilon_{q}$ where $\delta=\left\{\begin{array}{rll}1 & \text { for } p \equiv 1,2 & \bmod 4 \\ -1 & \text { for } p \equiv 3 & \bmod 4 .\end{array}\right.$

In the sequel we will apply the following lemma.
Lemma 2.5. Let L be a \mathbb{Z}-lattice and let $g \in O(L)$ be an isometry with minimal polynomial Φ_{3}. Then L is completely even and the 2 -adic symbols of the genus of L are of the form

$$
q_{i}^{\epsilon_{i} n_{i}} \quad \text { where } q_{i}=2^{i}, n_{i} \text { is even and } \epsilon_{i}=(-1)^{n_{i} / 2}
$$

Proof. This is a special case of [12, Prop. 2.17, Kor. 2.36].
In particular, when L is a rank-2 (resp. rank-4) lattice of discriminant at most 4 (resp. 16) its 2 -adic symbols are $1^{-2}, 2^{-2}$ (resp. $1^{4}, 1^{-2} 2^{-2}, 2^{4}$, $1^{-2} 4^{-2}$).
Φ_{n}-lattices. In the sequel we need the notion of a Φ_{n}-lattice. The reader can consult [10], [17, §5] for a concise and more general exposition of the facts we briefly sketch below.
Recall that a Φ_{n}-lattice is defined to be a pair (L, f) where L is an integral lattice and $f \in \mathrm{O}(L)$ is an isometry with characteristic polynomial Φ_{n}.
Let $n>2$, the principal Φ_{n}-lattice $\left(L_{0},\langle\cdot, \cdot\rangle_{0}, f_{0}\right)$ is defined as the \mathbb{Z}-module $L_{0}:=\mathbb{Z}\left[\zeta_{n}\right]$ equipped with the scalar product

$$
\left\langle g_{1}, g_{2}\right\rangle_{0}=\operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}\left[\zeta_{n}\right]}\left(\frac{g_{1} \overline{g_{2}}}{r_{n}^{\prime}\left(\zeta_{n}+\zeta_{n}^{-1}\right)}\right)
$$

where ζ_{n} is a primitive $n^{\text {th }}$ root of unity, Tr is the field trace of $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$, $r_{n} \in \mathbb{Q}[x]$ is the minimal polynomial of $\left(\zeta_{n}+\zeta_{n}^{-1}\right)$, and r_{n}^{\prime} is its derivative. Finally, $f_{0}: L_{0} \rightarrow L_{0}, x \mapsto \zeta_{n} \cdot x$, is an isometry with minimal polynomial Φ_{n}. One can show that L_{0} is an even lattice and

$$
\begin{equation*}
\operatorname{det}\left(L_{0}\right)=\left|\Phi_{n}(1) \Phi_{n}(-1)\right| . \tag{2.5}
\end{equation*}
$$

Given a pair (L, f) as above and an element $a \in \mathbb{Z}\left[f+f^{-1}\right] \subset \operatorname{End}(L)$ one can define another inner product on L by the formula $\left\langle g_{1}, g_{2}\right\rangle_{a}:=\left\langle a g_{1}, g_{2}\right\rangle_{0}$. We say that the resulting lattice is the twist of L by a and denote it by $L(a)$.

Recall, that for $2<n$ with $\operatorname{deg}\left(\Phi_{n}\right) \leq 20$ the class numer of $\mathbb{Q}\left(\zeta_{n}\right)$ is one. Thus, if $\operatorname{deg}\left(\Phi_{n}\right) \leq 20$, then
(2.6) any even Φ_{n}-lattice is a twist of the principal lattice $\left(L_{0},\langle\cdot, \cdot\rangle_{0}, f_{0}\right)$
by [17, Thm 5.2], [10, §4]. The genus symbols of Φ_{n}-lattices are computed in [12, Satz 2.57]. Though in practice we used a computer to construct the lattice and compute its symbol.

Equivariant gluing. We note the following well known lemma for later use.

Lemma 2.6. If $A \oplus B \subseteq C$ is a primitive extension, then

$$
\operatorname{det} A \operatorname{det} B=[C: A \oplus B]^{2} \cdot \operatorname{det} C
$$

and

$$
\operatorname{det} A \mid[C: A \oplus B] \cdot \operatorname{det} C
$$

Moreover, if p is a prime such that $p \nmid[C: A \oplus B]$, then

$$
C \otimes \mathbb{Z}_{p}=\left(A \otimes \mathbb{Z}_{p}\right) \oplus\left(B \otimes \mathbb{Z}_{p}\right)
$$

Let $a \in \mathrm{O}(A), b \in \mathrm{O}(B), c \in \mathrm{O}(C)$ be isometries. We call $(A, a) \oplus(B, b) \subseteq$ (C, c) an equivariant primitive extension if the restriction $\left.c\right|_{A \oplus B}=a \oplus b$.

Lemma 2.7. Let $(A, a) \oplus(B, b) \hookrightarrow(C, c)$ be an equivariant primitive extension with characteristic polynomials p_{A}, p_{B}. Then any prime dividing the index $[C: A \oplus B]$ divides the resultant $\operatorname{res}\left(p_{A}, p_{B}\right)$.
Proof. Apply [17, Prop. 4.2] to $G=C /(A \oplus B)$.
Lemma 2.8. Let $(A, a) \oplus(B, b) \hookrightarrow(C, c)$ be an equivariant primitive extension. Suppose that the characteristic polynomial p_{a} of a is $\Phi_{n}(x)$. Then the glue $G=C /(A \oplus B)$ satisfies

$$
|G| \mid \operatorname{res}\left(\Phi_{n}, \mu\right)
$$

where $\mu=\mu_{b}$ is the minimal polynomial of b.
Proof. Let G_{A} denote the orthogonal projection of G to A^{\vee} / A and \bar{a} the automorphism on G_{A} induced by a. Since A^{\vee} and A are $\mathbb{Z}\left[\zeta_{n}\right]$-modules of rank 1 , they are isomorphic to fractional ideals of $\mathbb{Z}\left[\zeta_{n}\right]$. Thus, we have $G_{A}=\mathbb{Z}\left[\zeta_{n}\right] / I$ where I is the kernel of the map $\mathbb{Z}\left[\zeta_{n}\right] \mapsto$ End G_{A} that sends the root of unity ζ_{n} to \bar{a}. This yields:

$$
\mu(\bar{a})=0 \text { thus } \mu\left(\zeta_{n}\right) \in I
$$

and

$$
|G|=\left|G_{A}\right|=\left|\mathcal{O}_{K} / I\right|=N(I) \mid N\left(\mu\left(\zeta_{n}\right)\right)=\prod_{(k, n)=1} \mu\left(\zeta_{n}^{k}\right)=\operatorname{res}\left(\phi_{n}, \mu_{b}\right)
$$

where $N(I)$ is the norm of the ideal I.
The following lemma is elementary. For the convenience of the reader, we give a proof below.

Lemma 2.9. If L is a lattice of rank 2 and $g \in O(L)$ is an isometry of spectral radius zero, then g is of finite order.

Proof. By Kronecker's theorem, the characteristic polynomial of g is a product of cyclotomic polynomials. Moreover, it suffices to prove the claim for a power of g, so we can assume that the characteristic polynomial of g is $(x-1)^{2}$.
Let $v \in L$ be an eigenvector of g. If v is anisotropic, then we have $(\mathbb{Z} v)^{\perp} \neq \mathbb{Z} v$ and $(\mathbb{Z} v)^{\perp}$ consists of eigenvectors of g. Thus $g=\mathrm{id}$ and we are done.
If v is isotropic, we find $w \in L$ with $\langle w, v\rangle \neq 0$. Then $g(w)=a v+b w$ for some $a, b \in \mathbb{Q}$. From $\langle w, v\rangle=\langle g(w), g(v)\rangle$ we infer $b=1$. Finally, $\langle w, w\rangle=\langle g(w), g(w)\rangle$ yields $a=0$. Thus $g(w)=w$ and the proof is complete.

