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ABSTRACT. Let X be a general complete intersection of a given multi-degree
in a complex projective space. Suppose that the anti-canonical line bundle of
X is ample. Using the cylinder homomorphism associated with the family of
complete intersections contained in X, we prove that the vanishing cycles in
the middle homology group of X are represented by topological cycles whose
support is contained in a proper Zariski closed subset T' C X of certain codi-
mension. In some cases, we can find such a Zariski closed subset T with
codimension equal to the upper bound obtained from the Hodge structure
of the middle cohomology group of X by means of Grobner bases. Hence a
consequence of the generalized Hodge conjecture is verified in these cases.

1. INTRODUCTION

There are only few non-trivial examples that can be used as supporting evidence
for the generalized Hodge conjecture formulated by Grothendieck [8]. In this paper,
we deal with complete intersections of small multi-degrees in a complex projective
space, and prove, in some cases, a consequence of the generalized Hodge conjecture
for these complete intersections by means of cylinder homomorphisms.

We work over the complex number field C. Let X be a general complete inter-
section of multi-degree a = (a1, ...,a,) in P® with min(a) > 2. Suppose that X is
Fano, that is, the total degree Y ., a; of X is less than or equal to n. We put

m:=dimX =n—r and k:= {@(nia»} +1,

1=

where [ | denotes the integer part. It is known that the Hodge structure of the
middle cohomology group H™(X,Q) of X satisfies the following ([6, Exposé XI,
Corollaire 2.8]):

(1.1) H"™"(X)=0 <= 0<v<kor0<m-v<k.

If the generalized Hodge conjecture is true, then there should exist a Zariski closed
subset T" of X with codimension k such that the inclusion 7" — X induces a
surjective homomorphism H,, (T, Q) — H,,(X,Q).

We will try to verify this consequence of the generalized Hodge conjecture by
means of cylinder homomorphisms. Let b = (by,...,bs) be another sequence of
integers satisfying min(b) > 1 and r < s < n. We denote by Fy(X) the scheme
parameterizing all complete intersections of multi-degree b in P™ that are contained
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in X, and by Zp(X) C X X Fy(X) the universal family with
Zo(X) % X

(1.2) ﬂxl
Fy(X)

being the diagram of the projections. We put [ := n — s. Suppose that Fy(X) is
non-empty, and that m > 2[ holds. Since 7x is proper and flat of relative dimension
[, we have a homomorphism

HmeZ(Fb(X)vz) - Hm(Zb(X>7Z)

that maps a homology class [7] € H,,—2/(Fub(X),Z) represented by a topological
(m — 2I)-cycle 7 in Fy,(X) to the homology class [73"(7)] € H,n(Zu(X),Z) repre-
sented by the topological m-cycle 7T;(1 (1) in Zp(X). We define a homomorphism

¢b(X) : Hm_gl(Fb(X)7Z) — Hm(X,Z)

by ¥u(X)([7]) == ax.([rx" (1)]), and call ¢y (X) the cylinder homomorphism asso-
ciated with the family nx : Zp(X) — Fp(X).

It was remarked in [18] that there exists a Zariski closed subset T of X with
codimension > [ such that the image of the homomorphism H,, (T, Q) — H,,(X,Q)
induced from the inclusion T <— X contains Im ¢ (X) ® Q. (See also Corollary 5.4
of this paper.) Therefore, in view of the generalized Hodge conjecture, it is an
interesting problem to find a sequence b with [ as large as possible (hopefully
[ = k) such that the cylinder homomorphism (X ) has a “big” image.

Our Main Theorem, which will be stated in §2, gives us a sufficient condition on
(n,a,b) for the image of ¥, (X) to contain the module of vanishing cycles

Vin(X,Z) := Ker(H, (X, Z) — H,,(P", 7).

This sufficient condition can be checked by means of Grobner bases. Combining
Main Theorem with a theorem of Debarre and Manivel [5, Théoréme 2.1] about the
variety of linear subspaces contained in a general complete intersection, we also give
a simple numerical condition on (n, a, b) that is sufficient for Im ¢, (X) 2 V,, (X, Z)
to hold (Theorem 7.2). In many cases, our method yields b with [ larger than any
previously known results, and sometimes we can verify the consequence of the
generalized Hodge conjecture. See §8 for the examples.

