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Abstract. We classify Enriques involutions on a K3 surface, up to conjuga-
tion in the automorphism group, in terms of lattice theory. We enumerate such
involutions on singular K3 surfaces with transcendental lattice of discriminant
smaller than or equal to 36. For 11 of these K3 surfaces, we apply Borcherds
method to compute the automorphism group of the Enriques surfaces covered
by them. In particular, we investigate the structure of the two most algebraic
Enriques surfaces.

1. Introduction

1.1. Background. LetX be a complex K3 surface. We denote by SX = H2(X,Z)∩
H1,1(X) the lattice of numerical equivalence classes of divisors on X, and by TX
the orthogonal complement of SX in H2(X,Z), which we call the transcendental
lattice of X. Suppose that X is singular, that is, the Picard number rankSX at-
tains the possible maximum h1,1(X) = 20. The discriminant of a singular K3
surface X is the determinant of a Gram matrix of TX . Since TX is an even positive
definite lattice of rank 2, the discriminant d of X is a positive integer satisfying
d ≡ 0 or 3 mod 4. Note that TX is naturally oriented by the Hodge structure. By
the classical work of Shioda–Inose [32], we know that the isomorphism class of the
oriented lattice TX determines X up to C-isomorphism.

An involution ε̃ : X → X of a K3 surface X is called an Enriques involution if ε̃
acts freely on X. Sertöz [25] gave a simple criterion to determine whether a singular
K3 surface has an Enriques involution or not (see Theorem 3.2.1 and also Lee [18]).
On the other hand, Ohashi [22] showed that each complex K3 surface X (not
necessarily singular) has only finitely many Enriques involutions up to conjugation
in the automorphism group Aut(X) of X, and that there exists no universal bound
for the number of conjugacy classes of Enriques involutions.

Ohashi also gave a lattice theoretic method to enumerate Enriques involutions
on certain K3 surfaces. In a subsequent paper [23] he classified all Enriques involu-
tions on the Kummer surface Km(Jac(C)) associated with the jacobian variety of
a generic curve C of genus 2.

For some K3 surfaces X, the group Aut(X) can be calculated by Borcherds
method ([3], [4]); for instance, Kondo [16] implemented it in order to compute
Aut(Km(Jac(C))).

1.2. Main results. In this paper, we classify, up to conjugation in Aut(X), all
Enriques involutions ε̃ on the singular K3 surfaces X whose discriminant d satisfies
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d ≤ 36. The classification is given in Table 3.1 and builds on a refinement and
generalization of Ohashi’s method. Our main result, namely Theorem 3.1.9, applies
to any K3 surface.

We then concentrate on 11 of these singular K3 surfaces, listed in Table 4.1,
to which we can apply Borcherds method in order to compute the automorphism
group. We first write the action of Aut(X) on the nef chamber of X explicitly.
Building on this data, we re-enumerate all Enriques involutions up to conjugation.
Using also a result of the preprint [6] (see Section 2.9), we are able to calculate the
automorphism group of the Enriques surfaces covered by these K3 surfaces. The
results are given in Theorem 5.4.1 and Table 5.1.

Note that the enumeration of Enriques involutions by Ohashi’s method and
by Borcherds method are carried out independently. The results are, of course,
consistent. We hope that these methods will be applied to many other K3 surfaces
(with smaller Picard number) and Enriques surfaces covered by them, and that in
these works, our general results on a K3 surface admitting an Enriques involution
(Lemma 3.1.7 and Proposition 3.1.8) will be useful.

Recently, many studies on the automorphism groups Aut(Y ) of Enriques sur-
faces Y have appeared ([1], [19], [30]). Our result gives a description of Aut(Y )
in terms of its action on the lattice SY of numerical equivalence classes of divisors
on Y . We expect that this description is helpful in the search for a more geo-
metric description of Aut(Y ), that is, for writing elements of Aut(Y ) as birational
self-maps on some projective model of Y .

Computations were carried out using GAP [9] and sage on SageMath [33]. Further
computational data is provided on the web page [31].

As a corollary of our calculations, we obtain the following. For d = 3, 4 or 7, there
exists exactly one singular K3 surface Xd of discriminant d up to C-isomorphism.
The K3 surfaces X3, X4, also known as “the two most algebraic K3 surfaces”, were
studied by Vinberg [37]. Neither X3 nor X4 admits any Enriques involution, but
X7 does; following Vinberg, we call the Enriques surfaces covered by X7 the most
algebraic Enriques surfaces.

Theorem 1.2.1. The singular K3 surface X7 of discriminant 7 has exactly two
Enriques involutions ε̃I and ε̃II up to conjugation in Aut(X7). Let YI and YII be the
quotient Enriques surfaces corresponding to ε̃I and ε̃II, respectively. Then Aut(YI)
is finite of order 8, and Aut(YII) is finite of order 24.

Nikulin [21] and Kondo [15] classified all complex Enriques surfaces whose au-
tomorphism group is finite. It turns out that these Enriques surfaces are divided
into 7 classes I, II, . . . , VII, which we call Nikulin-Kondo type. See Kondo [15] for
the properties of these Enriques surfaces.

Corollary 1.2.2. The most algebraic Enriques surfaces have finite automorphism
groups and their Nikulin-Kondo types are I and II.

Mukai (private communication) had already realized this result previously. An-
swering a question by G. Kapustka, in Section 6 we give explicit models of the most
algebraic Enriques surfaces YI and YII as Enriques sextic surfaces.

1.3. Contents. This paper is organized as follows. In Section 2, we recall basic
facts about lattices, K3 surfaces and Enriques surfaces, and fix notions and nota-
tion. In Section 3, we classify all Enriques involutions on singular K3 surfaces with
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discriminant ≤ 36 by a generalization of Ohashi’s method. In Section 4, we recall
Borcherds method, and apply it to the 11 singular K3 surfaces whose transcendental
lattices are listed in Table 4.1. Recently, many geometric studies of singular K3 sur-
faces of small discriminant have appeared (see, for example, [2], [10], [17], [35]). We
summarize the computational data for these 11 singular K3 surfaces in Table 4.2.
In Section 5, we explain an algorithm to calculate Enriques involutions and the au-
tomorphism groups of the Enriques surfaces from the data obtained by Borcherds
method, and apply this method to the 11 singular K3 surfaces. In Section 6, we
study the most algebraic Enriques surfaces YI and YII.

2. Preliminaries

2.1. Lattices. A lattice is a free Z-module L of finite rank with a Z-valued non-
degenerate symmetric form 〈 , 〉. The determinant detL of L is the determinant of
any Gram matrix of L. A lattice L is unimodular if detL = ±1. A lattice with the
same underlying Z-module as L and symmetric form n · 〈 , 〉 is denoted by L(n).
The group of isometries of L is denoted O(L). We let O(L) act on L from the right.
A vector v of a lattice L is called an n-vector if 〈v, v〉 = n. We denote by RL the
set of (−2)-vectors of a lattice L.

A lattice L is even if 〈v, v〉 ∈ 2Z for all v ∈ L; otherwise, it is odd. The signature
of a lattice L is the signature of L ⊗ R. Analogously, we say that L is positive
definite, negative definite or indefinite if L ⊗ R is. A lattice L of rank n > 1 is
hyperbolic if the signature is (1, n− 1). A positive cone of a hyperbolic lattice L is
one of the two connected components of {v ∈ L⊗ R | 〈v, v〉 > 0}. For a hyperbolic
lattice L and a positive cone PL of L, we denote by O(L,PL) the group of isometries
of L that preserves PL.

The standard positive definite lattices associated to Dynkin graphs will be de-
noted An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8.

2.2. Surfaces. Let Z be a K3 surface or an Enriques surface. We denote by SZ the
lattice of numerical equivalence classes of divisors on Z, and call it the Néron–Severi
lattice of Z. Then SZ is an even hyperbolic lattice, provided that rankSZ > 1. Let
PZ denote the positive cone of SZ that contains an ample class, and let RZ be the
set of (−2)-vectors of SZ . For simplicity, we denote by aut(Z) the the image of the
natural representation

(2.1) ρZ : Aut(Z)→ O(SZ ,PZ).

We put
NZ := {x ∈ PZ | 〈x, [Γ]〉 ≥ 0 for all curves Γ on Z},

and call it the nef chamber of Z. It is obvious that the action of aut(Z) on PZ
preserves NZ .

2.3. Finite bilinear and quadratic forms. A finite quadratic form is a finite
abelian group G together with a function q : G→ Q/2Z which satisfies

q(nα) = n2q(α) for every α ∈ G and n ∈ Z

such that the function b(q) : G×G→ Q/Z defined by

(α, β) 7→ q(α+ β)− q(α)− q(β)

2
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is a finite symmetric bilinear form. For the sake of simplicity, we will denote by q
also the underlying finite abelian group G. The length, i.e. the minimal number of
generators, of G (resp. of the p-torsion part of G) is denoted by `(G) (resp. `p(G)).
A subgroup Γ ⊂ G is called isotropic if q|Γ = 0, where q|Γ denotes the restriction
of q to Γ. Given an isotropic subgroup Γ, the quadratic form q descends to the
quotient group Γ⊥/Γ, where

Γ⊥ := {α ∈ G | b(q)(α, γ) = 0 for every γ ∈ Γ};

we denote the resulting finite quadratic form by q|Γ⊥/Γ.
If L is a lattice, then the group L∨/L, where L∨ := Hom(L,Z) ⊂ L ⊗ Q, is a

finite abelian group of order |detL|. The discriminant bilinear form of a lattice L
is the finite symmetric bilinear form induced by 〈 , 〉

b(L) : L∨/L× L∨/L→ Q/Z.

If L is even, the discriminant quadratic form of L is the finite quadratic form
induced by 〈 , 〉

q(L) : L∨/L→ Q/2Z.
Let O(q(L)) denote the automorphism group of the finite quadratic form q(L),

which we let act on q(L) from the right. There is a natural homomorphism

O(L)→ O(q(L)), g 7→ q(g).

Let Cn(e) be the cyclic group of order n generated by e. For k ≥ 1, we denote
by uk (resp. vk) the finite quadratic form with underlying group C2k(e) × C2k(f)
such that 〈e, e〉 = 〈f, f〉 = 0 (resp. 〈e, e〉 = 〈f, f〉 = 1) and 〈e, f〉 = 1

2k
. For a, b ∈ Z

prime to each other, we denote by 〈ab 〉 the finite quadratic form with underlying
group Cb(e) such that 〈e, e〉 = a

b .

2.4. Genera. Given a pair of non-negative integers (s+, s−) and a non-degenerate
finite quadratic (resp. bilinear) form h, the genus g(s+, s−, h) is the set of isometry
classes of even (resp. odd) lattices of signature (s+, s−) with discriminant quadratic
(resp. bilinear) form isomorphic to h. If a genus contains only the isometry class
of a lattice L, we say that L is unique in its genus.

In general, enumerating all isometry classes in a given genus is a non-trivial
problem. It is computationally easier to find lattices of smaller determinant, so the
following elementary lemma can be very useful.