3. Ruling out the factor F_{15}

The main aim of this section is to prove the following proposition.
Proposition 3.1. Let f be an automorphism of an Enriques surface Y and let p_{f} be the minimal polynomial of the map $f^{*}: \operatorname{Num}(Y) \rightarrow \operatorname{Num}(Y)$. Then the modulo-2 reduction $\left(p_{f}(x) \bmod 2\right)$ is never divisible by the polynomial

$$
F_{15}=x^{8}+x^{7}+x^{5}+x^{4}+x^{3}+x+1
$$

i.e. by the modulo- 2 reduction of the cyclotomic polynomial $\Phi_{15}(x) \in \mathbb{Z}[x]$.

Recall (see e.g. [5]) that p_{f} is a product of cyclotomic polynomials and at most one Salem factor. Since p_{f} is reciprocal, $\left(p_{f}(x) \bmod 2\right)$ is divisible by an irreducible factor of F_{15} if and only if it is divisible by the whole F_{15} (c.f. [14]).

Proof of Prop. 3.1 Assume that $F_{15} \mid\left(p_{f} \bmod 2\right)$. Combined with [14, Remark 2.4], this implies that

$$
\begin{equation*}
\left(p_{M} \bmod 2\right)=F_{15} \cdot F_{1}^{2} \quad \text { and } \quad\left(F_{15} \cdot F_{1}^{4}\right)=\left(p_{N} \bmod 2\right) \tag{3.1}
\end{equation*}
$$

By [14, Lemma 2.1] and [14, Lemma 2.5] the charateristic polynomial p_{N} is a product of cyclotomic polynomials of degree at most 8. Computing modulo- 2 reductions of all such cyclotomic polynomials, one infers that either $\Phi_{15} \mid p_{N}$ or $\Phi_{30} \mid p_{N}$. Replacing \tilde{f} by a power coprime to 15 we can assume that p_{N} is a product of the Φ_{k} for $k \in\{1,3,5,15\}$. Together with (3.1) this leaves us with

$$
\begin{equation*}
p_{N}=\Phi_{15} \cdot \Phi_{1}^{4} . \tag{3.2}
\end{equation*}
$$

We consider the (primitive) f_{N}-invariant sublattices N_{15} and N_{1} (see (2.4)). Since $\Phi_{15}(x)$ has no real roots, the signature of N_{15} is of the form $(2 k, 2(4-k))$ with $k \in\{0,1,2,3,4\}$. Recall that N is of signature $(2,10)$ and contains N_{15}. Thus the signature of N_{15} is either $(0,8)$ or $(2,6)$.

By Lemma 2.8 the glue between N_{15} and N_{15}^{\perp} is trivial, i.e.

$$
\begin{equation*}
N_{15} \oplus N_{15}^{\perp}=N \in \mathrm{II}_{(2,10)} 2^{10} . \tag{3.3}
\end{equation*}
$$

Let $\left(\epsilon_{q}, n_{q}\right)$ be the 2 -adic genus symbol of N_{15} and $\left(\epsilon_{q}^{\prime}, n_{q}^{\prime}\right)$ the symbol of N_{15}^{\perp}. From Lemma 2.3 we infer that $10=n_{2}+n_{2}^{\prime}$. Further $n_{2}^{\prime} \leq \operatorname{rank} N_{15}^{\perp}=4$ and $n_{2} \leq \operatorname{rank} N_{15}=8$. Thus we obtain $6 \leq n_{2} \leq 8$. Since N_{15} is a Φ_{15}-lattice, we can calculate all Φ_{15}-lattices matching this condition. There is exactly one such lattice up to isometry:

$$
\begin{equation*}
N_{15} \cong E_{8}(-2) \in \mathrm{II}_{(0,8)} 2^{8} \tag{3.4}
\end{equation*}
$$

Using Lemma 2.3 once more, we calculate the genus symbol of $N_{1}=N_{15}^{\frac{1}{1}}$ from those of N and N_{15} and see that

$$
\begin{equation*}
N_{1} \cong U \oplus U(2) \in \mathrm{II}_{(2,2)} 2^{2} \tag{3.5}
\end{equation*}
$$

is the unique class in its genus. From (3.4), (3.5) and [24, Lemma 7.7] we infer that the spectral radius of f_{M} is one (i.e. f has trivial entropy). Thus p_{M} is not divisible by a Salem polynomial and must be a product of cyclotomic polynomials. A direct computation of modulo-2 reductions of all cyclotomic polynomials of degree at most 8 shows that either Φ_{30} or Φ_{15} divides p_{M}. By replacing \tilde{f} with its iteration (i.e. by \tilde{f}^{2} or \tilde{f}^{4}) we can assume that

$$
p_{M}=\Phi_{15} \cdot \Phi_{1}^{2} .
$$

We consider the equivariant orthogonal decomposition $M=M_{15}^{\perp} \oplus M_{15}$ into the rank 2 lattice M_{15}^{\perp} and the rank 8 lattice M_{15} (see (2.4). Being a Φ_{15}-lattice M_{15} has signature ($2 k, 2(4-k)$) for some k. But M is of signature $(1,9)$, so M_{15} is definite and $f_{M} \mid M_{15}$ is of finite order. Since M_{15}^{\perp} is of rank 2 and $f_{M} \mid M_{15}^{\perp}$ has spectral radius zero, it is of finite order (cf. Lemma 2.9). Thus a power of f is an automorphism of a complex Enriques surface of order 15 . However no such automorphisms exist (by [20, Prop. 4.5 and Cor. 4.7], see also [18, Prop. 1.1 and Prop. 3.14]).

4. The factor F_{9}

In this section we maintain the notation of previous sections and prove Theorems 1.1, 1.2. We assume that $f \in \operatorname{Aut}(Y)$ satisfies the condition

$$
\begin{equation*}
F_{9} \mid\left(p_{f} \bmod 2\right) \tag{4.1}
\end{equation*}
$$

After replacing \tilde{f} by some power co-prime to 3 we assume that f_{N} is of order 9. Since $F_{9} F_{1}^{2}$ divides p_{N}, we can rule out $p_{N}=\Phi_{9}^{2}$. Furthermore, by [14, Remark 2.4], we have $\left(p_{M} \bmod 2\right) \neq F_{3}^{2} F_{9}$, which rules out $p_{N}=\Phi_{1}^{2} \Phi_{3}^{2} \Phi_{9}$. This leaves us with the two possibilities

$$
\begin{equation*}
p_{N}=\Phi_{9} \Phi_{1}^{6} \quad \text { or } \quad p_{N}=\Phi_{9} \Phi_{3} \Phi_{1}^{4} . \tag{4.2}
\end{equation*}
$$

As usual we set $N_{9}:=\operatorname{ker}\left(\Phi_{9}\left(f_{N}\right)\right)$ and denote by N_{9}^{\perp} the orthogonal complement of N_{9} in $N \in \mathrm{II}_{(2,10)} 2^{10}$. By Lemma $2.8 \operatorname{det} N_{9} \mid 2^{6} \operatorname{res}\left(\Phi_{9}, \Phi_{3} \Phi_{1}\right)=$
$2^{6} \cdot 3^{3}$. Using the description of N_{9} as Φ_{9}-lattice, we enumerate the possibilities for N_{9}. This yields 4 cases and with Lemmas 2.3 and 2.4 we calculate the corresponding genus of N_{9}^{\perp}.

$$
\begin{align*}
& N_{9} \in \mathrm{II}_{(0,6)} 2^{-6} 3^{1} \text { and } N_{9}^{\perp} \in \mathrm{II}_{(2,4)} 2^{-4} 3^{-1} \tag{4.3}\\
& N_{9} \in \mathrm{II}_{(0,6)} 2^{-6} 3^{-3} \text { and } N_{9}^{\perp} \in \mathrm{II}_{(2,4)} 2^{-4} 3^{3} \tag{4.4}\\
& N_{9} \in \mathrm{II}_{(2,4)} 2^{-6} 3^{-1} \text { and } N_{9}^{\perp} \in \mathrm{II}_{(0,6)} 2^{-4} 3^{1} \tag{4.5}\\
& N_{9} \in \mathrm{II}_{(2,4)} 2^{-6} 3^{3} \text { and } N_{9}^{\perp} \in \mathrm{II}_{(0,6)} 2^{-4} 3^{-3} \tag{4.6}
\end{align*}
$$

We can rule out the cases 4.5 and $\left(4.6\right.$ since in each case the genus of N_{9}^{\perp} consists of a single class (see Remark 2.2), which contains roots. We continue by determining the characteristic polynomial. If $p_{N}=\Phi_{9} \Phi_{1}^{6}$, then we must be in the case $\left(4.3\right.$ and $N_{9}^{\perp}=N_{1}$. Since the signature of N_{1} is $(2,4)$, it contains the transcendental lattice. In particular, f is semi-symplectic. Choosing the covering K3 surface general enough, we may assume that N_{1} is its transcendental lattice. This situation is analyzed in the next

Proposition 4.1. Let Y be an Enriques surface such that its covering K3 surface X has transcendental lattice

$$
T(X) \cong U \oplus U(2) \oplus A_{2}(-2) \in \mathrm{II}_{(2,4)} 2^{-4} 3^{-1}
$$

and satisfies the condition

$$
N \cap \mathrm{NS}(X) \cong E_{6}(-2) \in \mathrm{II}_{(0,6)} 2^{-6} 3^{1}
$$

Then the image of $\operatorname{Aut}_{s}(Y) \rightarrow \mathrm{O}(\operatorname{Num}(Y)) \otimes \mathbb{F}_{2}$ generates a group isomorphic to \mathcal{S}_{5}.