After the work of Clemens and Griffiths [2] on the family of lines in a cubic
threefold, many authors have studied the cylinder homomorphisms of type ¥, (X),
and proved that the image contains the vanishing cycles ([1], [3], [4], [10], [11], [12],
[13], [14], [15], [16], [19], [21]). Our method provides us with a unified proof and a
generalization of these results.

This paper is organized as follows. In §2, we state Main Theorem. In §3, we
study a connection between vanishing cycles and cylinder homomorphisms in gen-
eral setting. Theorem 3.1 in this section is essentially same as the result of [17].
However we present a complete and improved proof for readers’ convenience. In §4,
we construct the universal family of the families Zy,(X) — Fy,(X) over the scheme
parameterizing all complete intersections of multi-degree a in P", which is a Zariski
open subset of a Hilbert scheme, and studies its properties. Combining the results
in §3 and §4, we prove Main Theorem in §5. In §6, we explain a method for checking
the conditions on (n,a,b) required by Main Theorem by means of Grébuner bases.
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In §7, an application of the theorem of Debarre and Manivel is presented. Examples
are investigated in relation to the generalized Hodge conjecture in §8.

Conventions. (1) We work over C. A point of a scheme means a C-valued point
unless otherwise stated. (2) For an analytic space X or a scheme X over C, let
T, X denote the Zariski tangent space to X at a point p of X. (3) The multi-degree
of a complete intersection is always denoted in the non-decreasing order.

2. STATEMENT OF MAIN THEOREM

We fix an integer n > 4. Let a = (ay,...,a,) and b = (b1,...,bs) be sequences
of integers satisfying

(2.1) 2<a1 <--<ap, 1<bH<---<by and r<s<n.

‘We put
m:=n—r and [:=n—s.

We denote by H,, » the scheme parameterizing all complete intersections of multi-
degree a in P". For a point ¢t of H,, 5, we denote by X; the corresponding complete
intersection. Let S, o denote the Zariski closed subset of H, , parameterizing
all singular complete intersections. It is well-known that S, , is an irreducible
hypersurface of H,, o, and that, if u is a general point of S, 5, then X, has only one
singular point p. For ¢ € H,, o, we denote by Fy(X;) the scheme parameterizing
all complete intersections of multi-degree b in P™ that are contained in X; as
subschemes. If m > 2] and Fy,(X;) # 0, then we have the cylinder homomorphism

Uo(Xt) o Hm—2(Fo(Xt), Z) — Hp (X4, Z).
We put t, := Card{ ¢ | a; = a, } and ¢, :== Card{ j | b; = a, }.
Main Theorem. Suppose that the following inequalities are satisfied:

(2.2) a;>b;, (i=1,...,r), a.>bs, and
(2.3) m—20>t, —t,, m>2l

Suppose also that, for a general point u of S, o, there exists a complete intersec-
tion of multi-degree b in P™ that is contained in X,, passing through the unique
singular point p of X, and smooth at p. Then, for a general point t of H, a, the
scheme Fy,(X4) is non-empty, and the image of the cylinder homomorphism 1y (X;)
contains the module of vanishing cycles V,, (X, Z).

Remark 2.1. In Proposition 4.15, we will give several conditions equivalent to the
second condition of Main Theorem. One of them can be tested easily by means of
Grdobner bases, as will be explained in §6.

3. VANISHING CYCLES AND A CYLINDER HOMOMORPHISM

In this section, we work in the category of complex analytic spaces and holomor-
phic maps. We study in general setting the problem when the image of a cylinder
homomorphism contains a given vanishing cycle. For the detail of the classical
theory of vanishing cycles, we refer to [9].