Lemma 2.4.1. Given a lattice L and a prime number p, then `p(L∨/L) = rankL
if and only if L = L′(p) for some lattice L′. In this case, and if moreover L is even
and p = 2, then L′ is odd if and only if q(L) =

〈
1
2

〉
⊕ q′ or q(L) =

〈
3
2

〉
⊕ q′ for

some finite quadratic form q′.

Remark 2.4.2. Suppose q is a finite quadratic form admitting an isotropic sub-
group Γ. In order to enumerate all isometry classes of even lattices in g(s+, s−, q),
we can take advantage of Proposition 1.4.1 in [20]: first we enumerate all lattices
in g(s+, s−, q|Γ⊥/Γ), then we inspect all sublattices of index |Γ|.

Given a finite (bilinear or quadratic) form h and s ∈ N, the following algorithm,
suggested by Degtyarev, finds all (odd or even) lattices in g(s, 0, h). If h is quadratic
we put b = b(h), otherwise we put b = h.
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Algorithm 2.4.3. Let r be the smallest possible rank for which there exists an
(odd or even) positive definite latticeM of rank r and discriminant bilinear form −b.
By results of Nikulin [20], for each N ∈ g(s, 0, h) there exists a primitive embedding
ι : M ↪→ L into some positive definite unimodular lattice L of rank r + s such that
[ι]⊥ ∼= N . Taking advantage of the classification of positive definite unimodular
lattices of small rank (see, for instance, Table 16.7 in [7]), we list all such lattices
L. Using GAP and the function ShortestVectors, we list all primitive embeddings
ι : M ↪→ L for all M ∈ g′ and all L. Then, we compute the lattices [ι]⊥ and
select those ones which belong to g(s, 0, h). In order to eliminate pairs of isomor-
phic lattices, one can use the attribute is_globally_equivalent_to of the class
QuadraticForm in sage.

The algorithm works provided that r+ s is small enough and that we can find a
lattice M explicitly. In order to find M , we can apply the algorithm recursively to
g(r, 0,−b). If r = 1 or 2, this genus can be enumerated a priori (see, for instance,
Chapter 15 in [7]).

Remark 2.4.4. Another well-known way to enumerate lattices in a given genus is
Kneser’s neighboring method [14]. This method has been implemented in sage by
Brandhorst ([5] and private communication).

2.5. Primitive embeddings. Given an embedding of lattices ι : M ↪→ S, we de-
note by [ι] its image and by [ι]⊥ the orthogonal complement of [ι] in S. An em-
bedding ι : M ↪→ S is called primitive if S/[ι] is a torsion-free group. All primitive
embeddings are considered up to the action of O(M).

Proposition 2.5.1 (Proposition 1.15.1 in [20]). If ι : M ↪→ S is a primitive embed-
ding of even lattices, then there exist a subgroup H ⊂M∨/M and an isomorphism
of finite quadratic forms β : q([ι])|H → q(S)|β(H) such that

q([ι]⊥) ∼= (−q([ι]))⊕ q(S)|Γ⊥β /Γβ ,
where Γβ is the push-out of β in (−q([ι]))⊕ q(S).

Given a primitive embedding ι : M ↪→ S, we put

O(S, [ι]) := {g ∈ O(S) | [ι]g = [ι]},
and we denote by O(q(S), [ι]) its image in O(q(S)) by the natural homomorphism
O(S)→ O(q(S)).

Fix now two even lattices M , N and consider the set I(S,M,N) of primitive
embeddings ι : M ↪→ S such that [ι]⊥ ∼= N . The group O(S) acts on I(S,M,N) in
a natural way.

Consider also the set of pairs (H, γ), where H ⊂ M∨/M is a subgroup and
γ : q(M)|H → −q(N)|γ(H) is an isomorphism of finite quadratic forms such that

(2.2) q(M)⊕ q(N)|Γ⊥γ /Γγ ∼= q(S),

where Γγ is the push-out of γ in q(M)⊕q(N). We say that two such pairs (H, γ) and
(H ′, γ′) are equivalent if there exist ϕ ∈ O(M) and ψ ∈ O(N) such that Hq(ϕ) = H ′

and

(2.3) γ′ ◦ q(ϕ) = q(ψ) ◦ γ.
Proposition 2.5.2 (Proposition 1.5.1 in [20]). In the above notation, there is a
one-to-one correspondence between the elements of I(S,M,N) modulo the action
of O(S) and the set of pairs (H, γ) modulo equivalence.
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Proposition 2.5.3 (Proposition 1.5.2 in [20]). For a fixed pair (H, γ) corresponding
to the orbit of a primitive embedding ι : M ↪→ S, the subgroup O(q(S), [ι]) consists of
those elements ξ ∈ O(q(S)) for which there exist ϕ ∈ O(M) and ψ ∈ O(N) such that
Hq(ϕ) = H, equation (2.3) holds, and ξ corresponds under the isomorphism (2.2)
to the automorphism induced by ϕ and ψ on Γ⊥γ /Γγ .

2.6. Chambers and their faces. Let V be a Q-vector space of dimension n > 1
with a non-degenerate symmetric bilinear form 〈 , 〉 : V × V → Q such that V ⊗R
is of signature (1, n − 1). Let PV be one of the two connected components of
{x ∈ V ⊗ R | 〈x, x〉 > 0}. For v ∈ V with 〈v, v〉 < 0, we put

(v)⊥ := {x ∈ PV | 〈x, v〉 = 0},
which is a hyperplane of PV . For a set V of vectors v ∈ V with 〈v, v〉 < 0, we
denote by V⊥ the family of hyperplanes {(v)⊥ | v ∈ V}.

Let V be a set of vectors v ∈ V with 〈v, v〉 < 0 such that the family of hyperplanes
V⊥ is locally finite. A V⊥-chamber is the closure in PV of a connected component
of the complement

PV \
⋃

H∈V⊥
H.

Let PV be the closure of PV in V ⊗R, and ∂ PV the boundary PV \PV of PV . Let
C be a V⊥-chamber, and C the closure of C in V ⊗R. We say that C is quasi-finite
if C ∩ ∂ PV is contained in a union of at most countably many real half-lines of
V ⊗ R.

Let C be a quasi-finite V⊥-chamber. Suppose that we are given a set UC of
vectors v ∈ V with 〈v, v〉 < 0 such that

C = {x ∈ PV | 〈x, v〉 ≥ 0 for all v ∈ UC}.
A wall of C is a closed subset w of C for which there exists a hyperplane H ∈ V⊥
with w = C ∩ H such that w contains a non-empty open subset of H. Let w be
a wall of C. A vector v ∈ V with 〈v, v〉 < 0 is said to define w if w is equal to
C ∩ (v)⊥ and 〈x, v〉 > 0 holds for all interior points x of C. A vector v0 ∈ UC
defines a wall of C if and only if there exists a point y ∈ PV such that 〈y, v0〉 < 0
and that 〈y, v′〉 > 0 holds for all v′ ∈ UC with (v′)⊥ 6= (v0)⊥. Therefore, if UC is
finite, we can calculate the set of walls of C by means of linear programming.

A face is a closed subset of C that is the intersection of a finite number of
walls of C. Let f be a face of C. We denote by 〈f〉 the minimal linear subspace
of V containing f . The dimension of f is the dimension of 〈f〉. Suppose that
m := dim f is ≥ 2. Since f contains a non-empty open subset of 〈f〉, the linear
space 〈f〉 contains a vector v with 〈v, v〉 > 0, and hence the restriction of 〈 , 〉 to
〈f〉 is of signature (1,m− 1). We denote by

ι〈f〉 : 〈f〉 ↪→ V and pr〈f〉 : V →→ 〈f〉
the inclusion and the orthogonal projection, respectively, and let P〈f〉 be the positive
cone of 〈f〉 that is mapped into PV by ι〈f〉. We put

ι∗〈f〉V
⊥ := {ι−1

〈f〉(H) |H ∈ V⊥ such that ι−1
〈f〉(H) is a hyperplane of P〈f〉},

which is a locally finite family of hyperplanes of P〈f〉. Note that ι∗〈f〉V
⊥ is equal to

(pr∗〈f〉V)⊥, where

pr∗〈f〉V := {pr〈f〉(v) | v ∈ V such that 〈pr〈f〉(v),pr〈f〉(v)〉 < 0}.
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Then the face f of C is an ι∗〈f〉V
⊥-chamber in P〈f〉, and is equal to

{z ∈ P〈f〉 | 〈z,pr〈f〉(v)〉 ≥ 0 for all v ∈ UC with 〈pr〈f〉(v),pr〈f〉(v)〉 < 0}.

Therefore, if UC is finite, we can calculate the set of walls of the ι∗〈f〉V
⊥-chamber f ,

and hence we can calculate the set of all faces of C by descending induction on the
dimension of faces.

Let w be a wall of C. Then there exists a unique V⊥-chamber C ′ such that
C ∩ C ′ = w. This V⊥-chamber C ′ is said to be adjacent to C across the wall w.

2.7. Induced chambers. Let L be an even hyperbolic lattice. We apply the above
definitions to L⊗Q. Let PL be a positive cone of L, and let V be a set of vectors
v ∈ L ⊗ Q with 〈v, v〉 < 0 such that the family V⊥ of hyperplanes of PL is locally
finite. Suppose that we have a primitive embedding

ιS : S ↪→ L

of an even hyperbolic lattice S of rank m < n, and let PS be the positive cone of
S that is mapped into PL by ιS . We use the same letter ιS to denote the inclusion
PS ↪→ PL. We denote the orthogonal projection by prS : L⊗Q→ S ⊗Q, and put

ι∗SV⊥ := {ι−1
S (H) |H ∈ V⊥ such that ι−1

S (H) is a hyperplane of PS},
pr∗SV := {prS(v) | v ∈ V with 〈prS(v),prS(v)〉 < 0}.

Then ι∗SV⊥ = (pr∗SV)⊥ is a locally finite family of hyperplanes of PS . A V⊥-chamber
C ⊂ PL is said to be non-degenerate with respect to ιS if the closed subset ι−1

S (C)
of PS contains a non-empty open subset of PS . Suppose that C is non-degenerate
with respect to ιS . Then ι−1

S (C) is an ι∗SV⊥-chamber, which we call the chamber
induced by C. If C is quasi-finite, then so is the induced chamber ι−1

S (C).

2.8. Vinberg chambers and Conway chambers. Let L be as above. Note that
the family R⊥L of hyperplanes is locally finite, where RL is the set of (−2)-vectors.
Each r ∈ RL defines a reflection x 7→ x + 〈x, r〉r. Let W (L) be the subgroup of
O(L,PL) generated by reflections with respect to (−2)-vectors. Then each R⊥L -
chamber is a standard fundamental domain of the action of W (L) on PL.

For n = 10 and n = 26, let Ln be an even unimodular hyperbolic lattice of
rank n, which is unique up to isomorphism. We denote by Pn a positive cone of
Ln ⊗ R, and by Rn the set of (−2)-vectors of Ln.