Proof. The image of $\operatorname{Aut}_{s}(Y) \rightarrow \mathrm{O}(\mathrm{Num}(Y))$ can be calculated with Algorithm 6.6. It is generated by 64 explicit matrices (see [32]). Their mod 2 reductions generate a group isomorphic to \mathcal{S}_{5}. The latter can be checked with help of [11].

Since \mathcal{S}_{5} does not contain an element of order 9 , we are left with

$$
p_{N}=\Phi_{9} \Phi_{3} \Phi_{1}^{4}
$$

We derive further restrictions.
Lemma 4.2. Let $g \in \mathrm{O}(N)$ be an isometry with characteristic polynomial

$$
p_{N}=\Phi_{9} \Phi_{3} \Phi_{1}^{4}
$$

Then $N_{3}=A_{2}(n)$ with $n \in\{ \pm 2, \pm 6\}$.
Proof. One can easily see that A_{2} is the principal Φ_{3}-lattice. By (2.6) $N_{3}=$ $A_{2}(n)$ for some $n \in \mathbb{Z}$. In the following we show that $n \in\{ \pm 2, \pm 6\}$ by bounding the determinant of N_{3}. By Lemma 2.8 we have

$$
\operatorname{det} N_{3} \mid 2^{2} \operatorname{res}\left(\Phi_{3}, \Phi_{9} \Phi_{1}\right)=2^{2} 3^{3}
$$

By Lemma 2.5 the 2 -adic symbol of N_{3} is either 1^{-2} or 2^{-2}. The first one is not a direct summand of $N_{9}^{\perp} \otimes \mathbb{Z}_{2}$ (see Lemma 2.3), so we are left with the second. Hence $|n| \neq 1,3$.

Lemma 4.3. Let $f \in \operatorname{Aut}(Y)$ be an automorphism of an Enriques surface such that $p_{N}=\Phi_{9} \Phi_{3}^{1} \Phi_{1}^{4}$ and (4.3) holds. Then $N_{3} \cong A_{2}(-2)$ and $N_{1} \cong$ $U(2) \oplus U$.

Proof. By assumption (4.3) det $N_{9}^{\perp}=2^{4} 3$, and Lemma 2.8 yields $\operatorname{det} N_{3}$ | $2^{2} 9$. Thus by Lemma 4.2, we are left with $N_{3}=A_{2}(\pm 2)$. We see that $\operatorname{det} N_{1} \mid 2^{2} 3^{2}$. Suppose that $N_{3}=A_{2}(2) \in \mathrm{I}_{(2,0)} 2^{-2} 3^{1}$. There is a single genus of signature (0,4), 2-adic symbol $1^{2} 2^{2}$ and determinant dividing $2^{2} 3^{2}$, namely $N_{1} \in \mathrm{II}_{(0,4)} 2^{2} 3^{2}$. It consists of a single class which has roots. Thus $N_{3} \cong A_{2}(-2)$. We calculate the possible genus symbols of N_{1} as $\mathrm{I}_{(2,2)} 2^{2}$ and $\mathrm{II}_{(2,2)} 2^{2} 9^{ \pm 1}$. In the second case N_{1} and N_{3} must be glued non-trivially over 3. This is impossible, as the only possibility for the glue groups are $\left(N_{3}^{\vee} / N_{3}\right)_{3}$ whose discriminant form is non-degenerate and $3\left(N_{1}^{\vee} / N_{1}\right)_{3}$ whose discriminant form is degenerate. Thus $N_{1} \in \mathrm{I}_{(2,2)} 2^{2}$ which implies $N_{1} \cong$ $U(2) \oplus U$ since it is unique in this genus.

If the transcendental lattice is $U \oplus U(2)$, then as before we see that the spectral radius of \tilde{f} is one. Since $M_{1}^{\prime}=\operatorname{ker}\left(f_{M}-1\right)^{2}$ is of rank 2 and $f_{M} \mid M_{1}^{\prime}$ has spectral radius zero, it is of finite order (cf Lemma 2.9) and $M_{1}=M_{1}^{\prime}$. Since M_{1}^{\perp} is definite, f_{M} is of finite order there as well. Thus f is an automorphism of order 9 on a complex Enriques surface. However no such automorphism exists (cf. [20]). We are left with case (4.4) and $p_{N}=\Phi_{9} \Phi_{3} \Phi_{1}^{4}$.

Lemma 4.4. Let $f \in \operatorname{Aut}(Y)$ be an automorphism of an Enriques surface such that $p_{N}=\Phi_{9} \Phi_{3}^{1} \Phi_{1}^{4}$ and (4.4) holds. Then $N_{3} \cong A_{2}(-6)$ and $N_{1} \in$ $\mathrm{II}_{(2,2)} 2^{-2} 9^{1}$. Moreover $N_{1}^{\perp} \cong A_{8}(-2)$.
Proof. Recall that $\zeta_{9} \cdot x:=g(x)$ defines a $\mathbb{Z}\left[\zeta_{9}\right]$-module structure on N_{9} and its discriminant group. Thus $N_{9}^{\vee} / N_{9} \cong \mathbb{Z}\left[\zeta_{9}\right] / I$ for some ideal I. Since we are in case 4.4, I is of norm $\operatorname{det} N_{9}=2^{6} 3^{3}$. There is only one such ideal, namely $2\left(1-\zeta_{9}\right)^{3}$ (since (2) is inert and (3) completely ramified in $\mathbb{Z}\left[\zeta_{9}\right]$). We see that the action of g on the 3-primary part $\left(N_{9}^{\vee} / N_{9}\right)_{3} \cong \mathbb{Z}\left[\zeta_{9}\right] /\left(1-\zeta_{9}\right)^{3}$ has minimal polynomial $(x-1)^{3}=x^{3}-1$. In particular it has order 3 . Thus the order of g on

$$
\left(N_{9}^{\perp \vee} / N_{9}^{\perp}\right)_{3} \cong\left(N_{9}^{\vee} / N_{9}\right)_{3}
$$

is 3 as well. This is only possible if the order of g on $\left(N_{3}^{\vee} / N_{3}\right)_{3} \cong \mathbb{Z}\left[\zeta_{3}\right] /(1-$ $\left.\zeta_{3}\right)^{i}$ is 3 (this group is a subquotient of $\left(N_{3} \oplus N_{1}\right)^{\vee} /\left(N_{3} \oplus N_{1}\right)$). This implies that $i \geq 2$, i.e. that $\operatorname{det} N_{3}$ is divisible by 9 . From Lemma 4.2 we see that $N_{3}=A_{2}(\pm 6)$. Now that we know the determinant of N_{3} and N_{9}^{\perp}, we can estimate that of N_{1} to be a divisor of $2^{2} 3^{2}$. Since N_{3} has a 3 -adic Jordan component of scale 9 and N_{9}^{\perp} not, N_{3} cannot be a direct summand
of N_{9}^{\perp}. Thus N_{3} and N_{1} are glued non-trivially over 3 . Consequently the determinant of N_{1} is $2^{2} 3^{2}$.

Suppose that $N_{3} \cong A_{2}(6)$, then the signature of N_{1} is $(0,4)$. There is only one genus with 2 -adic genus symbol $1^{2} 2^{2}$, signature $(0,4)$ and determinant $2^{2} 3^{2}: \mathrm{II}_{(0,4)} 2^{2} 3^{2}$ it consists of a single class which has roots.

