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Abstract. We construct an even extremal lattice of rank 64 by means of a

generalized quadratic residue code.

1. Introduction

A lattice is a free Z-module L of finite rank with a symmetric bilinear form

⟨ , ⟩ : L× L → Z
that makes L⊗ R a positive-definite real quadratic space. Let L be a lattice. The
group of automorphisms of L is denoted by O(L). For simplicity, we write x2

instead of ⟨x, x⟩ for x ∈ L. We say that L is even (or of type II) if x2 ∈ 2Z holds for
all x ∈ L. In this paper, we treat only even lattices. Since ⟨ , ⟩ is non-degenerate,
the mapping x 7→ ⟨x,−⟩ embeds L into the dual lattice

L∨ := { x ∈ L⊗Q | ⟨x, y⟩ ∈ Z for all y ∈ L }.
We say that L is unimodular if this embedding is an isomorphism. We put

min(L) := min {x2 |x ∈ L \ {0}}.
It is well-known that, if L is an even unimodular lattice, then its rank n is divisible
by 8 and min(L) satisfies

(1.1) min(L) ≤ 2 + 2
⌊ n

24

⌋
.

Definition 1.1. We say that an even unimodular lattice L of rank n is extremal
if the equality holds in (1.1).

Extremal lattices are important and interesting, because they give rise to dense
sphere-packings. Extremal lattices of rank ≤ 24 are completely classified. The
famous Leech lattice is characterized as the unique (up to isomorphism) extremal
lattice of rank 24. On the other hand, the classification of extremal lattices of rank
≥ 32 seems to be very difficult. The known examples of extremal lattices are listed
in the website [12] administrated by Nebe and Sloane, in Conway and Sloane [4,
Chapter 1], or in Gaborit [5, Table 3].

As is extensively described in Conway and Sloane [4], there exist various meth-
ods of constructing a lattice from a code. The binary extended quadratic residue
codes play an important role in these constructions. The most classical examples
are that the extended Hamming code yields the extremal lattice E8 of rank 8, and
that the extended Golay code yields the Niemeier lattice of type 24A1. Various
generalizations of quadratic residue codes are investigated. In particular, in Bon-
necaze, Solé and Calderbank [1], the Leech lattice is constructed by a generalized
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quadratic residue code of length 24 with components in Z/4Z. See also Chapman
and Solé [2] and Harada and Kitazume [7].

In this paper, we consider a quadratic residue code with components in the
discriminant group DR := R∨/R of an even lattice R of small rank, and construct
a lattice L of large rank as an even overlattice of the orthogonal direct-sum of
copies of R by using the code as the gluing data. As an application, we obtain the
following:

Theorem 1.2. There exists an extremal lattice LQ of rank 64 whose automorphism
group O(LQ) is of order 119040. This group O(LQ) contains a subgroup ΓQ of index
2 that fits in the exact sequence

(1.2) 0 → (Z/2Z)2 → ΓQ → PSL2(31) → 1.

The code Q that is used in the construction of LQ is a generalized quadratic
residue code of length 32 with components in the discriminant group DR

∼= Z/35Z
of the lattice

R =

[
6 1
1 6

]
.

In [14], Quebbemann constructed (possibly several) extremal lattices of rank
64 as overlattices of the orthogonal direct-sum E8(3)

8 of 8 copies of E8(3). (See
also [4, Chapter 8.3].) Here E8(3) denotes the lattice obtained from the lattice E8

by multiplying the intersection form by 3. We have the following:

Proposition 1.3. The lattice LQ does not contain E8(3) as a sublattice.

Corollary 1.4. The lattice LQ cannot be obtained by Quebbemann’s construction.

In [11], Nebe discovered an extremal lattice

N64 := L8,2 ⊗ L32,2

of rank 64, and showed that O(N64) contains a subgroup of order 587520 generated
by 6 elements. (See the website [12].) Since |O(LQ)| < 587520, we obtain the
following:

Corollary 1.5. The lattices LQ and N64 are not isomorphic.

In Harada, Kitazume and Ozeki [8] and Harada and Miezaki [9], they also con-
structed several extremal lattices of rank 64. The relation of these lattices with our
lattice has not yet been clarified.

We found the lattice LQ by an experimental search. We hope that several more
extremal lattices can be obtained by the same method.