Let ¢ : Y — A be a proper surjective holomorphic map from a smooth irreducible
complex analytic space of dimension m 4+ 1 > 2 to the open unit disk A C C. For
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a point a € A, we denote by Y, the fiber ¢~1(a). Suppose that ¢ has only one
critical point p, that p is on the central fiber Yy, and that the Hessian

H:T,Y xT,Y — C
of ¢ at p is non-degenerate. We put A* := A\ {0}. For any e € A*, the kernel of
the homomorphism H,,(Y:,Z) — H,,(Y,Z) induced from the inclusion Y; — Y is
generated by the vanishing cycle [X.] € H,,(Yz,Z) associated to the non-degenerate
critical point p of .

Let o : F — A be a surjective holomorphic map from a smooth irreducible
complex analytic space F' of dimension k to the unit disk, and let W be a reduced
closed analytic subspace of Y xa F' such that the projection w : W — F is flat
of relative dimension [ > 0. Since ¢ is proper, so is w. Let v : W — Y be the
projection onto the first factor. We obtain the following commutative diagram:

w - v
(3.1) wl lso
F — A

)
For u € F, the fiber @ !(u) can be regarded as a closed I-dimensional analytic

subspace of Y,(,) by 7. For a € A, we put F, := ¢~ *(a) and W, := w™(F,). Then
we obtain a family of I-dimensional closed analytic subspaces of Yj:

w, — Y,

(3.2) wal
F,.

Since the restriction w, : W, — F, of w to W, is proper and flat of relative
dimension [/, we have the cylinder homomorphism

wa : Hm—Ql(Faaz) - Hm(YouZ)
associated with the family (3.2) for any a € A.

Theorem 3.1. We assume m > 20 > 0.

(1) Suppose that there exists a point q of Wy such that v(q) is the critical point
p of ¢, that w is smooth at q, and that v is an immersion at q. Then k = dim F’
is less than or equal to m — 21 + 1.

(2) Suppose moreover that k = m — 20+ 1 holds. Then w(q) is a critical point of
0, and the Hessian of o at w(q) is non-degenerate. Let ¢ be a point of A* with |e|
small enough, and let [o.] € Hp_oi(F:,7) be the vanishing cycle associated to the
non-degenerate critical point w(q) of o. If the vanishing cycle [E.] € Hp(Yz, Z) is
not a torsion element, then ¥-([o.]) is equal to [Ec] up to sign.

Proof. (1) Let Uw 4 be a small open connected neighborhood of ¢ in W. We can
assume that w is smooth at every point of Uy 4, and that v embeds Uy,4 into Y.
We put
0:=w(q) and Z:=w (o).

Then v(Uw,q N Z) and v(Uw,q) are smooth locally closed analytic subsets of YV
passing through p. Let T} and T5 be the Zariski tangent spaces to v(Uw,, N Z) and
v(Uw,q) at p, respectively. We have Ty C Tp C T,Y and dim Ty =, dim Ty = k+1.
We will show that 77 and T, are orthogonal with respect to the Hessian H of ¢ at
p. Let v be an arbitrary vector of T1. Since the structure w|Uw 4 : Uw,q — F of
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the smooth fibration on Uyy,4 is carried over to v(Uw,q), there exists a holomorphic
vector field ¥ defined in a small open neighborhood Uy, of p in Y such that v,
is equal to v, and that, if ¢’ € Uw,, satisfies v(¢') € Uy,p, then 0,4 is tangent
to the smooth locally closed analytic subset y(Uw,, N @ (w(q'))) of Y. Since
the diagram (3.1) is commutative, the function ¢ is constant on v(w = (w(q')))
for any ¢’ € Uyw,q4, and hence the holomorphic function 9(¢) is constantly zero on
v(Uw,q) N Uy,p, which means that the following holds for any w € T:

H(w,v) :=w(d(p)) =0.

Thus T} is contained in the orthogonal complement T3 of Ty with respect to H.
Since H is non-degenerate, we have

| =dimT} < dimT,Y — dim Ty = (m + 1) — (k +1).

Therefore we obtain k < m + 1 — 21.
(2) From now on, we assume k = m + 1 — 2I. Then we have T} = T5-. Hence H
induces a non-degenerate symmetric bilinear form

HI : TQ/Tl XTQ/Tl — C.