An R⊥10-chamber in P10 is called a Vinberg chamber. It is known that a Vinberg
chamber is quasi-finite.

Theorem 2.8.1 (Vinberg [36]). A Vinberg chamber has exactly 10 walls.

An R⊥26-chamber in P26 is called a Conway chamber. It is known that a Conway
chamber is quasi-finite. A non-zero primitive vector w ∈ L26 ∩ ∂ P26 is called a
Weyl vector if the negative definite lattice [w]⊥/[w] is isomorphic to the negative
definite Leech lattice, where [w]⊥ := {v ∈ L26 | 〈v,w〉 = 0}.

Theorem 2.8.2 (Conway [36]). For each Conway chamber C, there exists a unique
Weyl vector wC such that the walls of C are defined by (−2)-vectors r ∈ R26

satisfying 〈w, r〉 = 1.
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2.9. Primitive embeddings of L10(2) into L26. In [6], we classified all primitive
embeddings of L10(2) into L26. It turns out that, up to the action of O(L10(2)) =
O(L10) and O(L26), there exist exactly 17 primitive embeddings, which are named
as being of type

12A, 12B, 20A, . . . , 20A, . . . , 20F, 40A, . . . , 40E, 96A, . . . , 96C, infty.

Let ι : L10(2) ↪→ L26 be a primitive embedding. Identifying positive cones of L10(2)
with positive cones of L10 and replacing ι with −ι if necessary, we assume that
ι maps P10 into P26. Then P10 is covered by ι∗R⊥26-chambers. Since Conway
chambers are quasi-finite, every ι∗R⊥26-chambers are quasi-finite. In [6], we have
proved the following:

Theorem 2.9.1. Suppose that ι is not of type infty. Let D and D′ be ι∗R⊥26-
chambers. Then there exists an isometry g ∈ O+(L10) that preserves the set of
ι∗R⊥26-chambers and maps D to D′. Each ι∗R⊥26-chamber has only a finite number
of walls, and each wall is defined by a (−2)-vector. If D ∩ (r)⊥ is a wall of D with
r ∈ R10, then the ι∗R⊥26-chamber adjacent to D across the wall D ∩ (r)⊥ is the
image of the reflection of D into the hyperplane (r)⊥.

Remark 2.9.2. If a primitive embedding ι : L10(2) ↪→ L26 is of type infty, then the
ι∗R⊥26-chamber has infinitely many walls. The embedding ι is of type infty if and
only if [ι]⊥ contains no (−2)-vectors.

Let Y be an Enriques surface. Then the Néron-Severi lattice SY is isomorphic
to L10. It is known that the nef chamber NY is bounded by hyperplanes (r)⊥

defined by (−2)-vectors r ∈ RY . In [6], we have proved the following:

Theorem 2.9.3. Let [σ, τ ] be one of the pairs

[12A, I], [12B, II], [20A,V], [20B, III], [20C,VII], [20D,VII], [20E,VI], [20F, IV].

Then every ι∗R⊥26-chamber D for a primitive embedding ι : L10(2) ↪→ L26 of type σ
is equal to the nef chamber NY of an Enriques surface Y with finite automorphism
group of Nikulin-Kondo type τ under an isomorphism L10

∼= SY .

2.10. K3 surfaces. Let X be a complex projective K3 surface with transcendental
lattice TX . Then the nef chamber NX is an R⊥X -chamber, and each wall of NX is
defined by the class of a smooth rational curve on X. We put

O(SX , NX) := {g ∈ O(SX) |Ng
X = NX}.

Recall that WX := W (SX) is the subgroup of O(SX ,PX) generated by reflections
with respect to (−2)-vectors. The following relations hold (see [22]):

O(SX ,PX) = WX o O(SX , NX),(2.4)
WX ⊂ ker(O(SX)→ O(q(SX))).(2.5)

Let O(TX , ωX) be the group of isometries of TX that preserves the 1-dimensional
subspace H2,0(X) ⊂ TX ⊗ C, and let O(q(TX), ωX) be the image of O(TX , ωX) by
the natural homomorphism O(TX)→ O(q(TX)). The even unimodular overlattice
H2(X,Z) of the orthogonal direct sum SX ⊕ TX induces an anti-isometry between
the discriminant forms of SX and of TX (see [20]), and hence induces an isomor-
phism O(q(SX)) ∼= O(q(TX)). Let O(q(SX), ωX) be the image of O(q(TX), ωX)
through this isomorphism. We say that an isometry g ∈ O(SX) satisfies the period
condition if q(g) ∈ O(q(SX), ωX). Let O(SX , ωX) denote the group of isometries
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satisfying the period condition. Recall that aut(X) ⊂ O(SX ,PX) is the image of
Aut(X) by (2.1). The Torelli theorem for complex K3 surfaces asserts that

(2.6) aut(X) = O(SX , NX) ∩O(SX , ωX).

In particular, if g ∈ O(SX , ωX) maps an interior point of NX to an interior point
of NX , then g belongs to aut(X).

Remark 2.10.1. By the Torelli theorem, the kernel of ρX : Aut(X) → O(SX) is
isomorphic to the kernel of the natural homomorphism O(TX , ωX)→ O(q(TX)).

2.11. Singular K3 surfaces. Let X be a singular K3 surface. Its transcendental
lattice TX admits a basis with respect to which the Gram matrix is of the form

[a, b, c] :=

[
a b
b c

]
,

with 0 ≤ 2b ≤ a ≤ c. We write X(T ) for the K3 surface corresponding to an
oriented positive definite even lattice T of rank 2. The lattice T = [a,−b, c] defines
a distinct oriented isomorphism class if and only if 0 < 2b < a < c.

Remark 2.11.1. If X is a singular K3 surface, the subgroup O(TX , ωX) can be
identified with the subgroup consisting of isometries of TX of positive determinant.
Its image O(q(TX), ωX) depends only on the genus of TX .

3. Classification of Enriques involutions up to conjugation

LetX be a complex projective K3 surface. We are interested in classifying the im-
ages ε of Enriques involutions ε̃ in aut(X) through the natural representation (2.1)
up to conjugation in aut(X). The image ε ∈ aut(X) is also call an Enriques in-
volution. This is essentially the same problem by the following observation due to
Ohashi.

Proposition 3.0.1 (Ohashi [22]). Let ε̃1, ε̃2 : X → X be two Enriques involutions.
Then the quotients Yi := X/〈ε̃i〉, i = 1, 2, are isomorphic over C if and only if ε1,
ε2 are conjugate in aut(X).

In this section, after recalling part of Ohashi’s work, we refine and generalize his
main Theorem 2.3 in [22].

3.1. Main result. Given an Enriques involution ε ∈ aut(X), we put

Sε=1
X := {v ∈ SX | vε = v}.

We have the following criterion by Keum.

Theorem 3.1.1 (Keum [12]). An involution ε ∈ aut(X) is an Enriques involution
if and only if the following holds: the sublattice Sε=1

X is isomorphic to L10(2) and
its orthogonal complement in SX contains no (−2)-vectors.

Let IX be the set of primitive embeddings ι : L10(2) ↪→ SX such that the orthog-
onal complement [ι]⊥ of the image of ι in SX contains no (−2)-vectors. The group
O(SX) acts on IX in a natural way.

Proposition 3.1.2 (Proposition 2.2 in [22]). For every ι ∈ IX and g ∈ O(SX)
such that [ι]g intersects the interior of NX , there exists a unique ε ∈ aut(X) such
that Sε=1

X = [ι]g.
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Corollary 3.1.3. Let ε1, ε2 ∈ aut(X) be two Enriques involutions. Then, there
exists γ ∈ aut(X) such that ε2 = γ ◦ ε1 ◦ γ−1 if and only if (Sε1=1

X )γ = Sε2=1
X .

Proposition 3.1.4 (Step 1 of Theorem 2.3 in [22]). For every ι ∈ IX there exists
h ∈ O(SX) such that [ι]h intersects the interior of NX .

Lemma 3.1.5 (Step 2 of Theorem 2.3 in [22]). Suppose [ι] intersects the interior
of NX . If there exist an Enriques involution ε ∈ aut(X) and g ∈ O(SX) such that
Sε=1
X = [ι]g, then there exists g̃ ∈ O(SX , NX) such that Sε=1

X = [ι]g̃.

Proposition 3.1.6. Given ι ∈ IX , let ε1, ε2 ∈ aut(X) be two Enriques involutions
with Sε1=1

X = [ι]g1 and Sε2=1
X = [ι]g2 for some g1, g2 ∈ O(SX , NX). Then the

Enriques involutions ε1 and ε2 are conjugate in aut(X) if and only if the natural
images q(g1), q(g2) ∈ O(q(SX)) belong to the same double coset with respect to
O(q(SX), [ι]) and O(q(SX), ωX).

Proof. Let ιi := gi ◦ ι for i = 1, 2. Suppose there exists γ ∈ aut(X) with ε2 =
γ ◦ε1 ◦γ−1. Let ϕ := g−1

2 ◦γ ◦g1, so that ϕ ∈ O(SX , [ι]). Indeed, by Corollary 3.1.3,

[ι]ϕ = [γ ◦ ι1]g
−1
2 = [ι2]g

−1
2 = [ι].

As g1 = ϕ ◦ g2 ◦ γ−1 and γ ∈ O(SX , ωX), the automorphisms q(g1), q(g2) of q(SX)
belong to the same double coset.

Conversely, assume that there exist ϕ ∈ O(SX , [ι]) and γ′ ∈ O(SX , ωX) such
that q(g2) = q(ϕ ◦ g1 ◦ γ′) in O(q(SX)). Without loss of generality, we can suppose
ϕ ∈ O(SX , NX). In fact, we can first exchange ϕ with −ϕ if necessary and suppose
that ϕ ∈ O(SX ,PX). By (2.4) and (2.5), we can write ϕ = w ◦ ϕ′, with w ∈ WX

and ϕ′ ∈ O(SX , NX) and exchange ϕ with ϕ′ if necessary. Define now γ := g2 ◦
ϕ−1 ◦ g−1

1 . Then γ ∈ O(SX , NX) and q(γ) = q(γ′), so γ ∈ O(SX , ωX). The Torelli
Theorem (2.6) implies that γ ∈ aut(X). Furthermore, we have

[ι1]γ = ([ι]ϕ
−1

)g2 = [ι2],

so ε1 and ε2 are conjugate in aut(X) by Corollary 3.1.3. �

Lemma 3.1.7. If a K3 surface X admits at least one Enriques involution, then
the lattice SX is unique in its genus and the natural homomorphism O(SX) →
O(q(SX)) is surjective.

Proof. Let ι : L10(2) ↪→ SX be a primitive embedding. Then q(SX) ∼= (q([ι]) ⊕
q([ι]⊥))|Γ⊥/Γ for some isotropic subgroup Γ of q([ι]) ⊕ q([ι]⊥). Since q([ι]) ∼=
q(L10(2)) ∼= u⊕5

1 , this implies that

`p(S
∨
X/SX) ≤ rank[ι]⊥ = rankSX − 10

for every odd prime p. Moreover, if `2(S∨X/SX) = rankSX , then q(SX) = q([ι])⊕q′
for some finite quadratic form q′. Therefore, we can conclude by Theorem 1.14.2
in [20]. �

Combining Lemma 3.1.7 and the same argument as in Step 5 of Theorem 2.3
in [22], we prove the following proposition.