This paper is organized as follows. In Section 2.1, we fix notions and notation
about codes with components in a finite abelian group. In Section 2.2, we explain
how to construct an even unimodular lattice from a code with components in the
discriminant group DR of an even lattice R. In Section 3, we give the definition
of a generalized quadratic residue code, and investigate its automorphisms. In
Section 4, we construct the lattice LQ, and prove that LQ is extremal and that
O(LQ) contains a subgroup ΓQ of order 59520 that fits in the exact sequence (1.2).
In particular, a brute-force method of the proof of min(LQ) = 6 is explained in
detail. In Section 5, we calculate the set S of vectors of square-norm 6 in LQ.
Using this set, we prove Proposition 1.3, and calculate the order of O(LQ). In the
last section, we give another construction of LQ.
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The computational data obtained in this article is available from the author’s
website [17]. In particular, the Gram matrix of LQ is found in [17]. A generating set
of O(LQ) is available from in [12], though it is not minimal. For the computation,
we used GAP [6].

Thanks are due to Professor Masaaki Harada for informing us of the extremal
lattices of rank 64 in [8] and [9]. We also thank Professor Masaaki Kitazume and
Professor Gabriele Nebe for the comments.

Conventions. The action of a group on a set is from the right, unless otherwise
stated.

2. Preliminaries

2.1. Codes over a finite abelian group.

Definition 2.1. Let A be a finite abelian group. A code of length m over A is a
subgroup of Am.

Let G be a group. Then the symmetric group Sm acts on Gm by permutations
of components. We denote by G ≀Sm the wreath product Gm⋊Sm. Then we have
a splitting exact sequence

(2.1) 1 → Gm → G ≀Sm → Sm → 1.

Suppose that G acts on a set X. Since Sm acts on Xm by permutations of com-
ponents and Gm acts on Xm by

(x1, . . . , xm)(g1,...,gm) = (xg1
1 , . . . , xgm

m ), where xi ∈ X, gi ∈ G,

the group G ≀Sm acts on Xm in a natural way.
Let H be a subgroup of the automorphism group Aut(A) of a finite abelian group

A. Then H ≀Sm acts on Am. For a code C of length m over A, we put

AutH(C) := { g ∈ H ≀Sm | Cg = C }.

2.2. Discriminant forms and overlattices. Let R be an even lattice. We define
the dual lattice of R by

R∨ := { x ∈ R⊗Q | ⟨x, v⟩ ∈ Z for all v ∈ R },
and the discriminant group DR of R by

DR := R∨/R.

Note that R∨ has a natural Q-valued symmetric bilinear form that extends the
Z-valued symmetric bilinear form of R. Hence DR is naturally equipped with a
quadratic form

qR : DR → Q/2Z
defined by qR(x mod R) := x2 mod 2Z. We call qR the discriminant form of R. We
denote by O(qR) the automorphism group of the finite quadratic form (DR, qR).
Then we have a natural homomorphism

ηR : O(R) → O(qR).

Remark 2.2. The notion of discriminant forms was introduced by Nikulin [13] for
the study of K3 surfaces, and it has been widely used in the investigation of K3
surfaces and Enriques surfaces. (See, for example, [16].)
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The discriminant form of the orthogonal direct-sum Rm of m copies of R is the
orthogonal direct-sum (Dm

R , qmR ) of m copies of (DR, qR). Let C be a code of length
m over DR that is totally isotropic with respect to the quadratic form

qmR : Dm
R → Q/2Z.

Then the pull-back

(2.2) LC := pr−1(C)

of C by the natural projection pr : R∨m → Dm
R with the restriction of the natural

Q-valued symmetric bilinear form of R∨m is an even lattice that contains Rm as a
sublattice of finite index; that is, LC is an even overlattice of Rm. Moreover, since
the index of Rm in LC is equal to |C|, if C satisfies

|C|2 = |DR|m,

then LC is unimodular.
Let C be a code of length m over DR totally isotropic with respect to qmR . We

put

H(R) := Im(ηR : O(R) → O(qR)) ⊂ Aut(DR),

and consider the group AutH(R)(C). Each element g of AutH(R)(C) is uniquely
written as

g = σ · (h1, . . . , hm) ( σ ∈ Sm, hi ∈ H(R) ).