Since w is smooth at ¢, there is a local holomorphic section s : Up, — W of w
defined in a small open neighborhood Up, of 0 = w(q) in F such that s(o) = q.
We take Up, so small that s(Up,) C U, holds. Let S be the image of v o s,
which is a smooth locally closed analytic subset of Y passing through p, and let T3
be the Zariski tangent space to S at p. We have T, = T1 & T5. It follows from the
non-degeneracy of H’ that the restriction H|T5 : T35 x T3 — C of H to Tj is also
non-degenerate. Since 7y o s yields an isomorphism from Ug, to S, and p coincides
on U, with
UF,O ’Y_OS> S ﬁ) Aa

the point o is a critical point of p. Moreover, the Hessian of ¢ at o is equal to H|T5;
via the isomorphism (d (y 0 s)), : ToF' = T3, and hence is non-degenerate.

We will describe the holomorphic maps in the diagram (3.1) in terms of local
coordinates. Let ¢ be the coordinate on A. There exist local analytic coordinates

x = (z1,...,2) on F with the center o such that g is given by

(3.3) ot =at +--- 4z}

Since w is smooth at ¢, there exists a local analytic coordinate system (w,w’) =
(wi, ..., wk, wy,...,w;) on W with the center g such that w is given by

(3.4) whr; = w; (i=1,...,k).

Since v is an immersion at ¢, there exist local analytic coordinates (y,y’,y") =
(Y15 Uk Vi -5 YY1, y)) on Y with the center p such that +y is given by

’Y*yi:wi (Zzlvak)v
(3.5) Yyp=w; (G=1,....0),
Yy =0 (G=1,...,0).
(Note that dimY is equal to m + 1 = k + 2I.) Then the locally closed analytic

subset v(Uw,q) of YV is defined by y{ = --- = y;/ = 0 locally around p. From the
commutativity of the diagram (3.1), it follows that ¢*t and y? + --- + y,% coincide
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on v(Uw,q). Therefore, in a small neighborhood of p, the function ¢*¢ is written as
follows:

ViR a) e ay)

where a = (ay, ..., a;) is a system of holomorphic functions defined locally around p.
Since p is a critical point of ¢, we have a1(p) = - -- = a;(p) = 0. The non-degeneracy

of the Hessian H of ¢ at p implies that the [ x [ matrix (aai/ayg (p))l j=1,..., 1S noN-

degenerate. Hence (y, a,y"”) is another local analytic coordinate system on Y with
the center p. We replace y’ with a. Then we have

i o1

(3.6) Prt=yl Ry e
We can make coordinate transformation on w’ according to the coordinate trans-
formation on 3’ so that (3.5) remains valid. We put
Zi =Y (i=1,...,k),
(3.7) s = () + )2 (G =1,
ziig = V-1 (Y —y))/2 (G=1,...,0).
Then we have
(3.8) P t=27 42l
Let n be a sufficiently small positive real number, and let B, be the closed ball
in Y defined by
21 + -+ + |2 [* <.
Let € be a positive real number that is small enough compared with 7. Let s be a
real number satisfying 0 < s < €. The closed subset
Yo N By = {(z1,- s zmi) | [P+ F P <y 2+ 420y = )
of Y, = ¢~!(s) is homeomorphic to the total space

E:={(u,v) e R™H x R | Jlul|=1, ||lv| <1, ulov}

of the unit disk tangent bundle 7 : £ — S™ of the m-dimensional sphere S™ :=
{u € R™*! | |jul| = 1}, where the projection 7 is given by 7(u,v) = u. We identify
S™ with the zero section of 7 : E — S™. The homeomorphism hg : Y N B, = E is
written explicitly as follows:
 Re(z) Y

| Re()” n—s

Its inverse h; ' : E =Y, N B, is given by the following:

(3.10) z\/s+(”25)||v||2-u+,/("25).u

The sphere S™ C E is mapped by h; ! to the closed submanifold

242k =S, }
Jm(z;)=0 (i=1,...,m+1)

(3.9) u

Jm(z).