Proposition 3.1.8. If a K3 surface X admits at least one Enriques involution,
then O(SX , NX)→ O(q(SX)) is surjective. �

Our main result is the following theorem.
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Theorem 3.1.9. Let X be a K3 surface and ι1, . . . , ιr ∈ IX be a complete set of
representatives for the action of O(SX) on IX . Then there exists a bijection between
the set of Enriques involutions up to conjugation in aut(X) and the disjoint union
of the sets of double cosets

O(q(SX), [ιi])\O(q(SX))/O(q(SX), ωX), i = 1, . . . , r.

Proof. Let G = O(SX), Hi = O(q(SX), [ιi]) and K = O(q(SX), ωX). For each i =
1, . . . , r, fix hi ∈ G such that [ιi]

hi intersects the interior of NX (Proposition 3.1.4).
As exchanging ιi with hi ◦ ι replaces Hi with a conjugate subgroup, we can suppose
without loss of generality that [ιi] intersects the interior of NX . For each Enriques
involution ε ∈ aut(X) there exists a unique i ∈ {1, . . . , r} such that there exists
g ∈ G with Sε=1

X = [ιi]
g. Moreover, by Lemma 3.1.5, we can suppose that g ∈

O(SX , NX). We map such an ε to the double coset Hiq(g)K ∈ Hi\G/K. This
function is trivially well-defined and injective by Proposition 3.1.6.

To show surjectivity, take i ∈ {1, . . . , r} and HiξK ∈ Hi\G/K, with ξ ∈ G. By
Proposition 3.1.8, ξ = q(g) for some g ∈ O(SX , NX). As [ιi]

g also intersects the
interior of NX , by Proposition 3.1.2 there is an Enriques involution ε ∈ aut(X)
which maps to HiξK. This concludes the proof. �

Corollary 3.1.10. The number of Enriques involutions of a singular K3 surface X
up to conjugation in aut(X) only depends on the genus of the transcendental lat-
tice TX .

Proof. The lattice SX is unique in its genus by Lemma 3.1.7, so it is completely de-
termined by the genus of TX . The subgroup O(q(SX), ωX) is also determined by the
genus of TX when X is singular (see Remark 2.11.1). The subgroups O(q(SX), [ι])
for ι ∈ IX only depend on SX , so in turn they depend only on the genus of TX . �

Remark 3.1.11. Schütt [24] described a relation of two singular K3 surfaces whose
transcendental lattices are in the same genus. See also [26].

3.2. Table 3.1. Table 3.1 contains the list of all singular K3 surfaces X of discrim-
inant d with d ≤ 36, given by their respective transcendental lattices TX , together
with the list of the Enriques involutions that they admit, up to conjugation in
aut(X). We will illustrate presently how this table was compiled.

The following theorem by Sertöz builds on work by Keum [12] and characterizes
singular K3 surfaces without Enriques quotients.

Theorem 3.2.1 (Sertöz [25]; see also [11]). Let X be a singular K3 surface of
discriminant d. Then X has no Enriques involution if and only if d ≡ 3 (8) or
TX ∈ {[2, 0, 2], [2, 0, 4], [2, 0, 8]}.

In all other cases, we determined the set of conjugacy classes of all Enriques
involutions in aut(X) by means of Theorem 3.1.9. The item |Enr| in Table 3.1
indicates the number of such conjugacy classes.

First of all, one must determine a complete set of representatives for the action of
O(SX) on IX . Given a positive definite even lattice N of rank 10 without 2-vectors
(see Theorem 3.1.1), we put

IX(N) := {ι ∈ IX | [ι]⊥ ∼= N(−1)}.
Clearly, the sets IX(N) form a partition of IX which respects the O(SX)-action,
so we reduce the problem to computing a complete set of representatives for the
action of O(SX) on IX(N), for each N such that IX(N) 6= ∅.
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Table 3.1. Enriques involutions up to conjugation of singular K3
surfaces of discriminant d ≤ 36 (see Section 3.2).

d TX |Enr| q(N) N |IX(N)|
3 [2, 1, 2] 0 – – –

4 [2, 0, 2] 0 – – –

7 [2, 1, 4] 2 u⊕5
1 ⊕

〈
2
7

〉
N144

10,7(2) 1
N242

10,7(2) 1

8 [2, 0, 4] 0 – – –

11 [2, 1, 6] 0 – – –

12 [2, 0, 6] 1 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
6

〉
M144

10,3(2) 1

12 [4, 2, 4] 3 u⊕4
1 ⊕ v1 ⊕

〈
4
3

〉
N246

10,3(2) 3× 1

15 [2, 1, 8] 5 u⊕5
1 ⊕

〈
2
15

〉
N90

10,15(2) 1
N132

10,15(2) 1
N144

10,15(2) 2
N240

10,15(2) 1

15 [4, 1, 4] 4 u⊕5
1 ⊕

〈
4
15

〉
N92

10,15(2) 1
N112

10,15(2) 1
N242

10,15(2) 2

16 [2, 0, 8] 0 – – –

16 [4, 0, 4] 9 u⊕4
1 ⊕

〈
1
4

〉
⊕
〈

1
4

〉
D10(2) 3× 1
N244

10,4(2) 5× 1

u⊕3
1 ⊕

〈
1
4

〉
⊕
〈

1
4

〉
N0,308

10,1024 1

19 [2, 1, 10] 0 – – –

20 [2, 0, 10] 1 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
10

〉
M132

10,5(2) 1

20 [4, 2, 6] 2 u⊕4
1 ⊕

〈
3
2

〉
⊕
〈

3
10

〉
M92

10,5(2) 1
M242

10,5(2) 1

23 [2, 1, 12],
[4,±1, 6]

7 u⊕5
1 ⊕

〈
2
23

〉
N74

10,23(2) 1
N84

10,23(2) 1
N112

10,23(2) 1
N132

10,23(2) 1
N144

10,23(2) 1
N240

10,23(2) 1
N242

10,23(2) 1

24 [2, 0, 12] 1 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
12

〉
M90

10,6(2) 1

24 [4, 0, 6] 1 u⊕4
1 ⊕

〈
3
2

〉
⊕
〈

11
12

〉
M242

10,6(2) 1

27 [2, 1, 14] 0 – – –
Continued on next page
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Table 3.1 – continued from previous page

d T |Enr| q(N) N |IX(N)|

27 [6, 3, 6] 0 – – –

28 [2, 0, 14] 1 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
14

〉
M112

10,7(2) 1

28 [4, 2, 8] 24 u⊕5
1 ⊕

〈
2
7

〉
N144

10,7(2) 3× 1 + 4× 2
N242

10,7(2) 4× 1 + 4× 2

u⊕4
1 ⊕

〈
2
7

〉
N0,274

10,1792 1

31 [2, 1, 16],
[4,±1, 8]

9 u⊕5
1 ⊕

〈
2
23

〉
N60

10,31(2) 1
N72

10,31(2) 1
N86

10,31(2) 1
N90

10,31(2) 1
N112

10,31(2) 1
N128

10,31(2) 1
N144

10,31(2) 1
N240

10,31(2) 1
N242

10,31(2) 1

32 [2, 0, 16] 1 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
16

〉
M84

10,8(2) 1

32 [4, 0, 8] 33 u⊕4
1 ⊕

〈
1
4

〉
⊕
〈

1
8

〉
N138

10,8(2) 2× 1 + 4× 2
N146

10,8(2) 3× 1 + 2× 2
N242

10,8(2) 3× 1 + 5× 2

u⊕3
1 ⊕

〈
1
4

〉
⊕
〈

1
8

〉
N0,210

10,2048 1

N0,250
10,2048 1

N0,274
10,2048 1

32 [6, 2, 6] 3 u⊕4
1 ⊕

〈
3
2

〉
⊕
〈

3
16

〉
M112

10,8(2) 1
M144

10,8(2) 1
M240

10,8(2) 1

35 [2, 1, 18] 0 – – –

35 [6, 1, 6] 0 – – –

36 [2, 0, 18] 3 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

1
18

〉
M74

10,9(2) 1
M90

10,9(2) 1
M128

10,9(2) 1

36 [4, 2, 10] 2 u⊕4
1 ⊕

〈
1
2

〉
⊕
〈

5
18

〉
M80

10,9(2) 1
M242

10,9(2) 1

36 [6, 0, 6] 3 u⊕4
1 ⊕

〈
1
6

〉
⊕
〈

1
6

〉
M60

10,9(2) 1
M132

10,9(2) 1
M240

10,9(2) 1
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We find all such lattices in the following way. Using Proposition 2.5.1, we list all
possible finite quadratic forms q, such that q ∼= q(N). For each form q, we determine
all lattices N in the genus g(10, 0, q) without 2-vectors (see Algorithm 2.4.3).

All possible finite quadratic forms q = q(N) and orthogonal complements N
have been listed in Table 3.1 in the items q(N) and N . The name Nρ2,ρ4

r,d (resp.
Mρ2,ρ4
r,d ) denotes a positive definite even (resp. odd) lattice of rank r, determinant

d, with ρ2 2-vectors and ρ4 4-vectors (ρ4 omitted if not needed to distinguish two
lattices). A Gram matrix for each of these lattices can be found in [31].

Since IX(N) = I(SX , L10(2), N(−1)) as defined in Section 2.5, a complete set of
representatives ι1, . . . , ιr up to the action of O(SX) on IX(N) can be enumerated
using Proposition 2.5.2. For each i ∈ {1, . . . , r}, the subgroup Hi = O(q(SX), [ιi])
of G = O(q(SX)) can be determined using Proposition 2.5.3. On the other hand,
the subgroup K = O(q(SX), ωX) can be computed using Remark 2.11.1.

Remark 3.2.2. In order to apply Proposition 2.5.2, it is worth mentioning that for
L = L10(2) the natural homomorphism O(L)→ O(q(L)) is surjective and that, up
to the action of O(q(L)), there are only two subgroups of L∨/L of order 2.

On the other hand, since N is positive definite, we can compute O(N) by the
attribute automorphism_group of the class QuadraticForm in sage; hence, we can
compute its image in O(q(N)).

The item |IX(N)| gives the cardinalities of the sets of double cosets Hi\G/K.
For instance, the entry “3×1+4×2” means that r = 7, |Hi\G/K| = 1 for i = 1, 2, 3
and |Hi\G/K| = 2 for i = 4, . . . , 7. Note that the item |Enr| is the sum of the items
|IX(N)| over the lattices N .

4. Automorphism groups of singular K3 surfaces

4.1. Borcherds method. We explain Borcherds method ([3], [4]) to calculate
aut(X) of a K3 surface X and its action on NX . The details of the algorithms
in the computation below are explained in [27]. Suppose that we have a primitive
embedding

ιX : SX ↪→ L26.