By the definition of H(R), there exist elements h̃i ∈ O(R) such that ηR(h̃i) = hi

for i = 1, . . . ,m. Since g preserves the code C, the action of

g̃ := σ · (h̃1, . . . , h̃m) ∈ O(R) ≀Sm

on (R∨)m preserves the submodule LC ⊂ (R∨)m, and hence we obtain a lift g̃ ∈
O(LC) of g. If ηR is injective, then the lift g̃ of g is unique. Therefore we have the
following:

Lemma 2.3. Let C and LC be as above. If the natural homomorphism ηR is injec-
tive, then we have an injective homomorphism AutH(R)(C) ↪→ O(LC).

3. Generalized quadratic residue codes

3.1. Definition. Let A be a finite abelian group, and p an odd prime. We consider
the set of rational points

P1(Fp) = Fp ∪ {∞} = {0, 1, . . . , p− 1,∞}

of the projective line over Fp, and let Ap+1 denote the abelian group of all mappings

v : P1(Fp) → A

from P1(Fp) of A. Let χp : F×
p → {±1} denote the Legendre character of the

multiplicative group F×
p := Fp \ {0}.

Definition 3.1. Let a, b, d, s, t, e be elements of A. A generalized quadratic residue
code of length p+1 over A with parameter (a, b, d, s, t, e) is the subgroup Q of Ap+1

generated by the elements v∞, v0, v1, . . . , vp−1 ∈ Ap+1 defined as follows:

v∞(ν) =

{
a if ν ∈ Fp,

b if ν = ∞,
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and, for µ ∈ Fp,

vµ(ν) =


d if ν = µ,

s if ν ∈ Fp \ {µ} and χp(µ− ν) = 1,

t if ν ∈ Fp \ {µ} and χp(µ− ν) = −1,

e if ν = ∞.

3.2. Automorphisms of a generalized quadratic residue code. Let A and p
be as above. For simplicity, we put

S := S(P1(Fp)) ∼= Sp+1.

The linear fractional transformation embeds PSL2(p) into S. Let α be a generator
of F×

p . Then PSL2(p) is generated by the three elements[
0 1
−1 0

]
,

[
1 1
0 1

]
,

[
α 0
0 α−1

]
,

which correspond respectively to the permutations of P1(Fp) defined as follows:

ξ : ν 7→ −1/ν, η : ν 7→ ν + 1, ζ : ν 7→ α2ν,

with the understanding that −1/0 = ∞,−1/∞ = 0,∞ + 1 = ∞, and α2∞ = ∞.
Let Q ⊂ Ap+1 be a generalized quadratic residue code of length p+ 1 over A, and
H a subgroup of Aut(A). Let fQ be the composite homomorphism of the natural
inclusion AutH(Q) ↪→ H ≀S and the surjection H ≀S→→S in (2.1):

fQ : AutH(Q) ↪→ H ≀S→→S

Lemma 3.2. The image of fQ contains η and ζ.

Proof. The permutation of components given by η (resp. by ζ) preserves the gen-
erating set {v∞, v0, . . . , vp−1} of Q. □

4. An extremal lattice LQ of rank 64

We construct an extremal lattice LQ of rank 64. Let R be the lattice of rank 2
with a basis e1, e2 such that the Gram matrix of R with respect to e1, e2 is

(4.1)

[
⟨e1, e1⟩ ⟨e1, e2⟩
⟨e2, e1⟩ ⟨e2, e2⟩

]
=

[
6 1
1 6

]
.

Let e∨1 , e
∨
2 be the basis of R∨ dual to e1, e2. Then DR is a cyclic group of order 35

generated by

u := 6e∨1 + 2e∨2 =
1

35
(34e1 + 6e2).

For simplicity, we denote by n ∈ Z/35Z the element

n (6e∨1 + 2e∨2 ) ∈ DR.

Then the discriminant form qR : DR → Q/2Z is given by

qR(n) = 6n2/35 mod 2Z.