Y= { (Zl,...,Zm_H) ey

of Ys. With an orientation, this topological m-cycle Y represents the vanish-
ing cycle [Es] € Hp,(Ys,Z), which generates the kernel of the homomorphism
H,, (Y, Z) — H,,(Y,Z) induced from Y; — Y.
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For s € (0,¢], let o5 denote the (m — 2[)-dimensional sphere contained in Fy =
0~ 1(s) defined by

2442l =,
USZZ{(ml,...,l‘k)EF ! k }

Jm(z;)) =0 (i=1,...,k)

With an orientation, this topological (m — 2I)-cycle o4 represents the vanishing
cycle [o5] € Hy—21(Fs,Z) associated to the non-degenerate critical point o of .
Since w is proper and flat of relative dimension [, the inverse image w~!(o) of the
oriented sphere o, can be considered as a topological m-cycle in W, = w™1(F}).
The image t:([oc]) of [0:] € Hpm—o(F:,Z) by the cylinder homomorphism . :
Hp—o(Fe,Z) — H,, (Y., Z) is represented by the topological m-cycle

Yo (o) : w (o) — Y.

Since the sphere o, bounds an (m — 2l + 1)-dimensional closed ball in F, the
topological m-cycle y|ew~!(o.) is a boundary of a topological (m + 1)-chain in Y;
that is, 1. ([oc]) belongs to the kernel of H,,,(Yz,Z) — H,,(Y,Z). Hence there exists
an integer ¢ such that the following holds in H,,(Yz,Z):

(3.11) 1/)6([0-6]) =cC [EE]

We will show that, if [¥.] is not a torsion element in H,,(Yz,Z), then ¢ is £1.
We put

Yoo =¢ H(0e) = |J Y
s€[0,¢e]
For any closed subset A of Yo .}, we set
A= A\(ANBy), A":=ANB, and 0%A:=AN0B,,

where B} is the interior of the closed ball B,, and 0B,, is the boundary of B,,. The
sharp f means “outside the ball”, and the flat b means “inside the ball”. The explicit
descriptions (3.9) and (3.10) of the homeomorphism h, : Y? % E for s € (0, ] show
that the restriction hs|0PY, : 0PY, = OF of hy to 0PY, can be extended to a
homeomorphism from

Yo ={ (21,.. -, zm1) | |2+ + |2msal® =, Atz =0}
to OF = {(u,v) € E | ||v|| = 1} smoothly. We denote these homeomorphisms by
OPh, : 0PY, =% OE (s €[0,¢]).
The homeomorphism 9Bhg : 9BYy = OF is given by the following:
w=1/2/n Re(z), v=+/2/n Im(z), and z=+/n/2u+vV—1v).
Putting these homeomorphisms 9P h (s € [0, ¢]) together, we obtain a trivialization
0Ph = 9PY}p . = OF x [0,¢]
of the restriction ¢|07Y] o : 95Y]y — [0,€] of ¢ to 8PY]y . over [0,¢]. Let
OPf 1 0PY . = 9PY. x [0, €]
be the trivialization of Lp|6BY[O’E] obtained by composir;g 0Bh and (0Bh. x id)~L.

0,e]?
mann’s fibration theorem for the manifolds with boundaries that the trivialization

Since the only critical point p of ¢ is not contained in Y; we can show by Ehres-
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0P f extends to a trivialization
(3.12) (F,050) (V00" Yio) = (V2,0P.) x 0,¢]

of <p|Y0 0. : [g g [0,¢] in such a way that the restriction of (f#, 0P f) to the fiber
over ¢ is the identity map. For s € [0,¢], let
(f£,05f,) = (YF,07Y;) = (YE,0Y)
denote the restriction of (f*, dF f) to the fiber over s.
We put
Csi=9(@ ' (04)) C Vi
When s approaches 0, this closed subset C, degenerates into Cy = (@ 1(0)),
—1

which is an [-dimensional closed analytic subset of Yy. We decompose w ™! (o) into
the union of @' (0,)® and w1(0,)?), where