We assume that ιX maps PX to the positive cone P26 of L26, and consider the
decomposition of PX by ι∗XR⊥26-chambers, that is, by chambers induced by Conway
chambers non-degenerate with respect to ιX . Since ιX maps RX to R26, every
R⊥X -chamber is a union of ι∗XR⊥26-chambers. In particular, the nef chamber NX is
a union of ι∗XR⊥26-chambers. Since a Conway chamber is quasi-finite, every ι∗XR⊥26-
chamber is quasi-finite.

The orthogonal complement [ιX ]⊥ of the image of ιX is an even negative definite
lattice. The even unimodular overlattice L26 of SX⊕[ιX ]⊥ induces an anti -isometry
q(SX) ∼= −q([ιX ]⊥), and hence an isomorphism O(q(SX)) ∼= O(q([ιX ]⊥)). We
assume the following condition:

(A)
the image of O(q(SX), ωX) by the isomorphism O(q(SX)) ∼= O(q([ιX ]⊥))
above is contained in the image of the natural homomorphism
O([ιX ]⊥)→ O(q([ιX ]⊥)).

Since O([ιX ]⊥) and O(q(SX), ωX) are finite, we can determine whether this condi-
tion is fulfilled or not. Suppose that Condition (A) is satisfied. Then every isometry
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g ∈ O(SX , ωX) ∩ O(SX ,PX) extends to an isometry g̃ ∈ O(L26,P26), which pre-
serves the set of Conway chambers. Therefore every isometry of SX satisfying the
period condition preserves the set of ι∗XR⊥26-chambers.

We also assume the following condition:

(B) [ιX ]⊥ cannot be embedded into the negative definite Leech lattice.

For example, if [ιX ]⊥ contains a (−2)-vector, then this condition is fulfilled. Con-
dition (B) implies that each ι∗XR⊥26-chamber D in PX has only a finite number of
walls (see [27]). More precisely, if D is induced by a Conway chamber C, then
the set of vectors defining walls of D can be calculated from the Weyl vector wC

corresponding to C by Theorem 2.8.2. By this finiteness, we can calculate, for two
ι∗XR⊥26-chambers D and D′, the set of all isometries g ∈ O(SX) such that Dg = D′.
In particular, the group

O(SX , D) := {g ∈ O(SX) |Dg = D}

is finite, and can be calculated explicitly. If D ⊂ NX , then

aut(X,D) := O(SX , D) ∩O(SX , ωX)

is contained in aut(X), and can be calculated explicitly.

Definition 4.1.1. Let D be an ι∗XR⊥26-chamber contained in NX . A wall D∩ (v)⊥

of D is called an outer wall if it is defined by a (−2)-vector, that is, if there exists a
rational number λ such that −2/〈v, v〉 = λ2 and λv ∈ SX . Otherwise, we say that
D ∩ (v)⊥ is an inner wall.

A wall D ∩ (v)⊥ is an outer wall if and only if NX ∩ (v)⊥ is a wall of NX . The
ι∗XR⊥26-chamber D′adjacent to D across a wall D ∩ (v)⊥ of D is contained in NX if
and only if D ∩ (v)⊥ is an inner wall.

Let D be an ι∗XR⊥26-chamber, and let wC be the Weyl vector corresponding to a
Conway chamber C inducing D = ι−1

X (C). Let D ∩ (v) be a wall of D, and let D′

be the ι∗XR⊥26-chamber adjacent to D across D ∩ (v)⊥. Then we can calculate the
Weyl vector wC′ corresponding to a Conway chamber C ′ inducing D′ = ι−1

X (C ′)
(see [27]), and hence we can calculate the set of walls of D′, which is again finite.
Therefore we can determine whether there exists an isometry g ∈ O(SX , ωX) that
maps D to D′.

Definition 4.1.2. Let D∩(v)⊥ be an inner wall of an ι∗XR⊥26-chamber D contained
in NX . An isometry g ∈ O(SX , ωX) is said to be an extra automorphism associated
with D ∩ (v)⊥ if g maps D to the ι∗XR⊥26-chamber adjacent to D across D ∩ (v)⊥.

Let g be an extra automorphism as above. Since g satisfies the period condition,
Condition (A) implies that g preserves the set of ι∗XR⊥26-chambers. Moreover g
maps an interior point of NX to the interior of NX , and hence g ∈ aut(X). We
consider the following condition:

(IX) There exists an ι∗XR⊥26-chamber D0 contained in NX such that every
inner wall of D0 has an extra automorphism.

Definition 4.1.3. We say that an embedding ιX satisfying Conditions (A), (B)
and (IX) is of simple Borcherds type.

Theorem 4.1.4 ([27]). Suppose that ιX is of simple Borcherds type.
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Table 4.1. The 11 K3 surfaces to which we can apply Borcherds
method (see Section 4.2).

No. TX root type m1 m2 m3 m4 k1 k2

1 [2, 1, 2] E6 12 6 6 3 103680 2
2 [2, 0, 2] D6 8 4 4 2 46080 2
3 [2, 1, 4] A6 4 2 2 1 10080 2
4 [2, 0, 4] D5 +A1 4 2 2 1 7680 2
5 [2, 0, 6] A5 +A1 4 2 2 1 2880 2
6 [4, 2, 4] D4 +A2 12 6 1 1 13824 12
7 [2, 1, 8] A4 +A2 4 2 2 1 2880 4
8 [4, 0, 4] 2A3 8 4 1 1 4608 8
9 [4, 2, 6] A4 + 2A1 4 2 1 1 1920 4
10 [2, 0, 12] A3 +A2 +A1 4 2 2 1 1152 4
11 [6, 0, 6] 2A2 + 2A1 8 4 1 1 2304 16

(1) For any point v of NX , there exists an automorphism g of X such that
vg ∈ D0.

(2) Let o1, . . . , om be the orbits of the action of aut(X,D0) on the set of inner
walls of D0, and, for i = 1, . . . ,m, let g(oi) be an extra automorphism
associated with an inner wall D0 ∩ (vi)

⊥ belonging to oi. Then aut(X) is
generated by aut(X,D0) and the extra automorphisms g(o1), . . . , g(om).

4.2. Application to certain singular K3 surfaces. We consider singular K3
surfaces with transcendental lattice TX = [a, b, c] in Table 4.1. These transcendental
lattices are characterized among all even binary positive definite lattices by the
following properties: there exists a primitive embedding ιX : SX ↪→ L26 of simple
Borcherds type such that the orthogonal complement [ιX ]⊥ is generated by (−2)-
vectors. In particular, Condition (B) is satisfied. The column root type in Table 4.1
indicates the ADE-type of the standard fundamental root system of [ιX ]⊥. For these
cases, the natural homomorphism O([ιX ]⊥)→ O(q([ιX ]⊥)) is surjective and hence
Condition (A) is satisfied. The following data are also given in Table 4.1.

• m1 is the order of O(TX), m2 is the order of O(TX , ωX), m3 is the order
of the kernel K of the homomorphism O(TX) → O(q(TX)), and m4 is the
order of O(TX , ωX) ∩ K. Then m4 is the order of the kernel of ρX by
Remark 2.10.1, and the order of O(q(TX), ωX) ∼= O(q(SX), ωX) is m2/m4.

• k1 is the order of O([ιX ]⊥), and k2 is the order of O(q(TX)) ∼= O(q(SX)) ∼=
O(q([ιX ]⊥)).

We have a Conway chamber C0 that induces an ι∗XR⊥26-chamber D0 contained
in NX . Let w ∈ L26 be the Weyl vector corresponding to C0, and let wS ∈ SX ⊗Q
be the image of w by the orthogonal projection prS : L26 ⊗Q→ SX ⊗Q. For each
of the 11 cases, we can confirm that wS belongs to the interior of D0 and that
wS is invariant under the action of aut(X,D0). Let o be an orbit of the action of
aut(X,D0) on the set of walls of D0, and let D0∩(v)⊥ be a member of o. We choose
the defining vector v of this wall in such a way that v is primitive in S∨X . Then v
is unique. The values n := 〈v, v〉 and a := 〈v,wS〉 are independent of the choice of
the wall D0 ∩ (v)⊥ ∈ o. Suppose that the orbit o consists of inner walls. Then we
can find an extra automorphism g ∈ aut(X) associated with D0 ∩ (v)⊥ by a direct
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calculation. Hence ιX is of simple Borcherds type. The degree dg := 〈wg
S ,wS〉 is

also independent of the choice of D0 ∩ (v)⊥ and g. Table 4.2 contains the data of
walls and extra automorphisms of D0. If D0∩(v)⊥ is an inner wall, the (−2)-vectors
r of L26 such that (r)⊥ passes through ιX(D0 ∩ (v)⊥) ⊂ P26 form a root system,
whose ADE-type is also given below.

Remark 4.2.1. Almost all results in Table 4.2 have already appeared in previous
works. See Vinberg [37] for Nos. 1 and 2 of Table 4.1, Ujikawa [34] for No. 3, Keum
and Kondo [13] for Nos. 6 and 8, [27] for Nos. 4, 5 and 6, [28] for Nos. 7, 9 and 11.

Remark 4.2.2. In Table 4.2, the order of the finite group aut0 := aut(X,D0) is
given. The list of all elements of aut0 is given in [31].

Table 4.2. Walls and extra automorphisms of D0.