Suppose now that $N_{3} \cong A_{2}(-6)$. Then we obtain 3 possibilities for the genus of N_{1} :
(1) $\mathrm{II}_{(2,2)} 2^{2} 3^{-2}$; There is only one possibility to glue N_{3} and N_{1} equivariantly over 3 (up to isomorphism). It results in $\mathrm{II}_{(2,4)} 2^{-4} 3^{1} 9^{1}$ which is not what we need;
(2) $\mathrm{II}_{(2,2)} 2^{2} 9^{-1}$; the full 3 -adic symbol is $1^{-3} 9^{-1}$. But that has the wrong sign at scale 1 .
(3) $\mathrm{II}_{(2,2)} 2^{2} 9^{1}$ indeed there is a unique possibility to glue N_{3} and N_{1} equivariantly over 3 . It yields the correct result.

Corollary 4.5. If F_{9} divides $\left(p_{f} \bmod 2\right)$, then $F_{1}^{2} F_{3} F_{9}=\left(p_{f} \bmod 2\right)$.
Proof. If we replace f by some power f^{k} with k coprime to 3 , then the previous considerations apply and lead us to $p_{N}=\Phi_{9} \Phi_{3} \Phi_{1}^{4}$. By Lemma 4.4 $\left(N_{3}^{\vee} / N_{3}\right)_{2} \cong \mathbb{F}_{2}^{2}$. Hence F_{3} divides $p_{N} \bmod 2$. Since $F_{1}^{2}\left(p_{f} \bmod 2\right)=p_{N}$ $\bmod 2=F_{9} F_{3} F_{1}^{4}$. The corollary is proven for f^{k}. If k is a power of 2 , then the characteristic polynomials of f_{M} and f_{M}^{k} coincide and we are done. If k is not a power of 2 then $\left(p_{f} \bmod 2\right)$ must be divisible by one of F_{5}, F_{7}, F_{15} which is absurd. For instance if $\left(p_{f} \bmod 2\right)=F_{9} F_{15}$, then $\left(p_{f^{5}} \bmod 2\right)=$ $F_{9} F_{3}^{2} \neq F_{1}^{2} F_{3} F_{9}$.

After those preparations, we can prove the following lemma that we will need for the proof of Theorem 1.1.b.

Lemma 4.6. If F_{9} divides $\left(p_{f} \bmod 2\right)$, then f is semi-symplectic.
Proof. By Corollary 4.5 we have $\left(p_{N} \bmod 2\right)=F_{9} F_{3} F_{1}^{4}$. Thus the order of f_{N} is $2^{k} 9$ for some k. Set $L=\operatorname{ker}\left(f^{2^{k}}-1\right) \in \mathrm{II}_{(2,2)} 2^{-2} 9^{1}$ and note that the transcendental lattice T is contained in L. We suppose that f is not semi-symplectic. Then the order of \tilde{f} on $H^{2}\left(X, \Omega_{X}^{2}\right)$ is 2^{l} for some $l>1$. After replacing \tilde{f} by \tilde{f}^{l-2} we may and will assume that $l=2$, i.e., the order of $f_{N} \mid T$ is 4 .

Set $L_{4}=\operatorname{ker} \Phi_{4}\left(f_{N} \mid L\right)$. Suppose that $\operatorname{rank} L_{4}=4$, i.e. $L=L_{4}$. Then the discriminant group of L is a $\mathbb{Z}\left[\zeta_{4}\right]$ module. But since 3 is prime in $\mathbb{Z}\left[\zeta_{4}\right]$, there is no $\mathbb{Z}\left[\zeta_{4}\right]$ module isomorphic to $\mathbb{Z} / 9 \mathbb{Z}$. Thus $\operatorname{rank} L_{4}=2$ and $3 \nmid \operatorname{det} L_{4}$. Since $\operatorname{det} L_{4} \mid 2^{2} \operatorname{res}\left(\Phi_{4}, \Phi_{2} \Phi_{1}\right)=2^{4}$ and L_{4} is a Φ_{4}-lattice, either $L_{4} \cong[2] \oplus[2]$ or $L_{4} \cong[4] \oplus[4]$ holds. In both cases $L_{4}^{\perp} \subseteq L$ has 3 -adic symbol 9^{-1} and determinant 36 . The only such lattice is $[-2] \oplus[-18]$ which contains roots.

At this point we have determined the Néron-Severi lattice of the K3 cover of a generic Enriques surface admitting an automorphism with F_{9} dividing $p_{f} \bmod 2$. This allows us to compute the semi-symplectic part of the automorphism group and locate f in there.

Proposition 4.7. Let Y be an Enriques surface such that its $K 3$ cover X satisfies the condition

$$
\mathrm{NS}(X) \cap N \cong A_{8}(-2) \in \mathrm{II}_{(0,8)} 2^{8} 9^{1}
$$

and has the transcendental lattice given by

$$
N_{1} \in \mathrm{II}_{(2,2)} 2^{-2} 9^{1} .
$$

Then, the image of $\operatorname{Aut}_{s}(Y) \rightarrow \mathrm{O}\left(\operatorname{Num}(Y) \otimes \mathbb{F}_{2}\right)$ generates a group isomorphic to \mathcal{S}_{9}.
In particular, the polynomials F_{7} and F_{9} do appear as factors of modulo-2 reductions of characteristic polynomials of isometries induced by some automorphisms of the Enriques surface Y.

Proof. The proof is a direct computation with the help of Algorithm 6.6 (c.f. proof of Prop. 4.1). The existence of the factors F_{7} and F_{9} follows since the symmetric group \mathcal{S}_{9} has elements of order 7 and 9 .

Finally we can give the proofs of the main results of this note.
Proof of Theorem 1.1 a) One can repeat verbatim the proof of [14, Theorem 1.2] to see that the modulo-2 reduction $\left(p_{N}(x) \bmod 2\right)$ is the product of some of the polynomials $F_{1}, F_{3}, F_{5}, F_{7}, F_{9}, F_{15}$. By (2.2) the same holds for $\left(p_{f}(x) \bmod 2\right)$. The claim follows from Prop. 3.1.
b) The existence of the automorphisms with required properties follows from Prop. 4.7. Lemma 4.6 implies the second claim.

Proof of Theorem 1.2 In view of [14, Thm 1.1] it suffices to rule out the possibilty that the order of the map f_{N} is one of the integers 90,45 , 72. Suppose to the contrary that the order of f_{N} is $90,45,72$. Then F_{9} divides $\left(p_{N} \bmod 2\right)$. Thus, by (2.2), F_{9} divides $\left(p_{f} \bmod 2\right)$ and we can apply Corollary 4.5 to show that $\left(p_{N} \bmod 2\right)$ is divisible by $F_{1}^{2} F_{3} F_{9}$.
In particular, p_{N} (of degree 12) cannot be divisible by Φ_{5} as well. This excludes orders 45 and 90 . Suppose that the map f_{N} is of order 72 . Then its characteristic polynomial p_{N} cannot be divisible by $\Phi 72$ and $\Phi_{24} \Phi_{9}$ for they have the wrong degree. Thus Φ_{9} or Φ_{18} must divide p_{N}. In particular F_{9} divides $\left(p_{N} \bmod 2\right)$ and Corollary 4.5 implies that $\left(p_{N} \bmod 2\right)$ is divisible by $F_{1}^{2} F_{3} F_{9}$. This leaves us with $p_{N}=\Phi_{8} \Phi_{3 a} \Phi_{9 b}$ where $a, b \in\{1,2\}$. From Lemma 4.4 (applied to \tilde{f}^{8}) we know that $N_{8} \in \mathrm{II}_{(2,2)} 2^{-2} 9^{1}$. This is impossible, as can be seen using the description of N_{8} as a twist of the principal Φ_{8}-lattice. Indeed, 3 splits into two primes of degree 2 in $\mathbb{Z}\left[\zeta_{8}\right]$.