We have

O(qR) = { k ∈ (Z/35Z)× | 6k2 ≡ 6 mod 70 } = {±1,±6}.
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

32 30 15 11 7 29 19 10 26 11 31 33 28 22 22 12
16 13 23 21 19 30 25 3 11 21 31 32 12 9 9 4
34 6 30 22 22 19 20 32 17 30 30 24 10 33 0 20
34 26 1 17 9 6 4 17 14 12 25 19 34 8 33 20
34 26 21 23 4 28 26 1 34 9 7 14 29 32 8 18
34 24 21 8 10 23 13 23 18 29 4 31 24 27 32 28
34 34 19 8 30 29 8 10 5 13 24 28 6 22 27 17
34 23 29 6 30 14 14 5 27 0 8 13 3 4 22 12
34 18 18 16 28 14 34 11 22 22 30 32 23 1 4 7
34 13 13 5 3 12 34 31 28 17 17 19 7 21 1 24
34 30 8 0 27 22 32 31 13 23 12 6 29 5 21 21
34 27 25 30 22 11 7 29 13 8 18 1 16 27 5 6
34 12 22 12 17 6 31 4 11 8 3 7 11 14 27 25
34 31 7 9 34 1 26 28 21 6 3 27 17 9 14 12
34 18 26 29 31 18 21 23 10 16 1 27 2 15 9 34
34 5 13 13 16 15 3 18 5 5 11 25 2 0 15 29


Table 4.1. The matrix B

On the other hand, the group O(R) is of order 4 and is generated by

g1 :=

[
0 1
1 0

]
, g2 :=

[
−1 0
0 −1

]
.

The natural homomorphism ηR : O(R) → O(qR) maps g1 to −6 and g2 to −1.
Hence ηR is an isomorphism. In particular, the image H(R) of ηR is isomorphic to
Z/2Z× Z/2Z.

We investigate the generalized quadratic residue code Q of length 32 over DR

with parameter
(a, b, d, s, t, e) = (0, 0, 1, 7, 3, 2).

Note that F×
31 is generated by 3. We arrange the elements of P1(F31) as

(4.2) [∞, 0 | 1, 32, 34, . . . , 328, | 3, 33, 35, . . . , 329 ],
and write elements of D32

R , H(R)32, and (R ⊗ Q)32 as row vectors according this
arrangement.

Proposition 4.1. The code Q is totally isotropic with respect to q32R , and satisfies
|Q| = 3516.

Proof. The code Q is generated by the row vectors of the matrix [I16|B], where
I16 is the identity matrix of size 16, and B is the 16 × 16 matrix in Table 4.1.
(The components of B are in DR = Z/35Z.) It is easy to confirm that Q is totally
isotropic with respect to q32R , and that |Q| = 3516 holds. □

Hence we obtain an even unimodular overlattice LQ = pr−1(Q) of R32 by (2.2).
We will show that LQ is extremal, and that O(LQ) contains a subgroup ΓQ with
the properties stated in Theorem 1.2.

Proposition 4.2. The kernel of the homomorphism fQ : AutH(R)(Q) → S is equal

to the image of the diagonal homomorphism δ : H(R) ↪→ H(R)32. The image of fQ
contains the permutation ξ ∈ S.
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n 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10
35λ(n) 0 6 24 54 26 10 6 14 34 66 40

n ±11 ±12 ±13 ±14 ±15 ±16 ±17
35λ(n) 26 24 34 56 90 66 54

Table 4.2. λ(n)

Proof. Let σ be an element of S. Let Z be the 32× 32 matrix[
I16 B

O 35 I16

]
,

where B is regarded as a matrix with components, not in Z/35Z, but in Z, and we
put Z∗ := 35Z−1, which is a matrix with components in Z. Let Zσ be the matrix
obtained by applying the permutation σ of components to the row vectors of Z.
For

x = (x1, . . . , x32) ∈ H(R)32 ⊂ H(R) ≀S,

let ∆(x) denote the diagonal matrix with components being the representatives in
Z of x1, . . . , x32 ∈ H(R) = {±1,±6} ⊂ (Z/35Z)×. Then we have Qσx = Q only
when

(4.3) Zσ ·∆(x) · Z∗ ≡ O mod 35.

We can calculate the set

Λ(σ) := { γ ∈ H(R)32 | Qσγ = Q }
by solving the congruence linear equation (4.3) with unknowns x1, . . . , x32. By this
method, we obtain Λ(id) = δ(H(R)), and hence Ker fQ = δ(H(R)). On the other
hand, we have Λ(ξ) ̸= ∅. Indeed, we see that Λ(ξ) contains the element

( 1,−1, −6, . . . ,−6, 6, . . . , 6 ) ∈ H(R)32 (15 times of −6 and 15 times of 6).