TX |aut0| 〈wS ,wS〉 No. |o| n a dg root type

[2, 1, 2] 72 78 6 outer −2 1
18 outer −2 1

1 12 inner −2/3 9 321 E7

[2, 0, 2] 120 55 10 outer −2 1

15 outer −2 1
20 outer −1/2 17/2

1 5 inner −1 6 127 D7

[2, 1, 4] 336 28 28 outer −2 1

1 14 inner −8/7 4 56 A7

2 28 inner −4/7 6 154 D7

3 56 inner −2/7 7 371 E7

[2, 0, 4] 48 61/2 6 outer −2 1

8 outer −2 1
12 outer −2 1

2 outer −1/2 11/2

1 3 inner −3/2 3/2 67/2 A2 + D5

2 4 inner −1 5 161/2 A1 + D6

3 6 inner −1 5 161/2 A1 + D6

4 8 inner −3/4 6 253/2 A1 + E6

5 24 inner −3/4 6 253/2 A1 + E6

6 8 inner −1/4 13/2 737/2 E7

[2, 0, 6] 144 18 12 outer −2 1
18 outer −2 1
12 outer −1/2 11/2

36 outer −1/2 11/2

1 4 inner −3/2 3/2 21 A2 + A5

2 24 inner −7/6 7/2 39 A1 + A6

3 6 inner −2/3 4 66 A7

4 24 inner −2/3 5 93 A1 + D6

5 36 inner −2/3 5 93 A1 + D6

6 24 inner −1/6 11/2 381 E7

[4, 2, 4] 1152 16 32 outer −2 1

1 8 inner −4/3 2 22 A3 + D4

Continued on next page



18 ICHIRO SHIMADA AND DAVIDE CESARE VENIANI

Table 4.2 – continued from previous page

TX |aut0| 〈wS ,wS〉 No. |o| n a dg root type

2 72 inner −1 4 48 A2 + D5

3 96 inner −1/3 5 166 D7

[2, 1, 8] 720 12 36 outer −2 1

1 12 inner −4/3 2 18 A3 + A4

2 40 inner −6/5 3 27 A2 + A5

3 90 inner −4/5 4 52 A2 + D5

4, 5 30 inner −8/15 4 72 A7

6, 7 120 inner −2/15 5 387 E7

[4, 0, 4] 3840 10 40 outer −2 1

1 64 inner −5/4 5/2 20 A3 + A4

2 40 inner −1 3 28 A3 + D4

3 160 inner −1/2 4 74 A7

4 320 inner −1/4 9/2 172 D7

[4, 2, 6] 120 11 5 outer −2 1

30 outer −2 1

1, 2 6 inner −3/2 3/2 14 A1 + A2 + A4

3 20 inner −6/5 3 26 2A1 + A5

4 30 inner −6/5 3 26 2A1 + A5

5 1 inner −1 2 19 A3 + A4

6 30 inner −4/5 4 51 2A1 + D5

7 40 inner −4/5 4 51 2A1 + D5

8 60 inner −4/5 4 51 2A1 + D5

9, 10 20 inner −7/10 7/2 46 A1 + A6

11, 12 20 inner −3/10 9/2 146 A1 + E6

13, 14 60 inner −3/10 9/2 146 A1 + E6

15 10 inner −1/5 4 171 D7

[2, 0, 12] 720 15/2 45 outer −2 1

45 outer −1/2 7/2

1 10 inner −3/2 3/2 21/2 2A2 + A3

2 30 inner −4/3 2 27/2 A1 + 2A3

3 72 inner −5/4 5/2 35/2 A1 + A2 + A4

4 60 inner −1 3 51/2 A1 + A2 + D4

5 12 inner −5/6 5/2 45/2 A3 + A4

6 40 inner −3/4 3 63/2 A2 + A5

7, 8 120 inner −7/12 7/2 99/2 A1 + A6

9 120 inner −1/3 4 207/2 A1 + D6

10 180 inner −1/3 4 207/2 A1 + D6

11, 12 120 inner −1/12 4 783/2 E7

[6, 0, 6] 1440 5 60 outer −2 1

1 40 inner −3/2 3/2 8 A1 + 3A2

2 180 inner −4/3 2 11 2A1 + A2 + A3

3 10 inner −1 2 13 2A2 + A3

4, 5 144 inner −5/6 5/2 20 A1 + A2 + A4

6 240 inner −2/3 3 32 2A1 + A5

7 360 inner −2/3 3 32 2A1 + A5

8 180 inner −1/3 3 59 A2 + D5

9, 10 240 inner −1/6 7/2 152 A1 + E6

11, 12 720 inner −1/6 7/2 152 A1 + E6
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Figure 5.1. A D0-inner face that is not NX -inner.

5. Enriques involutions and Borcherds method

In this section, we assume that X is a complex K3 surface admitting a primitive
embedding ιX : SX ↪→ L26 of simple Borcherds type and, in addition, that

(C) the natural homomorphism ρX : Aut(X)→ O(SX ,PX) is injective.

5.1. Inner faces. Let D0 be an ι∗XR⊥26-chamber contained in NX . Let w1, . . . , wk
be the inner walls of D0. For each wi, we calculate an extra automorphism gi ∈
aut(X) associated with wi (see Definition 4.1.2).

Definition 5.1.1. A face f of D0 is said to be D0-inner if f is not contained in
any outer wall of D0, whereas f is said to be NX-inner if f is not contained in any
wall of NX .

Remark 5.1.2. An NX -inner face is always D0-inner. The converse is, however,
not true in general as illustrated in Figure 5.1, in which a black circle indicates a
D0-inner face of codimension 2 that is not NX -inner.

Let f be a D0-inner face of dimension > 0. We put

D(f) := {D |D is an ι∗XR⊥26-chamber contained in NX and containing f},
A(X, f) := {g ∈ aut(X) |Dg

0 ∈ D(f)} = {g ∈ aut(X) | f ⊂ Dg
0},

aut(X, f) := {g ∈ aut(X) | fg = f}.
The set D(f) is calculated by the following method.

Algorithm 5.1.3. We set D = [D0], γ0 = id, Γ = [γ0], and i = 0. During the
calculation, the ordered set D is a subset of D(f), and the (i + 1)st member γi of
Γ is an element of aut(X) that maps D0 to the (i + 1)st member Di of D. While
i < |D|, we execute the following. We calculate the set {wν(1), . . . , wν(m)} of inner
walls wν(j) ofD0 such that f ⊂ wγiν(j). Let gν(j) ∈ aut(X) be an extra automorphism
associated with wν(j). For each j = 1, . . . ,m, we calculate the induced chamber
D′ := D

gν(j)γi
0 , which is adjacent to Di = Dγi

0 across wγiν(j) and contains f . If D′

has not yet been added to D, we add D′ to D and gν(j)γi to Γ . Then we increment
i to i+ 1.

When this algorithm terminates, the list D is equal to D(f). Moreover, we have
calculated Γ = {gD |D ∈ D(f)}, where gD ∈ aut(X) maps D0 to D ∈ D(f). Note
that the action of gD ∈ Γ preserves the walls of NX . The following is obvious from
the definition.

Criterion 5.1.4. The D0-inner face f is NX -inner if and only if, for any gD ∈ Γ
and any outer wall D0 ∩ (r)⊥ of D0, the wall (D0 ∩ (r)⊥)gD of D = DgD

0 does not
contain f .
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Suppose that f is NX -inner and D is an element of D(f). Note that the set of
all elements g ∈ aut(X) that maps D0 to D is equal to aut(X,D0) · gD. Therefore
we can calculate A(X, f) by

A(X, f) =
⊔

D∈D(f)

aut(X,D0) · gD.

The subgroup aut(X, f) of aut(X) is contained in the finite set A(X, f), and thus
we can calculate aut(X, f).

Definition 5.1.5. Let f and f ′ be NX -inner faces of D0. We say that f and
f ′ are aut(X)-equivalent (resp. aut(X,D0)-equivalent) if there exists an element
g ∈ aut(X) (resp. g ∈ aut(X,D0)) such that fg = f ′.

Even though aut(X) is infinite in general, we can calculate the aut(X)-equivalence
classes by the following:

Criterion 5.1.6. The faces f and f ′ are aut(X)-equivalent if and only if there
exists an element g ∈ A(X, f ′) such that fg = f ′.

5.2. An algorithm to classify all Enriques involutions. Let ε̃ : X → X be
an Enriques involution, and π : X → Y := X/〈ε̃〉 the quotient morphism to the
Enriques surface Y . Let ε ∈ aut(X) denote the image of ε̃ by the natural homo-
morphism (2.1). Then π induces a primitive embedding π∗ : SY (2) ↪→ SX . We
have canonical identifications SY (2) ⊗ R = SY ⊗ R and O(SY (2)) = O(SY ). In
particular, we regard the positive cone PY of SY as a positive cone of SY (2). The
embedding π∗ induces an embedding

π∗ : PY ↪→ PX .
Henceforth, we regard SY (2) as a primitive sublattice of SX and PY as a subspace
of PX by π∗. Note that SY (2) is equal to {v ∈ SX | vε = v}, and PY is equal to
{x ∈ PX |xε = x}.
Proposition 5.2.1. We have NY = NX ∩ PY . Let y be a point of NY . Then y is
an interior point of NY if and only if y is an interior point of NX .

Proof. The first equality is obvious. By Theorem 3.1.1, the orthogonal complement
of SY (2) in SX contains no (−2)-vectors, and a line bundle of Y is ample if and
only if its pull-back to X is ample. �

Let y be a sufficiently general point of NY . By Theorem 4.1.4, there exists an
automorphism g ∈ aut(X) such that yg ∈ D0, and hence D0 ∩ Ng

Y contains a
non-empty open subset of PgY . Therefore, replacing ε by g−1εg, we can assume
that

E0 := D0 ∩NY
contains a non-empty open subset of PY . Consider the composite

ιY := ιX ◦ π∗ : SY (2) ↪→ L26

of primitive embeddings. Then PY is decomposed into the union of ι∗YR⊥26-chambers.
Since every wall of NY is defined by a (−2)-vector, it follows that NY is decomposed
into a union of ι∗YR⊥26-chambers. Note that E0 is one of the ι∗YR⊥26-chambers in
NY .

Definition 5.2.2. For a closed subset A of D0, the minimal face of D0 for A is
the face of D0 containing A with the minimal dimension.



ENRIQUES INVOLUTIONS ON SINGULAR K3 SURFACES 21

Let fε be the minimal face of D0 for E0. Since the orthogonal complement
of SY (2) in SX contains no (−2)-vector, the face fε is NX -inner. Moreover, the
involution ε ∈ aut(X) belongs to aut(X, fε). Let ε′ be an Enriques involution such
that fε′ is a face of D0. If ε′ is conjugate to ε, then fε is aut(X)-equivalent to fε′ .
If fε = fε′ , then ε and ε′ are conjugate if and only if ε and ε′ are conjugate in
aut(X, fε).

We calculate all NX -inner faces of D0 of dimension ≥ 10 by descending induc-
tion of the dimension of faces (see Section 2.6), and compute a complete set of
representatives of the aut(X)-equivalence classes. For each representative f , we
calculate aut(X, f). We then calculate the set of Enriques involutions ε contained
in aut(X, f) such that fε = f by Keum’s criterion (Theorem 3.1.1), and thus we
obtain a set of complete representatives of Enriques involutions in aut(X) modulo
conjugation.

5.3. Computation of Aut(Y ). Let ε be a representative of aut(X)-conjugacy
classes of Enriques involutions obtained by the method above. In particular, we
have an ι∗YR⊥26-chamber E0 = D0 ∩NY , the minimal face fε of D0 for E0, and the
associated data D(fε), A(X, fε), aut(X, fε). We put

aut(X, ε) := {gX ∈ aut(X) | εgX = gXε} = {gX ∈ aut(X) |SY (2)gX = SY (2)},
where the second equality follows from SY (2) = {v ∈ SX | vε = v}. We have a
natural restriction homomorphism aut(X, ε)→ O(SY ), which is denoted by gX 7→
gX |SY . By Condition (C), we have a natural identification

(5.1) Aut(Y ) ∼= aut(X, ε)/〈ε〉.
Under the identification (5.1), the homomorphism ρY : Aut(Y ) → O(SY ,PY ) is
identified with the homomorphism gX mod 〈ε〉 7→ gX |SY . The method below, when
it works, gives us a finite set of generators of aut(X, ε), and hence a finite set of
generators of Aut(Y ).