5. The factor F_{7}

The main aim of this section is to study Enriques surfaces Y with an automorphism $f \in \operatorname{Aut}(Y)$ such that

$$
\begin{equation*}
F_{7} \mid\left(p_{f} \bmod 2\right) . \tag{5.1}
\end{equation*}
$$

The existence of such surfaces follows from Prop. 4.7. Here we derive a lattice-theoretic constraint given by (5.1) and show that it indeed defines Enriques surfaces with the desired property. We maintain the notation of the previous sections. Recall (see (2.1)) that

$$
N \in \mathrm{II}_{(2,10)} 2^{10} .
$$

In the sequel we will need the following lemma.
Lemma 5.1. Let $g \in \mathrm{O}(N)$ be an isometry of finite order such that its characteristic polynomial is the product $\Phi_{7}(x) \Phi_{1}(x)^{6}$. Then there are two possibilities for the genera of the lattices $N_{7}:=\operatorname{ker} \Phi_{7}(g)$ and $N_{1}:=\operatorname{ker} \Phi_{1}(g)$; either

$$
N_{7} \in \mathrm{I}_{(2,4)} 2^{6} 7^{-1} \quad \text { and } \quad N_{1} \in \mathrm{II}_{(0,6)} 2^{4} 7^{1}
$$

or

$$
N_{7} \in \mathrm{II}_{(0,6)} 2^{6} 7^{1} \quad \text { and } \quad N_{1} \in \mathrm{I}_{(2,4)} 2^{4} 7^{-1} .
$$

In either case the genus of N_{1} contains a single class. In the first case the class of N_{1} has roots.

Proof. Observe that we assumed g to be of finite order, so it is semisimple, and $\operatorname{rank}\left(N_{1}\right)=6$. Since $\operatorname{res}\left(\Phi_{1}, \Phi_{7}\right)=7$, Lemma 2.8 implies that the index $\left[N: N_{7} \oplus N_{1}\right]$ divides 7 . But in any case $7=\left|\Phi_{7}(1) \Phi_{7}(-1)\right| \operatorname{divides} \operatorname{det} N_{7}$ (see (2.5) and (2.6). Thus we obtain

$$
\left[N: N_{7} \oplus N_{1}\right]=7 .
$$

Consequently, for all $p \neq 7, N \otimes \mathbb{Z}_{p}=\left(N_{7} \otimes \mathbb{Z}_{p}\right) \oplus\left(N_{1} \otimes \mathbb{Z}_{p}\right)$. In particular for $p=2$. Using the description of N_{7} as a twist of the principal Φ_{7}-lattice we compute the two possibilities for the genus of N_{7} (see Remark 2.2).
It remains to determine the genus of N_{1}. Since we have

$$
N \otimes \mathbb{Z}_{2}=\left(N_{7} \otimes \mathbb{Z}_{2}\right) \oplus\left(N_{1} \otimes \mathbb{Z}_{2}\right),
$$

the 2 -adic symbol of N_{1} must be 2^{4}. To compute the 7 -adic symbol note that $N \otimes \mathbb{Z}_{7}$ is unimodular, thus Lemma 2.4 applies. As (-1) is a non-square in \mathbb{Z}_{7} this means that the signs ϵ_{7} of the 7 -modular Jordan constituents of N_{7} and N_{1} must be different. The claim that N_{1} is unique in its genus in the first case is checked with a computer algebra system (see Remark 2.2). In the second case N_{1} is indefinite and we can use [8, Thm.15.19].

Recall that X (resp. $\tilde{f} \in \operatorname{Aut}(X)$) stands for the K3-cover of an Enriques surface Y (resp. for a lift of an automorphism $f \in \operatorname{Aut}(Y)$).

Proposition 5.2. Let Y be an Enriques surface with an automorphism $f \in \operatorname{Aut}(Y)$ such that (5.1) holds. Then $\operatorname{NS}(X)$ contains a primitive \tilde{f}^{*} invariant sublattice which belongs to the genus $\mathrm{I}_{(1,15)} 2^{4} 7^{1}$ and $N \cap \mathrm{NS}(X)$ contains the \tilde{f}^{*}-invariant sublattice $A_{6}(-2) \cong N_{7} \in \mathrm{I}_{(0,6)} 2^{6} 7^{1}$ primitively.
Proof. Since F_{7} divides $p_{f},(2.2)$ implies that the characteristic polynomial p_{N} is divisible by the cyclotomic polynomial Φ_{7}. Moreover, after replacing f by f^{k} with $k \in \mathbb{N}$ coprime to 7 , we may assume that

$$
p_{N}=\Phi_{7}(x) \Phi_{1}(x)^{6} .
$$

Now we can apply Lemma 5.1. The first case is impossible as then N_{1} is contained in $\operatorname{NS}(X) \cap N$ and contains roots (see (2.3)). Thus we are left with the second case. Since $N_{1} \subseteq N$ is of signature (2,4) it must contain the transcendental lattice (and f is semi-symplectic). Thus the orthogonal complement of N_{1} in $H^{2}(X, \mathbb{Z})$ is the sought for \tilde{f}^{*} invariant sublattice of $\mathrm{NS}(X)$.

Finally, we apply Algorithm 6.6 to check that the condition of Prop. 5.2 indeed gives Enriques surfaces such that (5.1) holds.

Proposition 5.3. If the $K 3$ cover X of an Enriques surface Y satisfies the following conditions:
(a) $\mathrm{NS}(X) \in \mathrm{I}_{(1,15)} 2^{4} 7^{1}$ and
(b) $N \cap \mathrm{NS}(X) \cong A_{6}(-2) \in \mathrm{II}_{(0,6)} 2^{6} 7^{1}$.
then the image of $\operatorname{Aut}_{s}(Y) \rightarrow \mathrm{O}(\operatorname{Num}(Y)) \otimes \mathbb{F}_{2}$ generates a group isomorphic to \mathcal{S}_{7}. In particular, the Enriques surface Y admits an automorphism $f \in$ $\operatorname{Aut}(Y)$ such that the modulo-2 reduction $\left(p_{f}(x) \bmod 2\right)$ is divisible by the polynomial F_{7}.
Proof. Apply Algorithm 6.6 and [11] as in the proof of Prop. 4.1.

6. An algorithm to calculate generators

In this section, we present an algorithm to calculate a finite generating set of the image of the natural homomorphism from the automorphism group of an Enriques surface to the orthogonal group of the numerical NéronSeveri lattice of the Enriques surface. Our algorithm is based on Borcherds' method [1, 2] with the result in [4].
6.1. Borcherds' method. We use the notation and terminologies in [4. In particular, we denote by Y an Enriques surface, $\pi: X \rightarrow Y$ the universal covering of Y, and S_{X} and S_{Y} the numerical Néron-Severi lattices of X and of Y, respectively (that is, $S_{X}=\mathrm{NS}(X)$ and $S_{Y}=\operatorname{Num}(Y)$ in the notation of previous sections.) Let \mathcal{P}_{X} (resp. \mathcal{P}_{Y}) be the positive cone of $S_{X} \otimes \mathbb{R}$ (resp. $S_{Y} \otimes \mathbb{R}$) containing an ample class. Let $N_{X}\left(\right.$ resp. $\left.N_{Y}\right)$ be the cone consisting of all $x \in \mathcal{P}_{X}$ (resp. all $x \in \mathcal{P}_{Y}$) such that $\langle x,[\Gamma]\rangle \geq 0$ for any curve Γ on X (resp. on Y). We let the orthogonal group $\mathrm{O}(L)$ of a \mathbb{Z}-lattice L act on the lattice from the right. Suppose that L is even. A vector $r \in L$
is a (-2)-vector if $\langle r, r\rangle=-2$. Let $W(L)$ denote the subgroup of $\mathrm{O}(L)$ generated by the reflections $s_{r}: x \mapsto x+\langle x, r\rangle r$ with respect to (-2)-vectors r of L. For a subset A of $L \otimes \mathbb{R}$, we denote by A^{g} the image of A under the action of $g \in \mathrm{O}(L)$ (not the fixed locus of g in A), and put

$$
\mathrm{O}(L, A):=\left\{g \in \mathrm{O}(L) \mid A=A^{g}\right\}
$$

We have natural homomorphisms

$$
\operatorname{Aut}(X) \rightarrow \mathrm{O}\left(S_{X}, \mathcal{P}_{X}\right), \quad \operatorname{Aut}(Y) \rightarrow \mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)
$$

We denote by $\operatorname{aut}(X)$ and $\operatorname{aut}(Y)$ the images of these homomorphisms. Recall that $\operatorname{Aut}_{s}(Y)$ consists of the semi-symplectic automorphisms, i.e. those that act trivially on $H^{0}\left(Y, \omega_{Y}^{\otimes 2}\right)$. We denote by $\operatorname{Aut}_{s}(X)$ the subgroup consisting of those automorphisms acting as ± 1 on $H^{0}\left(X, \Omega_{X}^{2}\right) \cong H^{2,0}(X)$. The subgroups aut $(X) \subseteq \operatorname{aut}(X)$ and $\operatorname{aut}_{s}(Y) \subseteq \operatorname{aut}(Y)$ are defined as the respective images. Our goal is to calculate a finite generating set of aut ${ }_{s}(Y)$.