Hence Im fQ contains ξ. □

Combining Proposition 4.2 with Lemma 3.2, we see that the image of fQ includes
the subgroup PSL2(31) ⊂ S. We put

ΓQ := f−1
Q (PSL2(31)).

By Lemma 2.3, we have a natural embedding ΓQ ↪→ O(LQ) of the subgroup ΓQ of
AutH(R)(Q) into O(LQ). Let ΓQ be the image of this embedding. Then ΓQ satisfies
the exact sequence (1.2) in Theorem 1.2. In particular, ΓQ is of order 59520.

Proposition 4.3. We have min(LQ) = 6.

Proof. It is easy to calculate a basis of LQ and the associated Gram matrix. There-
fore the minimal norm min(LQ) can be calculated by, for example, the function
ShortestVectors of GAP [6]. However, this method did not give an answer in
reasonable time. Hence we adopt the following method.

For n ∈ DR = Z/35Z, we put

λ(n) := min { x2 | x ∈ R∨, x mod R = n }.
Then the values of λ(n) are calculated as in Table 4.2. For a codeword
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w = [ n∞, n0 | n1, n32 , . . . , n328 | n3, n33 , n35 , . . . , n329 ] ∈ (Z/35Z)32,

we put

µ(w) := λ(n∞) + λ(n0) +

14∑
k=0

λ(n32k) +

14∑
k=0

λ(n32k+1).

In order to prove Proposition 4.3, it is enough to show that there exists no non-zero
codeword w in Q with µ(w) ≤ 4.

We introduce an ordering ≺ on Z/35Z by

m ≺ m′ ⇐⇒ m̃ < m̃′,

where m̃ ∈ Z is the representative of m ∈ Z/35Z satisfying 0 ≤ m̃ < 35. For n ∈
Z/35Z, we denote by Stab(n) the stabilizer subgroup of n in H(R) = {±1,±6} ⊂
(Z/35Z)×. Then, for each codeword w of Q, the orbit

wΓQ := { wγ | γ ∈ ΓQ }

of w under the action of ΓQ contains at least one element

[ n∞, n0, n1, n9, . . . , n3, n27, . . . ]

with the following properties:

(i) λ(n∞) ≥ λ(nν) for any ν ∈ Fp,
(ii) n∞ ⪰ kn∞ for any k ∈ H(R) = {±1,±6},
(iii) λ(n0) ≥ λ(nν) for any ν ∈ F×

p ,
(iv) n0 ⪰ kn0 for any k ∈ Stab(n∞),
(v) λ(n1) ≥ λ(n32k) for k = 1, . . . , 14, and if λ(n1) = λ(n32k), then n1 ⪰ n32k ,
(vi) n1 ⪰ kn1 for any k ∈ Stab(n∞) ∩ Stab(n0).

By backtrack searching, we look for a non-zero codeword satisfying µ(w) ≤ 4 and
the properties (i)-(vi), and confirm that there exist no such codewords in Q. (The
arrangement (4.2) of the points of P1(Fp) is convenient for this backtrack searching.)
This task was carried out by distributed computation on eight CPUs of 3 GHz. It
took us about 75 days. □

Thus Theorem 1.2 is proved, except for the fact that ΓQ is of index 2 in O(LQ).

5. Short vectors of LQ

In this section, we prove Proposition 1.3, and complete the proof of Theorem 1.2
by showing |O(LQ)| = 119040.

By the theory of modular forms (see, for example, [15, Chapter 7]), we see that
the theta function of LQ is equal to∑

v∈LQ

qv
2/2 = 1 + 2611200 q3 + 19525860480 q4 + 19715393260800 q5 + · · · .

In particular, the size of the set S of vectors v ∈ LQ of square-norm v2 = 6
is 2611200. We calculate the set S and its orbit decomposition by ΓQ by the
following random search method. The result is given in Table 5.1, and presented
more explicitly in [17].

Random search method. Let G be the Gram matrix of LQ. We set

S = { }, O = { }.
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size of an orbit 128 3968 11904 19840 59520
number of orbits 2 4 3 6 41

Table 5.1. Orbit decomposition of S by ΓQ

While |S| ≤ 2611200, we do the following calculation. Let U ∈ GL64(Z) be a
random unimodular matrix of size 64 with integer components. We apply the LLL
algorithm by Lenstra, Lenstra and Lovász [10] (see also [3, Chapter 2]) to

UG := U ·G · TU
with the sensitivity parameter 1. Suppose that we find a vector v′ ∈ Z64 such that
v′ · UG · T v′ = 6. Then v := v′ · U is a vector of square-norm 6 in LQ. If v is not
yet in S, then we append its orbit o := {vγ | γ ∈ ΓQ} to S, and add the set o to
O. When |S| reaches 2611200, the set S is equal to the set of vectors in LQ of
square-norm 6 and O gives the orbit decomposition of S by ΓQ.