Recall that aut(Y ) is the image of Aut(Y ) by ρY . We put

aut(Y,E0) := {g ∈ aut(Y ) |Eg0 = E0},
and let Aut(Y,E0) denote the inverse image of aut(Y,E0) by ρY .

Proposition 5.3.1. The action of aut(Y ) on NY preserves the set of ι∗YR⊥26-
chambers contained in NY .

Proof. Let g be an element of aut(Y ). Then g extends to gX ∈ aut(X, ε). By
Condition (A), this isometry gX ∈ O(SX , ωX)∩O(SX ,PX) extends to an isometry
g̃X of L26, which preserves the set of Conway chambers. Hence its restriction g to
SY (2) preserves the set of chambers induced by Conway chambers. �

We put
aut(X, ε, fε) := aut(X, ε) ∩ aut(X, fε).

Proposition 5.3.2. The identification (5.1) induces Aut(Y,E0) ∼= aut(X, ε, fε)/〈ε〉.

Proof. Note that E0 = fε ∩NY . Since E0 contains an interior point of the face fε,
an element gX of aut(X, ε) fixes E0 if and only if gX fixes fε. �

Corollary 5.3.3. By the identification (5.1), the kernel of ρY : Aut(Y )→ O(SY ,PY )
is equal to

{gX ∈ aut(X, ε, fε) | gX |SY = id}/〈ε〉.
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Recall from Section 2.9 that we have classified primitive embeddings of SY (2) ∼=
L10(2) into L26. The ι∗YR⊥26-chamber E0 has only finitely many walls. By Re-
mark 2.9.2, the primitive embedding ιY : SY (2) ↪→ L26 is not of type infty. By
Theorem 2.9.1, every ι∗YR⊥26-chamber E has only a finite number of walls, and each
wall of E is defined by a (−2)-vector r ∈ RY .

Definition 5.3.4. A wall w of E0 is said to be outer if w is contained in a wall
of NY . Otherwise w is said to be inner.

There are several criteria to determine whether a given wall w of E0 is outer or
inner.

Criterion 5.3.5. Suppose that the wall w of E0 is defined by r ∈ RY . Then w
is outer if and only if there exists a (−2)-vector u in the orthogonal complement
[π∗]⊥ of SY (2) in SX such that (u+ r)/2 ∈ SX .

Indeed, the condition in the statement is equivalent to the condition that r is
the class of an effective divisor of Y (see [21]).

Criterion 5.3.6. Let fε(w) be the minimal face of D0 for the closed subset w
of D0. Then w is inner if and only if fε(w) is NX -inner.

Indeed, by minimality of fε(w), there exists an interior point y of w that is an
interior point of fε(w). Then the statement follows from Proposition 5.2.1.

When E0 has no inner walls, we have E0 = NY and |Aut(Y )| < ∞, and the
Nikulin-Kondo type of Y is obtained by comparing the configuration of (−2)-vectors
defining the walls of E0 with the dual graphs of smooth rational curves given in [15].

We consider Aut(Y ) when E0 has an inner wall. Let I0 denote the set of inner
walls of E0. For each w = E0 ∩ (r)⊥ ∈ I0 with r ∈ RY , we put E(w) := Esr0 , where
sr : PY → PY is the reflection into the hyperplane (r)⊥ ⊂ PY . Theorem 2.9.1
implies that E(w) is the ι∗YR⊥26-chamber adjacent to E0 across w. Recall that
A(X, fε(w)) is the set of gX ∈ aut(X) such that DgX

0 contains fε(w). If the restric-
tion gX |SY to SY (2) of gX ∈ aut(X, ε) maps E0 to E(w), then gX ∈ A(X, fε(w))
holds.

Definition 5.3.7. An element gX of aut(X, ε)∩A(X, fε(w)) is an extra automor-
phism for the inner wall w ∈ I0 if the restriction gX |SY of gX to SY (2) maps E0

to E(w).

Since A(X, fε(w)) is finite, we can determine the existence of an extra automor-
phism for each inner wall of E0.

Theorem 5.3.8. Suppose that Condition (C) is satisfied. Suppose also that the
following holds:

(IY) there exists an extra automorphism gX(w) for each inner wall w ∈ I0.
Then aut(X, ε) is generated by the finite subgroup aut(X, ε, fε) and the extra auto-
morphisms gX(w) (w ∈ I0).

Proof. Let Γ denote the subgroup of aut(X, ε) generated by the extra automor-
phisms gX(w) (w ∈ I0). First we prove the following claim. For any ι∗YR⊥26-
chamber E contained in NY , there exists an element γ ∈ Γ such that γ|SY maps
E0 to E. There exists a chain E0, E1, . . . , Em = E of ι∗YR⊥26-chambers contained
in NY such that Ei−1 and Ei is adjacent for i = 1, . . . ,m. We prove the claim by
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induction on the length m of the chain with the case m = 0 being trivial. Suppose
that m > 0. There exists an element γ′ ∈ Γ such that γ′|SY maps E0 to Em−1.
Let E′ be the ι∗YR⊥26-chamber that is mapped to Em by γ′|SY . Then E′ is adja-
cent to E0. Note that γ′|SY ∈ aut(Y ) preserves NY . Therefore E′ is contained
in NY . In particular, the wall w between E0 and E′ is inner, and hence there
exists an extra automorphism gX(w) such that gX(w)|SY maps E0 to E′. We put
γ := gX(w) · γ′ ∈ Γ. Then γ|SY maps E0 to Em.

Next we show that Γ and aut(X, ε, fε) generate aut(X, ε). Let g be an arbitrary
element of aut(X, ε). We apply the claim above to the ι∗YR⊥26-chamber Eg|SY0 , and
obtain an element γ ∈ Γ such that (gγ−1)|SY is an element of aut(Y,E0). By
Proposition 5.3.2, we have gγ−1 ∈ aut(X, ε, fε). �

Definition 5.3.9. We say that a triple (X, ιX , ε) of a K3 surface X, a primitive
embedding ιX : SX ↪→ L26, and an Enriques involution ε ofX is of simple Borcherds
type if X satisfies Condition (C), (X, ιX) is of simple Borcherds type in the sense
of Definition 4.1.3, and ε satisfies Condition (IY).

Remark 5.3.10. The notion of simple Borcherds type was introduced in [29] for K3
surfaces. We hope that we can find a bound on the degrees of polarizations similar
to that of [29] for Enriques surfaces.

5.4. Enriques involutions of the 11 singular K3 surfaces. We apply the
method in the previous section to the singular K3 surfaces in Section 4.2. First
remark that Condition (C) holds for the 11 cases except for the cases TX = [2, 1, 2]
and TX = [2, 0, 2] (see Remark 2.10.1 and Table 4.1). Note that in these two
cases, and also in the case TX = [2, 0, 4], there exist no Enriques involutions by
Theorem 3.2.1.

Our main result is as follows.

Theorem 5.4.1. Let X be one of the singular K3 surfaces of No. 6= 1, 2, 4 in
Table 4.1, and let ιX : SX ↪→ L26 be the primitive embedding given in Section 4.2.
Then the Enriques involutions of X modulo conjugation in Aut(X) ∼= aut(X) are
given in Table 5.1. For each Enriques involution ε on X, the triple (X, ιX , ε) is of
simple Borcherds type.

We explain the contents of Table 5.1. The item ιY is the type of the primitive
embedding ιY : SY (2) ↪→ L26 given in [6]. The item NK is the Nikulin-Kondo type
of the ι∗YR⊥26-chamber E0 (see Theorem 2.9.3). The item m4 is the number of (−4)-
vectors in the orthogonal complement of SY (2) in SX . The item |ws| is the number
of walls of E0. The item |Gε| is the order of

Gε := aut(X, ε, fε).

The item |I0| is the number of inner walls of E0.

Remark 5.4.2. For the Enriques involution No. 24 on X with TX = [6, 0, 6], the
ι∗YR⊥26-chamber E0 has 40 walls and the configuration of the walls is not of Nikulin-
Kondo type. The dual graph is too complicated to be presented here. See [31] for
the matrix presentation of this configuration.

The item |Kρ| is the order of the kernel of ρY : Aut(Y )→ aut(Y ), and the item
|aut| is the order of aut(Y ). The fact that aut(Y ) is infinite when I0 is non-empty
was confirmed by selecting elements of aut(Y ) randomly by means of the finite
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Table 5.1. Enriques involutions of the 11 singular K3 surfaces
(see Section 5.4).

No. TX dim fε ιY NK m4 |ws| |Gε| |I0| |Kρ| |aut|

1 [2, 1, 4] 19 12B II 144 12 48 0 1 24
2 18 12A I 242 12 16 0 2 4

3 [2, 0, 6] 19 12B II 144 12 48 0 1 24

4 [4, 2, 4] 18 12A I 246 12 16 0 2 4
5 18 20B III 246 20 64 4 2 ∞
6 17 20A V 246 20 96 0 2 24

7 [2, 1, 8] 19 20D VII 90 20 120 5 1 ∞
8 19 12B II 144 12 48 0 1 24
9 19 12B II 144 12 48 0 1 24
10 18 12A I 240 12 8 2 2 ∞
11 17 20A V 132 20 48 4 1 ∞

12 [4, 0, 4] 20 20F IV 180 20 640 0 1 320
13 19 20D VII 180 20 120 5 1 ∞
14 19 12B II 180 12 48 0 1 24
15 18 12A I 244 12 16 0 2 4
16 18 12A I 244 12 16 2 4 ∞
17 18 20B III 244 20 64 8 2 ∞
18 18 20B III 244 20 64 4 2 ∞
19 18 20B III 308 20 256 0 2 64
20 17 20A V 244 20 32 4 2 ∞

21 [4, 2, 6] 19 20D VII 92 20 240 0 1 120
22 18 12A I 242 12 16 0 2 4

23 [2, 0, 12] 19 20D VII 90 20 120 5 1 ∞

24 [6, 0, 6] 20 40E 60 40 1440 10 1 ∞
25 18 12A I 240 12 16 2 4 ∞
26 17 20A V 132 20 48 4 1 ∞

j j j j j j
j j j

j j j
3 9 11 12 10 7

4 5 6

2 1 8

Figure 5.2. Configuration of Nikulin-Kondo type I

generating set of aut(Y ) obtained by Theorem 5.3.8 and finding a matrix of infinite
order among these sample elements.

Remark 5.4.3. Consider the Enriques involutions of Nos. 10, 16 and 25, that is, the
cases where the Nikulin-Kondo type is I and Aut(Y ) is infinite. In these cases, we
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Table 5.2. NX -inner faces corresponding to Enriques involutions.