@ N o)® = @ oy) \ (7 I(By)Nw (oy)) and
_1(08)(b) = 'V_l(Bn) Nw (o).
Since 1 and € are small enough, and W is a subspace of Y x F', we have
(3.13) w o) =W (B, x0,) C Uy

for all s € [0, €], where Uyy,, is the open neighborhood of ¢ in W that was introduced
at the beginning of the proof. Recalling that ~ embedb Uw,q into Y, we see that
the map v yields a homeomorphism from @~ (o ) to C°. By definition, v maps
@ 1(0.)® to Cf. We then define a closed subset C. of Y. by

(3.14) C. =2 u (U 071070y U F(Ch).

s€0,¢e]
Note that we have
W@:U@”WMW@)md@:@uW@,@:W@Um%)

Using the trivialization (f*, 0B f), we can “squeeze” the topological m-cycle
Yo (o) : w (o) — Y. outside the ball so that the image is contained in
C.. More precisely, we can construct a homotopy from Yo (o) i w(o:) = Yo
to a continuous map 3 : w(o.) — Y. with the following properties:

(8-1) The image 3(w(0.)) of B coincides with C..

(5-2) The homotopy is stationary on w~'(o.)®). In particular, 3 yields a homeo-
morphism from w™!(0.)® to the first piece C° of the decomposition (3.14).

(8-3) The image B(w 1 (0:)®) of w=1(c.)® by 3 is contained in C¥.

(See Figure 3.1.) Since 9. ([o.]) is represented by |~ 1(0.), it is also represented
by the topological m-cycle 3.

From (3.13) and (3.3), (3.4), (3.5), (3.7), we see that C” (s € [0,¢]) is given in
terms of the local coordinate system z by the following:

212+ 4 zmga? <,
Bttt
Y = zkrj T V-1l =0 (G=1,...,10).
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CaCA) B(w ™ (0e))

—
M~

FIGURE 3.1. Homotopy from v|w~(0.) to

For s € [0,¢], let G be the closed subset of E defined by the following equations:

(25 + (0= s)llv*)(uf + -+ ug) = 2s,

vy == =0,
Vk+j = 795(“0”) CUk+145 (] = 13 .. '71)7
Vktitj = gs(loll) - unty; (G =1,...,0),

where

2s
- 2
ool 1= /7= + ol

Then, for s € (0,&], the homeomorphism A : Ysb = E maps Cg to G. In particular,
the first piece CEb of the decomposition (3.14) of CN'E is mapped homeomorphically
to G. by h.. It is easy to check that, for any s € [0,¢] (including s = 0), the
homeomorphism 0 h, : 9BY, = OF maps 02C, to G, NOE. We put

T.:={ueS" |ul+- - +uj <2/(n+e) },

and let T be the closure of T,.. We can easily check that the projection 7 : E —
S™ induces a homeomorphism from G, to S™ \ T¢, and that, for any s € [0,¢],
G, NOE is contained in 77 1(T-)NAE. In particular, the second piece dBC. of the
decomposition (3.14) is mapped by dPh. into 771(T7) N OE.

Let a be a point of ™\ T-". Then the closed subset hZ' (771 (a)) of Y. intersects
the first piece C? of the decomposition (3.14) at only one point, which is in the
interior of C?, and the intersection is transverse. Moreover, hZ' (7! (a)) is disjoint
from the second piece BC. of the decomposition (3.14). The third piece fg(Cg) is
a topological 2l-cycle in (Ysﬁ7 0PY.), because C is a topological 2i-cycle in Yj.

If [2.] € Hyw(Y:,Z) is zero, then ¢-([oe]) = 0 by (3.11) and hence there is
nothing to prove. Suppose that [X.] is not zero and not a torsion element. Then
there exists a homology class [0] € H,,(Y:,Z) such that the intersection number
[Xc] - [©] of [Xe] and [O] in Y; is not zero. In order to show that the integer ¢ in
(3.11) is £1, it is enough to prove the following:

(3.15) Ye([oe]) - O] = £[E.] - [O].
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Multiplying [O] by a positive integer if necessary, we can assume that [O] is rep-
resented by a compact oriented m-dimensional differentiable submanifold © of Y,
([20]). By the elementary transversality theorem (see, for example, [7]), we can
move O in Y, in such a way that the following hold:

(©-1) The closed subset h.(©°) of E is a union of finite number of fibers of 7 : E —
S™ over points in S™\ T .