The set S is decomposed into 56 orbits by ΓQ. We choose an element v(i) from
each orbit oi for i = 1, . . . , 56. Let ε1, . . . , ε8 be the standard basis of E8(3). We
have ε2i = 6 for i = 1, . . . , 8. If LQ contained a sublattice isomorphic to E8(3), then
there would exist an embedding

ι : {ε1, . . . , ε8} ↪→ S
that preserves the intersection form. By the action of ΓQ, we can assume that ι(ε1)
is equal to the representative element v(i) of some orbit oi. By backtrack searching,
we confirm that there exists no such embedding ι. Thus Proposition 1.3 is proved.

For v ∈ S, we define its type τ(v) by

τ(v) := [ t0(v), t1(v), t2(v), t3(v), t6(v) ],

where tm(v) is the size of the set

{ x ∈ S | ⟨x, v⟩ = m }.
Then we have t6(v) = 1 and

t0(v) + 2( t1(v) + t2(v) + t3(v) + t6(v) ) = 2611200

for any v ∈ S. The set S is decomposed into the disjoint union

S =
⊔

Sτ , where Sτ := {v ∈ S | τ(v) = τ},

according to the types, and each Sτ is a disjoint union of orbits oi of the action of
ΓQ. In Table 5.2, we give the list of all possible types τ and the size of each set Sτ .
Note that the action of O(LQ) preserves each Sτ . Let S0 be the set of vectors of
type

[ 1377392, 578256, 38343, 304, 1 ].

The size 23808 of S0 is minimal among all Sτ . (See the last line of Table 5.2.) This
subset S0 is a union of two orbits ok1 and ok2 of size 11904. By direct calculation,
we confirm the following fact:

(5.1)
For each v ∈ S0, there exist exactly seven vectors v′ in S0 such
that ⟨v, v′⟩ = −3.

We find a sequence V0 = [v1, . . . , v64] of vectors vi of S0 satisfying the following:
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t0 t1 t2 t3 t6 the size of Sτ

1368552 583866 37323 134 1 39680
1370112 582876 37503 164 1 39680
1371152 582216 37623 184 1 119040
1371880 581754 37707 198 1 59520
1372088 581622 37731 202 1 476160
1372192 581556 37743 204 1 119040
1372504 581358 37779 210 1 119040
1372608 581292 37791 212 1 119040
1372816 581160 37815 216 1 59520
1372920 581094 37827 218 1 158720
1373128 580962 37851 222 1 59520
1373232 580896 37863 224 1 59520
1373440 580764 37887 228 1 59520
1373648 580632 37911 232 1 119040
1373752 580566 37923 234 1 119040
1373960 580434 37947 238 1 59520
1374168 580302 37971 242 1 119040
1374272 580236 37983 244 1 59520
1374480 580104 38007 248 1 75648
1374584 580038 38019 250 1 59520
1374688 579972 38031 252 1 59520
1374896 579840 38055 256 1 178560
1375000 579774 38067 258 1 59520
1375104 579708 38079 260 1 119040
1376872 578586 38283 294 1 71424
1377392 578256 38343 304 1 23808

Table 5.2. Decomposition of S by types

(i) ⟨vi, vj⟩ = −3 if and only if |i− j| = 1, and
(ii) v1, . . . , v64 form a basis of LQ.

See [17] for the explicit vector representations of these vectors v1, . . . , v64. We then
enumerate all the sequences V ′ = [v′1, . . . , v

′
64] of vectors of S0 such that

(a) v′1 is either v(k1) or v(k2), where v(kν) is the fixed representative of the orbit okν

contained in S0, and
(b) ⟨vi, vj⟩ = ⟨v′i, v′j⟩ for i, j = 1, . . . , 64.