Remark 6.1. We note that $\operatorname{Aut}_{s}(Y)$ is of finite index in $\operatorname{Aut}(Y)$. This index is one if the only isometries of T_{X} that preserve $H^{2,0}(X) \subset T_{X} \otimes \mathbb{C}$ are ± 1, where T_{X} is the transcendental lattice of X.

We have the primitive embedding

$$
\pi^{*}: S_{Y}(2) \hookrightarrow S_{X}
$$

which induces $\mathcal{P}_{Y} \hookrightarrow \mathcal{P}_{X}$. We regard S_{Y} as a submodule of S_{X} and \mathcal{P}_{Y} as a subspace of \mathcal{P}_{X} by π^{*}. Then we have

$$
\begin{equation*}
N_{Y}=N_{X} \cap \mathcal{P}_{Y} \tag{6.1}
\end{equation*}
$$

If $\alpha \in S_{Y}$ is ample on Y, then $\pi^{*}(\alpha)$ is ample on X. Hence we have $N_{Y}^{\circ}=$ $N_{X}^{\circ} \cap \mathcal{P}_{Y}$, where N_{Y}° and N_{X}° are the interiors of N_{Y} and N_{X}, respectively. Let Q denote the orthogonal complement of the sublattice $S_{Y}(2)$ in S_{X}. Since Q is negative-definite, the group $\mathrm{O}(Q)$ is finite. We consider the following assumptions for an element g of $\mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$:
(i) There exists an isometry $h \in \mathrm{O}(Q)$ such that the action of $g \oplus h$ on $S_{Y}(2) \oplus Q$ preserves the overlattice S_{X} of $S_{Y}(2) \oplus Q$ and the action of $(g \oplus h) \mid S_{X}$ on the discriminant group S_{X}^{\vee} / S_{X} of S_{X} is ± 1.
(ii-a) There exists an ample class $\alpha \in S_{Y}$ of Y such that there exist no vectors $r \in S_{X}$ with $\langle r, r\rangle=-2$ satisfying $\left\langle\pi^{*}(\alpha), r\right\rangle>0$ and $\left\langle\pi^{*}\left(\alpha^{g}\right), r\right\rangle<0$.
(ii-b) For an arbitrary ample class $\alpha \in S_{Y}$ of Y, there exist no vectors $r \in S_{X}$ with $\langle r, r\rangle=-2$ satisfying $\left\langle\pi^{*}(\alpha), r\right\rangle>0$ and $\left\langle\pi^{*}\left(\alpha^{g}\right), r\right\rangle<0$.

Proposition 6.2. Let g be an element of $\mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$. Then g is in $\operatorname{aut}_{s}(Y)$ if (i) and (ii-a) hold. If g is in $\operatorname{aut}_{s}(Y)$, then (i) and (ii-b) hold.

Proof. An element g of $\mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$ is in $\operatorname{aut}_{s}(Y)$ if and only if there exists an element $\tilde{g} \in \operatorname{aut}_{s}(X)$ that preserves $S_{Y} \subset S_{X}$ and satisfies $\tilde{g} \mid S_{Y}=$ g. By the Torelli theorem, we see that an element \tilde{g}^{\prime} of $\mathrm{O}\left(S_{X}, \mathcal{P}_{X}\right)$ is in aut (X) if and only if the action of \tilde{g}^{\prime} on S_{X}^{\vee} / S_{X} is ± 1 and \tilde{g}^{\prime} preserves N_{X}.

Since N_{X} is a standard fundamental domain of the action of $W\left(S_{X}\right)$ on \mathcal{P}_{X} (see Example 1.5 of [4]), we have

$$
N_{X}^{\circ} \cap N_{X}^{h} \neq \emptyset \quad \Longrightarrow \quad N_{X}=N_{X}^{h}
$$

for any $h \in \mathrm{O}\left(S_{X}, \mathcal{P}_{X}\right)$. Therefore both of (ii-a) and (ii-b) are equivalent to the condition that $N_{X}^{\tilde{g}}=N_{X}$ for any $\tilde{g} \in \mathrm{O}\left(S_{X}, \mathcal{P}_{X}\right)$ satisfying $S_{Y}^{\tilde{g}}=S_{Y}$ and $\tilde{g} \mid S_{Y}=g$.

Suppose that we have a primitive embedding

$$
\iota_{X}: S_{X} \hookrightarrow L_{26},
$$

where L_{26} is an even unimodular hyperbolic lattice of rank 26 , which is unique up to isomorphism. (A more standard notation is $\mathrm{I}_{1,25}$.) Composing π^{*} and ι_{X}, we obtain a primitive embedding

$$
\iota_{Y}: S_{Y}(2) \hookrightarrow L_{26} .
$$

Let \mathcal{P}_{26} be the positive cone of L_{26} into which \mathcal{P}_{Y} is mapped. We regard S_{Y} as a primitive submodule of L_{26}, and \mathcal{P}_{Y} as a subspace of \mathcal{P}_{26} by ι_{Y}. Recall from 4 that a Conway chamber is a standard fundamental domain of the action of $W\left(L_{26}\right)$ on \mathcal{P}_{26}. The tessellation of \mathcal{P}_{26} by Conway chambers induces a tessellation of \mathcal{P}_{Y} by induced chambers.

Proposition 6.3. The action of $\operatorname{aut}_{s}(Y)$ on \mathcal{P}_{Y} preserves the tessellation of \mathcal{P}_{Y} by induced chambers.

Proof. Let g be an element of $\operatorname{aut}_{s}(Y)$. By the proof of Proposition 6.2, there exists an isometry $\tilde{g} \in \mathrm{O}\left(S_{X}, \mathcal{P}_{X}\right)$ such that $S_{Y}^{\tilde{g}}=S_{Y}, \tilde{g} \mid S_{Y}=g$ and the action of \tilde{g} on S_{X}^{V} / S_{X} is ± 1. By the last condition, we see that \tilde{g} further extends to an isometry $g_{26} \in \mathrm{O}\left(L_{26}, \mathcal{P}_{26}\right)$. Since the action of g_{26} on \mathcal{P}_{26} preserves the tessellation by Conway chambers, the action of g on \mathcal{P}_{Y} preserves the tessellation by induced chambers.

Let L_{10} be an even unimodular hyperbolic lattice of rank 10 , which is unique up to isomorphism. In [4], we have classified all primitive embeddings of $S_{Y}(2) \cong L_{10}(2)$ into L_{26}, and studied the tessellation of \mathcal{P}_{Y} by induced chambers. It turns out that, up to the action of $\mathrm{O}\left(L_{10}\right)$ and $\mathrm{O}\left(L_{26}\right)$, there exist exactly 17 primitive embeddings $L_{10}(2) \hookrightarrow L_{26}$, and except for one primitive embedding named as "infty", the associated tessellation of \mathcal{P}_{Y} by induced chambers has the following properties:

- Each induced chamber D is bounded by a finite number of walls, and each wall is defined by a (-2)-vector.
- If a (-2)-vector r defines a wall $w=D \cap(r)^{\perp}$ of an induced chamber D, then the reflection $s_{r}: x \mapsto x+\langle x, r\rangle r$ into the mirror $(r)^{\perp}$ maps D to the induced chamber adjacent to D across the wall w.
In particular, the tessellation of \mathcal{P}_{Y} by induced chambers is simple in the sense of [31].
6.2. Main Algorithm. Suppose that the primitive embedding ι_{Y} is not of type "infty". Suppose also that we have calculated the walls of an induced chamber $D_{0} \subset \mathcal{P}_{Y}$ contained in N_{Y}.