TX dim numb pws |D| |aut(X, f)| ε

[2, 1, 4] 19 14 11 2 48 No. 1
18 42 + 84 12, 1121 6 16 No. 2

[2, 0, 6] 19 6 31 2 48 No. 3

[4, 2, 4] 18 288× 2 1121, 1131 8 16 No. 4
18 12 12 6 576 No. 5
17 144 1221 12 96 No. 6

[2, 1, 8] 19 12 11 2 120 No. 7
19 30 41 2 48 No. 8
19 30 51 2 48 No. 9
18 180× 4 1141, 1151, 3141, 3151 8 8 No. 10
17 90× 2 1231 12 48 No. 11

[4, 0, 4] 20 1 1 3840 No. 12
19 64 11 2 120 No. 13
19 160 31 2 48 No. 14
18 960× 2 1121, 1141 8 16 No. 15
18 960× 2 2131 8 16 No. 16
18 60 22 4 256 Nos. 17, 18, 19
17 480 + 960 1221, 1122 12 32 No. 20

[4, 2, 6] 19 1 51 2 240 No. 21
18 30× 2 4151, 41151 8 16 No. 22

[2, 0, 12] 19 12 51 2 120 No. 23

[6, 0, 6] 20 1 1 1440 No. 24
18 360× 2 7181 8 16 No. 25
17 180× 2 2281 12 48 No. 26

have |I0| = 2. The configuration of Nikulin-Kondo type I is as in Figure 5.2, and
the inner walls are defined by the (−2)-vectors 11© and 12©.

See [31] for the inner walls of E0 for the other Enriques involutions. The finite
generating sets of aut(X, ε) and of aut(Y ) are also given explicitly in [31].

Table 5.2 is a list of NX -inner faces of D0 that corresponds to Enriques involu-
tions. Note that an aut(X)-equivalence class of NX -inner faces is a union of orbits
of the action of aut(X,D0) on the set of NX -inner faces.

The item numb gives the number of faces in the aut(X)-equivalence class. The
formula in this column shows the decomposition of the aut(X)-equivalence class
into a union of aut(X,D0)-orbits. The item pws indicates the types of inner walls
of D0 passing through the face. The type of an inner wall of D0 is given by No. in
Table 4.2.

For example, take the case TX = [2, 1, 4]. For a face f in the aut(X)-equivalence
class corresponding to the Enriques involution No. 2, there exist exactly two inner
walls of D0 passing through f , and they are both of type 1, whereas for another
face f ′ in this aut(X)-equivalence class, there exist exactly two inner walls of D0

passing through f ′, and they are of type 1 and 2.
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⊥
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Figure 5.3. The NX -inner face f .

We explain how the data pws depends on the choice of a representative of an
aut(X)-equivalence class. Let f be a face in this aut(X)-equivalence class. Then
there exist exactly three members (v1)⊥, (v′1)⊥, (v2)⊥ in the family ι∗XR⊥26 of hyper-
planes that pass through f , where v1, v′1, v2 are primitive vectors of S∨X such that
〈v1, v1〉 = 〈v′1, v′1〉 = −8/7 and 〈v2, v2〉 = −4/7. See Figure 5.3. If D0 is located
in the region D(±1), then the data pws for f is 12, whereas if D0 is located in the
region D(±2) or D(±3), then the data pws for f is 1121.

The item |D| is the size of D(f) and |aut(X, f)| is the order of the group
aut(X, f). The item ε shows the Nos. of the Enriques involutions given in Ta-
ble 5.1.

6. The two most algebraic Enriques surfaces

In this section, we study the two most algebraic Enriques surfaces, that is, En-
riques surfaces covered by the singular K3 surface X7 of discriminant 7.

We recall that the Néron–Severi lattice and the automorphism group of X7 were
determined by Ujikawa [34]. Elliptic fibrations on X7 were studied by Harrache–
Lecacheux [10] and Lecacheux [17].

6.1. Conjugagy classes of Enriques involutions. We exemplify Theorem 3.1.9
for the case X7. Let T = TX7 = [2, 1, 4] and S = SX7 . Let ι ∈ IX7 and put
N := [ι]⊥(−1). Let q := q(T ) =

〈
2
7

〉
, so that q(S) ∼= −q ∼=

〈
6
7

〉
. In the notation of

Proposition 2.5.1, the subgroup H ⊂ q([ι]) must be trivial, so N is an even lattice
of genus g(10, 0, u⊕5

1 ⊕ q). By Lemma 2.4.1, N ∼= N ′(2), with N ′ an even lattice of
genus g(10, 0, q).

Lemma 6.1.1. The genus g(10, 0, q) contains exactly two isomorphism classes,
namely N242

10,7 and N144
10,7 (see [31]).

Proof. Let N ′ be a lattice in this genus. The smallest lattice with bilinear form b =
−b(q) is the odd lattice M3,7 := [2, 1, 2, 1, 1, 3], which is unique in its genus. Thus,
by [20], N ′ ∼= [ι]⊥ for some primitive embedding ι : M3,7 ↪→ L into a unimodular
lattice L of rank 13. Inspecting all such embeddings, we find exactly two non-
isomorphic even orthogonal complements. �

By Proposition 2.5.2, for both N = N242
10,7(2) and N = N144

10,7(2), the set IX7(N)
has exactly one O(S)-orbit. Thus, r = 2 in Theorem 3.1.9. Since O(q(S), ωX7) =
O(q(S)), there is exactly 1 double coset in both cases. Hence, X7 admits exactly
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two Enriques involutions up to conjugation in aut(X). The two involutions can
be distinguished by the number of (−4)-vectors in the orthogonal complements of
their fixed lattices.

6.2. Models of the two Enriques quotients. By the results of Section 5.4,
the two quotients YI and YII of X7 have Nikulin-Kondo type I and II. Kondo [15]
gives two explicit 1-dimensional families containing all Enriques surfaces of Nikulin-
Kondo type I and II. Each family depend on one parameter α; in this section
we determine which values of α give YI and YII. We first summarize Kondo’s
construction.

Let φ be the involution on P1 × P1 defined by

([u0, u1], [v0, v1]) 7→ ([u0,−u1], [v0,−v1]),

and consider the curves L1 : u0 = u1, L2 : u0 = −u1, L3 : v0 = v1, L4 : v0 = −v1.
Let C be a curve of bidegree (2, 2), defined by a polynomial f(u0, u1, v0, v1), which
is invariant with respect to φ, and consider the divisor B = C +

∑4
i=1 Li.

Let π : X → P1 × P1 be the minimal resolution of the double covering ramified
over B. In Kondo’s families, C is chosen so that X is a K3 surface and φ lifts to
an Enriques involution ε̃ of X. We let Y be the quotient of X by ε̃.

For i = 1, 2, the composite morphism πi = pri◦π : X → P1 is an elliptic fibration
on X, which induces an elliptic fibration π̄i on Y . There is a third elliptic fibration
π3 : X → P1, one of whose fiber is the strict transform of C on X. The half pencils
of π̄3 : Y → P1 correspond to the fibers over C and over

∑
Li.

For i = 1, 2, 3, we choose coordinates so that the half-pencils of π̄i are mapped
to [0, 1], [1, 0] ∈ P1. The image of the morphism π1 × π2 × π3 : X → P1 × P1 × P1

is then defined by the tridegree (2, 2, 2) polynomial

(u2
0 − u2

1)(v2
0 − v2

1)w2
0 = f(u0, u1, v0, v1)w2

1.

Consider the Segre embedding Σ: P1 × P1 × P1 ↪→ P7, defined by

([u0, u1], [v0, v1], [w0, w1]) 7→ [x0, x1, x2, x3, x4, x5, x6, x7] =

= [u0v0w0, u0v1w1, u1v0w1, u1v1w0, u0v0w1, u0v1w0, u1v0w0, u1v1w1].

The involution on P7 given by [x0, . . . , x7] 7→ [x0, . . . , x3,−x4, . . . ,−x7] induces the
Enriques involution ε̃ on X. Hence, we have the following commuting diagram

X P1 × P1 × P1 P7

Y P3

π1×π2×π3 Σ

pr0123

where pr0123 is the projection [x0, x1, x2, x3, x4, x5, x6, x7] 7→ [x0, x1, x2, x3]. Note
that the half-pencils on Y are mapped onto the coordinate tetrahedron in P3, so
the image of Y in P3 is defined by an Enriques sextic surface, i.e. a non-normal
surface of degree 6 in P3 that passes doubly through the edges of the coordinate
tetrahedron (see [8]).

6.2.1. Nikulin-Kondo type I. For α ∈ C \ {1, 1
2 ,

3
2}, let C be the curve defined by

C : (2u2
0 − u2

1)(v2
0 − v2

1) = (2αv2
0 + (1− 2α)v2

1)(u2
0 − u2

1).
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Put B = C +
∑4
i=1 Li. Then, the minimal resolution of the double covering of

P1 × P1 ramified over B is a K3 surface X endowed with an Enriques involution ε̃
such that the quotient X/〈ε̃〉 has Nikulin-Kondo type I.

Consider the curves

Q1 : u1v0 + u0v1 = 0; Q2 : u1v0 − u0v1 = 0;

Z : (u0 + 3u1) v2
0 + (3u0 + u1) v2

1 = 0.

The curve Z intersects Q1 and Q2 in one point with multiplicity 3, and intersects C
with even multiplicities if and only if

α =
15

16
or α =

17

16
.

(The two cases differ only by a relabeling of the variables.)
In these cases, consider the sublattice S′ ⊂ SX generated by the classes of the

strict transforms of C,L1, . . . , L4, Q1, Q2, Z and of the exceptional divisors. Then,
rankS′ = 20 and detS′ = 7, hence the same holds for SX . This implies that X is
isomorphic to X7, so the quotient X/〈ε̃〉 is isomorphic to YI.

An Enriques sextic model for YI is given by

(2α− 2)x2
0x

2
1x

2
2 + x2

0x
2
1x

2
3 + x2

0x
2
2x

2
3 + (2α− 2)x2

1x
2
2x

2
3 =

= x0x1x2x3

(
x2

0 + (2α− 3)x2
1 + (2α− 1)x2

2 + x2
3

)
.

6.2.2. Nikulin-Kondo type II. For α ∈ C \ {0,−1}, let C be the curve defined by

C : (v2
0 − v2

1)u2
0 − (v2

0 + αv2
1)u2

1 = 0.

Put B = C +
∑4
i=1 Li. Then, the minimal resolution of the double covering of

P1 × P1 ramified over B is a K3 surface X endowed with an Enriques involution ε̃
such that the quotient X/〈ε̃〉 has Nikulin-Kondo type II.

Consider the curves

F1 : u1 = 0; F2 : v1 = 0;

Z : (u0 − u1)v0 + (u0 + 3u1)v1 = 0

The curve Z intersects C in a third point of multiplicity 2 exactly when

α = 63.

In this case, consider the sublattice S′ ⊂ SX generated by the classes of the
strict transforms of C,L1, . . . , L4, F1, F2, Z and of the exceptional divisors. Then,
rankS′ = 20 and detS′ = 7, hence the same holds for SX . This implies that X is
isomorphic to X7, so the quotient X/〈ε̃〉 is isomorphic to YII.

An Enriques sextic model for YII is given by

−x2
0x

2
1x

2
2 + x2

0x
2
1x

2
3 + x2

0x
2
2x

2
3 + αx2

1x
2
2x

2
3 = x0x1x2x3

(
x2

0 − x2
1 − x2

2 + x2
3

)
.
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