Then we obtain exactly 10 sequences V1, . . . , V10 with these properties. Since the
action of O(LQ) preserves S0 = ok1 ⊔ ok2 and the action of ΓQ is transitive on each
of ok1 and ok2 , we see that, for each g ∈ O(LQ), there exists an element h ∈ ΓQ
such that

V gh
0 = [vgh1 , . . . , vgh64 ] ∈ {V1, . . . , V10}.

For each i = 1, . . . , 10, we calculate the matrix gi ∈ O(LQ⊗Q) such that V gi
0 = Vi.

It turns out that these gi preserve LQ ⊂ LQ ⊗Q, and hence we have gi ∈ O(LQ).
By construction, the group O(LQ) is generated by ΓQ together with g1, . . . , g10.
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We calculate the order of |O(LQ)|. It turns out that

|O(LQ)| = 119040 = 2|ΓQ|.

Thus the proof of Theorem 1.2 is completed.

Remark 5.1. If g ∈ O(LQ) is not contained in ΓQ, then g does not preserve the
sublattice R32 ⊂ LQ, and hence does not induce an automorphism of the code Q.

6. Another construction of LQ

Let o1 and o2 be the two orbits of size 128 in S (see Table 5.1). Let ⟨o1⟩ and
⟨o2⟩ be the sublattices of LQ generated by o1 and by o2, respectively. It is easily
confirmed that both ⟨o1⟩ and ⟨o2⟩ are of rank 64 and that

(6.1) ⟨o1⟩+ ⟨o2⟩ = LQ.

For simplicity, we put

E := {e(1)1 , e
(1)
2 , . . . , e

(32)
1 , e

(32)
2 },

where e
(i)
1 and e

(i)
2 are the standard basis of the ith component of R32 satisfy-

ing (4.1). One of the two orbits of size 128, say o1, is equal to the union of E and

−E. For each e
(i)
ν ∈ E ⊂ o1, there exists a unique vector f

(i)
+ν ∈ o2 (resp. f

(i)
−ν ∈ o2)

such that ⟨e(i)ν , f
(i)
+ν⟩ = 2 (resp. ⟨e(i)ν , f

(i)
−ν⟩ = −2). The mapping

e
(i)
1 7→ f

(i)
+1, e

(i)
2 7→ f

(i)
−1

induces an isometry

ρ : ⟨o1⟩
∼−→ ⟨o2⟩,

and hence gives rise to ρ⊗Q ∈ O(R32 ⊗Q).

Remark 6.1. The orthogonal transformation ρ ⊗ Q of R32 ⊗ Q does not preserve
LQ ⊂ R32 ⊗Q. Indeed, the order of ρ⊗Q ∈ O(R32 ⊗Q) is infinite.

The matrix representation Mρ of ρ⊗Q with respect to the basis E of R32 ⊗Q
is related to generalized quadratic residue codes as follows. Let T be the 32 × 32
matrix whose rows and columns are indexed by P1(F31) sorted as in (4.2), and
whose (µ, ν)th component is the string

"a" if µ = ∞ and ν ̸= ∞,

"b" if µ = ∞ and ν = ∞,

"d" if µ = ν ̸= ∞,

"s" if µ ̸= ∞, ν ̸= ∞, µ ̸= ν, and χ31(µ− ν) = 1,

"t" if µ ̸= ∞, ν ̸= ∞, µ ̸= ν, and χ31(µ− ν) = −1,

"e" if µ ̸= ∞ and ν = ∞ ;

that is, T is the template matrix of quadratic residue codes of length 32. We put

ma :=
1

35

[
1 −6
6 −1

]
, mb :=

1

35

[
12 −2
2 −12

]
, md :=

1

35

[
12 −2
2 −12

]
,

ms :=
1

35

[
−6 1
−1 6

]
, mt :=

1

35

[
6 −1
1 −6

]
, me :=

1

35

[
−1 6
−6 1

]
.
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Proposition 6.2. The matrix representation Mρ of ρ⊗Q with respect to the basis
E of R32 ⊗Q is obtained from the template matrix T by substituting "a" with ma,
"b" with mb, "d" with md, "s" with ms, "t" with mt, and "e" with me.

By (6.1), we obtain another method of construction of LQ as follows.

Proposition 6.3. The lattice LQ is generated by E and Eρ in R32 ⊗Q .

Note added on 2018/05/04: Masaaki Harada confirmed min(LQ) = 6 by
a direct computation using Magma. It took about 27 days. We thank Professor
Masaaki Harada for this heavy computation.
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