Before starting the main algorithm, we calculate the finite groups $\mathrm{O}(Q)$ and $\mathrm{O}\left(S_{Y}, D_{0}\right)$. We also fix an ample class α that is contained in the interior of D_{0}. In the following, an induced chamber D is expressed by an element $\tau_{D} \in \mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$ such that $D=D_{0}{ }^{\tau_{D}}$. Note that τ_{D} is uniquely determined by D up to left multiplications of elements of $\mathrm{O}\left(S_{Y}, D_{0}\right)$.

Then we have the following auxiliary algorithms.
Algorithm 6.4. Given an induced chamber D, we can determine whether $D \subset N_{Y}$ or not. Indeed, by (6.1), we have $D \subset N_{Y}$ if and only if there exist no (-2)-vectors r of S_{X} such that $\left\langle\pi^{*}(\alpha), r\right\rangle>0$ and $\left\langle\pi^{*}\left(\alpha^{\tau_{D}}\right), r\right\rangle<0$. The set of such (-2)-vectors can be calculated by the algorithm in Section 3.3 of [30].

Suppose that $D \subset N_{Y}$. A wall $D \cap(r)^{\perp}$ of D is said to be inner if the induced chamber $D^{s_{r}}$ adjacent to D across $D \cap(r)^{\perp}$ is contained in N_{Y}. Otherwise, we say that $D \cap(r)^{\perp}$ is outer.

Algorithm 6.5.

Input: An embedding $S_{Y}(2) \hookrightarrow S_{X} \hookrightarrow L_{26}$, the groups $\mathrm{O}\left(S_{Y}, D_{0}\right), \mathrm{O}(Q)$ and two induced chambers $D, D^{\prime} \subset N_{Y}$ represented by $\tau_{D}, \tau_{D^{\prime}}$.
Output: The set $\left\{\gamma \in \operatorname{aut}_{s}(Y) \mid D^{\prime}=D^{\gamma}\right\}$.
1: Compute $\operatorname{Isom}\left(D, D^{\prime}\right):=\tau_{D}^{-1} \mathrm{O}\left(S_{Y}, D_{0}\right) \tau_{D^{\prime}}$.
This is the set of all isometries $g \in \mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$ that satisfy $D^{\prime}=D^{g}$.
Initialize $\mathcal{I}:=\{ \}$
for $g \in \operatorname{Isom}\left(D, D^{\prime}\right)$ do
Use $\mathrm{O}(Q)$ and Proposition 6.2 to check if $g \in \operatorname{aut}_{s}(Y)$ then
add g to \mathcal{I}.
6: Return \mathcal{I}.
Note that since both D and D^{\prime} are contained in N_{Y}, condition (ii-a) of Proposition 6.2 is always satisfied in line 4. For $D=D^{\prime}$, Algorithm 6.5 calculates the group

$$
\operatorname{aut}_{s}(Y, D):=\mathrm{O}\left(S_{Y}, D\right) \cap \operatorname{aut}_{s}(Y) .
$$

Two induced chambers D and D^{\prime} in N_{Y} are said to be aut ${ }_{s}(Y)$-equivalent if there exists an element $\gamma \in \operatorname{aut}_{s}(Y)$ such that $D^{\prime}=D^{\gamma}$.

Algorithm 6.6.

Input: An embedding $S_{Y}(2) \hookrightarrow S_{X} \hookrightarrow L_{26}$
and an induced chamber $D_{0} \subset N_{Y}$.
Output: A list \mathcal{R} of representatives of $\operatorname{aut}_{s}(Y)$-equivalence classes of induced chambers contained in N_{Y} and a generating set \mathcal{G} of $\operatorname{aut}_{s}(Y)$.
1: Initialize $\mathcal{R}:=\left[D_{0}\right], \mathcal{G}:=\{ \}$ and $i:=0$.

```
while }i\leq|\mathcal{R}|\mathrm{ do
    Let }\mp@subsup{D}{i}{}\mathrm{ be the (i+1)st element of }\mathcal{R}\mathrm{ .
    Replace \mathcal{G by G}\cup\mp@subsup{\mathrm{ aut }}{s}{}(Y,\mp@subsup{D}{i}{}).
    Let }\mathcal{W}\mathrm{ be the set of walls of }\mp@subsup{D}{i}{}\mathrm{ .
    Compute orbit representatives of \mathcal{W}}\mathrm{ under the action of aut (Y, Di).
    for each representative wall w of \mathcal{W}/\mp@subsup{\operatorname{aut}}{s}{}(Y,\mp@subsup{D}{i}{})\mathrm{ do}
            Let r be the (-2)-vector of S}\mp@subsup{S}{Y}{}\mathrm{ defining the wall w=D 
            Let }\mp@subsup{s}{r}{}\mathrm{ be the reflection }x\mapstox+\langlex,r\rangler\mathrm{ .
            Let }\mp@subsup{D}{w}{}=\mp@subsup{D}{i}{\mp@subsup{s}{r}{}}\mathrm{ be the induced chamber adjacent to }\mp@subsup{D}{i}{}\operatorname{across}w\mathrm{ .
            Set }\mp@subsup{\tau}{\mp@subsup{D}{w}{}}{}:=\mp@subsup{\tau}{\mp@subsup{D}{i}{}}{}\mp@subsup{s}{r}{}\mathrm{ .
            if }\mp@subsup{D}{w}{}\not\subset\mp@subsup{N}{Y}{}\mathrm{ then
                continue with the next representative wall.
            Set f:= true.
            for each }D\in\mathcal{R}\mathrm{ do
                if D is aut }\mp@subsup{}{s}{}(Y)\mathrm{ -equivalent to }\mp@subsup{D}{w}{}\mathrm{ then
                    Let }\gamma\in\mp@subsup{\operatorname{aut}}{s}{}(Y)\mathrm{ be an element such that D}\mp@subsup{D}{w}{}=\mp@subsup{D}{}{\gamma}
                    Add }\gamma\mathrm{ to }\mathcal{G}\mathrm{ .
                    Replace f by false.
                    Break the for loop.
            if f= true then
                Add }\mp@subsup{D}{w}{}\mathrm{ to }\mathcal{R}
    Increment i.
    Return \mathcal{R}}\mathrm{ and }\mathcal{G}\mathrm{ .
```

Proof. This Algorithm is proved in the same way as the proof of Proposition 6.3 of [29].

Remark 6.7. The termination of Algorithm 6.6 follows, in the same way as the proof of Theorem 3.7 of [29], from the fact that the subgroup of $\mathrm{O}\left(S_{Y}, \mathcal{P}_{Y}\right)$ consisting of isometries g that extends to an isometry of $H^{2}(X, \mathbb{Z})$ preserving the sublattice $S_{X} \subset H^{2}(X, \mathbb{Z})$ is of finite index, and its membership can be decided by the action of g on the discriminant form of $S_{Y}(2)$. This algorithm provides us with an effective version of the cone theorem for Enriques surfaces ([21], [33]).
6.3. Examples. The details of the following computations are available at 32 .
6.3.1. The Enriques surface in Proposition 5.3. The Picard number of the covering $K 3$ surface is 16 , and the orthogonal complement Q of $S_{Y}(2)$ in S_{X} is $A_{6}(-2)$. Therefore $\mathrm{O}(Q)$ is of order 10080. The $A D E$-type of (-2) vectors in the orthogonal complement P of $S_{Y}(2)$ in L_{26} is $8 A_{1}+2 D_{4}$. Hence the embedding ι_{Y} is of type 40B in the notation of [4]. The number $|\mathcal{R}|$ of $\operatorname{aut}_{s}(Y)$-equivalence classes of induced chambers in N_{Y} is 2 . Let D_{0} and D_{1} be the representatives of $\operatorname{aut}_{s}(Y)$-equivalence classes. For $i=0,1$, the group $\operatorname{aut}_{s}\left(Y, D_{i}\right)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and the 40 walls of D_{i} are
decomposed into 10 orbits under the action of $\operatorname{aut}_{s}\left(Y, D_{i}\right)$. Among the 40 walls, exactly $3 \times 4=12$ walls are outer walls. For each inner wall w, the two induced chambers containing w are not aut $s_{s}(Y)$-equivalent, that is, one is $\operatorname{aut}_{s}(Y)$-equivalent to D_{0} and the other is aut (Y)-equivalent to D_{1}.
6.3.2. The Enriques surface in Proposition 4.1. The Picard number of the covering $K 3$ surface is 16, and the orthogonal complement Q of $S_{Y}(2)$ in S_{X} is $E_{6}(-2)$. Therefore $\mathrm{O}(Q)$ is of order 103680. The $A D E$-type of $(-2)-$ vectors in the orthogonal complement P of $S_{Y}(2)$ in L_{26} is $D_{4}+D_{5}$. Hence the embedding ι_{Y} is of type 20A, which means that D_{0} is bounded by walls defined by (-2)-vectors that form the dual graph of Nikulin-Kondo's type V [13]. The number $|\mathcal{R}|$ of $\operatorname{aut}_{s}(Y)$-equivalence classes of induced chambers in N_{Y} is 20. They are decomposed into the following three types.