(©-2) The topological m-cycle ©F of (Y* 0BY.) is disjoint from the topological
2l-cycle fg(C’g). Here we use the assumption m > 2.

From (©-1) and (©-2), the points © N C. are contained in the interior of the first
piece C? of the decomposition (3.14) of C., and the intersections are all transverse.
Moreover, the total intersection number of © and 58 is equal to that of ® and X,
up to sign, because both of them are equal, up to sign, to the number of fibers of 7
constituting h.(©°) (counted with signs according to the orientation). Combining
these with the properties ((-1)-(5-3) of the topological m-cycle 3, we see that
0] - [©] = £[2.] - [6]. We have seen that 1.([o.]) is represented by §. Thus we
obtain (3.15). O

4. THE UNIVERSAL FAMILY

In this section, we will construct the universal family of the incidence varieties
of complete intersections in a complex projective space P™.
First we fix some notation. Let

R= @Rd = Clxo, ...,z
d=0

be the polynomial ring of n + 1 variables with coefficients in C graded by the
degree d of polynomials. We set Ry := 0 for d < 0. Let M be a graded R-
module. We denote by M, the vector space consisting of homogeneous elements
of M with degree d. For an integer k, let M (k) be the R-module M with grading
shifted by M (k)q := Mp4q. For another graded R-module N, let Hom(M, N)
denote the vector space of degree-preserving homomorphisms from M to N. Let
c = (c1,...,¢) be a sequence of positive integers. We assume ¢t < n. Let us define
the graded free R-module M, by

t
M, = @ R(c;).
i=1

An element of M, is written as a column vector. Let f = (fi,..., fi)T be an element
of (M¢)o = ®R.,, where f; is a homogeneous polynomial of degree ¢;. We denote by
Jr the homogeneous ideal of R generated by f1,..., fi. There exists a Zariski open
dense subset (M.)§ of the vector space (M) consisting of all f € (M,)o such that
the ideal J; defines a complete intersection of multi-degree c in P* = Proj R. For
[ € (M), let Y(sy denote the complete intersection defined by Jy. It is well-known
that, for any integer v, the dimension of the vector space

HO(Y(5),0(v)) = (R/T)(¥))o

is independent of the choice of f € (M,)§'.
Let H, . denote the scheme parameterizing all complete intersections of multi-
degree c in P". It is well-known that H,, ¢ is a smooth irreducible quasi-projective
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scheme. For an element f € (M), let (f) denote the point of H,, . corresponding
to the complete intersection Y(sy. We have a surjective morphism

4c : (MC>8i — Hy e

that maps f to (f). Let Y. C P™ x H, . be the universal family of complete
intersections of multi-degree ¢ in P" with ¢¢ : Yo — H,c and 7¢ : Ve — P" the
projections.

Proposition 4.1. (1) The morphism qc is smooth. (2) The morphism T is smooth.
In particular, Ve is smooth.

Proof. (1) The Zariski tangent space to H, ¢ at (f) is given by
(4.1) TigyHne = HO(Y 5y, Ny, ) = (Mo /Tt Me)o,

where Ny< 5y /P 18 the normal sheaf of Yy in P", which is isomorphic to ®f_,0(¢;).
By (4.1) and T§(M)§" = (Mec)o, the linear map (dge)s : T (Me)§ — TypyHp e is
identified with the quotient homomorphism (M) —» (Mc/JsMc)o. Hence gc is
smooth.