Type	\mid aut $_{s}(Y, D) \mid$	outer walls	inner walls	number
a	1	1×7	1×13	2
b	1	1×5	1×15	6
c	2	$1 \times 2+2 \times 2$	$1 \times 2+2 \times 6$	12.

For example, there exist twelve $\operatorname{aut}_{s}(Y)$-equivalence classes of type c. If D is an induced chamber of type c, then $\operatorname{aut}_{s}(Y, D)$ is $\mathbb{Z} / 2 \mathbb{Z}$, and D has 6 outer walls and 14 inner walls. Under the action of $\operatorname{aut}_{s}(Y, D)$, the 6 outer walls are decomposed into 4 orbits of size $1,1,2,2$, and the 14 inner walls are decomposed into 8 orbits of size $1,1,2, \ldots, 2$.
6.3.3. The Enriques surface in Proposition 4.7. The Picard number of the covering $K 3$ surface is 18, and the orthogonal complement Q of $S_{Y}(2)$ in S_{X} is $A_{8}(-2)$. Therefore $\mathrm{O}(Q)$ is of order 725760 . The $A D E$-type of (-2) vectors in the orthogonal complement P of $S_{Y}(2)$ in L_{26} is $A_{3}+A_{4}$. Hence the embedding ι_{Y} is of type 20D, which means that D_{0} is bounded by walls defined by (-2)-vectors that form the dual graph of Nikulin-Kondo's type VII [13]. The number $|\mathcal{R}|$ of $\operatorname{aut}_{s}(Y)$-equivalence classes of induced chambers in N_{Y} is 1 . The group $\operatorname{aut}_{s}\left(Y, D_{0}\right)$ is isomorphic to \mathfrak{S}_{3}, and the 20 walls of D_{0} are decomposed into 6 orbits, each of which consists of

$$
6 \text { outer, } 3 \text { outer, } 3 \text { outer, } 3 \text { inner, } 3 \text { inner, } 2 \text { inner. }
$$

Acknowledgement. The authors would like to thank the anonymous referee for suggesting a substantial simplification of the proof of Thm 1.1 and other improvements of the paper.

References

[1] Borcherds, R., Automorphism groups of Lorentzian lattices. Journal of Algebra 111, no. 1 (1987): 133-53.
[2] Borcherds, R., Coxeter groups, Lorentzian lattices, and K3 surfaces. International Mathematics Research Notices 1998 no. 19 (1998): 1011-31.
[3] Bayer-Fluckiger, E. Isometries of quadratic spaces, J. Eur. Math. Soc. 17 (2015), no. 7, 1629-1656.
[4] Brandhorst, S. and Shimada, I. Borcherds' method for Enriques surfaces, 2019. Preprint, arXiv:1903.01087.
[5] Cantat, S., Dynamics of automorphisms of compact complex surfaces, Frontiers in Complex Dynamics: In celebration of John Milnor's 80th birthday, 463-514, Princeton Mathematical Series, Princeton University Press
[6] Cohen, H., A course in computational algebraic number theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1993.
[7] Conway, J. H., Sloane. N.J.A. Low-dimensional lattices. I. Quadratic forms of small determinant. Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17-41
[8] Conway, J. H., Sloane. N.J.A. Sphere Packings, Lattices and Groups. vol. 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 1999.
[9] Dolgachev, I., Salem numbers and Enriques surfaces, Experimental Mathematics, DOI: 10.1080/10586458.2016.1261743
[10] Gross, Benedict H. and McMullen, Curtis T., Automorphisms of even unimodular lattices and unramified Salem numbers, J. Algebra, 257 (2002), no. 2, 265-290.
[11] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http://www.gap-system.org).
[12] Höppner, S. Lokale Eigenschaften von Gittern mit einem Automorphismus. PH.D. thesis, Dortmund 2016, available as http://hdl.handle.net/2003/34892 DOI:10.17877/DE290R-16940
[13] Kondō, S. Enriques surfaces with finite automorphism groups. Japan. J. Math. (N.S.) 12 (1986), 191-282.
[14] Matsumoto, Y., Ohashi, H., Rams, S. On automorphisms of Enriques surfaces and their entropy. Math. Nachr. 291 (2018), no. 13, 2084-2098.
[15] Keum, J.-H. Every algebraic Kummer surface is the K3-cover of an Enriques surface., Nagoya Math. J., 118 (1990), 99-110.
[16] McMullen, Curtis T., K3 surfaces, entropy and glue., J. Reine Angew. Math., 658 (2011), 1-25.
[17] McMullen, Curtis T., Automorphisms of projective $K 3$ surfaces with minimum entropy., Invent. Math., 203 (2016), no. 1, 179-215.
[18] Mukai, S. and Namikawa, Y., Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math., 77 (1984), 383-397.
[19] Mukai, S. and Ohashi, H., The automorphism groups of Enriques surfaces covered by symmetric quartic surfaces., Recent advances in algebraic geometry, 307-320, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015.
[20] Mukai, S. and Ohashi, H., Finite groups of automorphisms of Enriques surfaces and the Mathieu group M_{12}, preprint, arXiv: 1410.7535 (math.AG)
[21] Namikawa, Y., Periods of Enriques surfaces, Math. Ann. 270 (1985), no. 2, 201-222.
[22] Nikulin, V. V., Integral symmetric bilinear forms and some of their applications (English translation), Math. USSR Izv., 14 (1980), 103-167.
[23] Oguiso, K., The third smallest Salem number in automorphisms of $K 3$ surfaces, Algebraic geometry in East Asia-Seoul 2008, 331-360.
[24] Oguiso, K., Yu, Minimum positive entropy of complex Enriques surface automorphisms preprint, arxiv: 1807.09452 v 1 (math.AG)
[25] Ohashi, H., On the number of Enriques quotients of a K3 surface, Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181-200.
[26] The PARI Group, Univ. Bordeaux. PARI/GP version 2.11.1, 2018. available from http://pari.math.u-bordeaux.fr/
[27] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.6), 2019. https://www.sagemath.org
[28] Rudolf Scharlau and Boris Hemkemeier. Classification of integral lattices with large class number. Math. Comp., 67(222):737-749, 1998.
[29] Ichiro Shimada. An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces. Int. Math. Res. Not. IMRN 22 (2015), 1196112014.
[30] Ichiro Shimada. Projective models of the supersingular $K 3$ surface with Artin invariant 1 in characteristic 5. J. Algebra, 403:273-299, 2014.
[31] Ichiro Shimada. Holes of the Leech lattice and the projective models of $K 3$ surfaces. Math. Proc. Cambridge Philos. Soc., 163(1):125-143, 2017.
[32] Ichiro Shimada. On characteristic polynomials of automorphisms of Enriques surfaces: computational data, 2019. http://www.math.sci.hiroshima-u.ac.jp/ shimada/K3andEnriques.html.
[33] Burt Totaro. The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J., 154(2):241-263, 2010.

Fachbereich Mathematik, Saarland University, Campus E2.4 Zi. 222, 66123
Saarbrücken, Germany
Email address: brandhorst@math.uni-sb.de
Institute of Mathematics, Jagiellonian University, ul. Łojasiewicza 6, 30348 Kraków, Poland

Email address: slawomir.rams@uj.edu.pl
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan

Email address: ichiro-shimada@hiroshima-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary: 14J28; 14J50 Secondary: 37B40.
 Communicated by Y. Namikawa. Received January 23, 2020. Revised August 31, 2020.