(2) Let P = (p, (f)) be a point of V.., where p is a point of Yy, and let I, be the
homogeneous ideal of R defining the point p. The kernel of (drc)p : TpYe — T,P"
is mapped isomorphically to a subspace of T\ syHpc by (d¢c)p : TpYe — TipyHn e
This subspace coincides with the subspace (IpMc/JrMc)o of (Mc/JfMc)o under
the identification (4.1). Since dim(Mc/I,Mc)o = t, dimKer(dr.)p is equal to

dim H,, . —t = dim ), — n for any point P € ). O
Let a = (a1,...,a,) and b = (b1,...,bs) be two sequences of integers satisfy-
ing (2.1). Instead of YV, and Y}, we denote by
x =, pr z L pr
(4.2) o] and ']
H, o H,p

the universal families over H,, o and H, . For f € (M,)§ and g € (My)§', we
denote by Xy, and Z the complete intersections corresponding to (f) € Hya
and (g) € Hy 1, respectively.

An element h of Hom(My, Ma)o is expressed by an r x s matrix (h;;) with h;; €
Ra,—p;- When g € (My)o is fixed, the image of the linear map Hom(My, Ma)o —
(Ma)o given by h — h(g) coincides with (J4Ma)o. The following proposition is
then obvious:

Proposition 4.2. The following three conditions on the pair (f,g) of f € (Ma)&
and g € (Mp)§' are equivalent:

(i) X5y contains Z4 as a subscheme,

(ii) f is contained in (JgMa)o, and

(iii) there exists an element h € Hom(My, Ma)o such that f = h(g). O

Let Fy.a be the contravariant functor from the category of locally noetherian
schemes over C to the category of sets that associates to a locally noetherian scheme
S — SpecC the set of pairs (Zg, Xg), where Zg C P* x S and Xg C P* x S are
families of complete intersections in P™ with multi-degrees b and a, respectively,
parameterized by S such that Zg is a subscheme of Xg. This functor Fy, 4 is
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represented by a closed subscheme Fy, o of H,p X Hya. (The scheme Fy, o may
possibly be empty.) We denote the projections by p’ : F, a — Hpp and p: Fp o —
H, a. The universal family over Fy 5 is the pair (ZV, /'F) of Z = Z XH,p Fba
and X = X XHy o Fba- We denote by 7 : Z — Fya and (- Z — Z the
natural projections. We also denote by « : Z — X the composite of the closed
immersion Z < X and the natural projection X — X. Thus we obtain the
following commutative diagram:

’ Ié; ~ @

- oz L 9z % x I pr

(4.3) ¢ | O I~ Lo

Hn,b ép/ Fb,a . > Hn,aa

in which 7 oo = 7/ o 8 holds. A point of Zisa triple

(pv <g>7 <f>) € P x Hn,b X Hn,a

that satisfies p € Z(4y C X(5y. The projection © maps (p, (g), (f)) to ({g9),(f)) €
Fiya, and the morphism a maps (p, (g), (£)) to (p, (f)) € X.

The right square of the diagram (4.3) is the universal family of the families (1.2)
of complete intersections of multi-degree b contained in complete intersections of
multi-degree a. Remark that the linear automorphism group PGL(n + 1) of P"
acts on the diagram (4.3).

Remark 4.3. If (n,a,b) satisfies the first inequality a; > b; (i = 1,...,r) of the
condition (2.2) in Main Theorem, then Fy, 5 is non-empty. Indeed, we choose linear
forms l1,...,0.,0},.... 00 € Ry generally. We define g € (My)§' by g; := Z}bj.
Since a; > b;, we can define f € (Ma)§ by fi = E;bi&aﬁb"’. Then ({(g),(f)) is a
point of Fy, 4.

From now on to the end of this section, we assume that Fy, 5 is non-empty. We
define a vector space U with a natural morphism v : U — (Ma)o by

U:=(Mp)o x Hom(Myp, Ma)o and v(g,h) := h(g).
We then put
U = ((Mp)§" x Hom (M, Ma)o) Nv ™ ((Ma)§).

Note that U is a Zariski open subset of U, and hence is irreducible. By Proposi-
tion 4.2, the map

o(g;h) = ((9), (h(9)))

defines a surjective morphism o : U —» Fy, , which makes the following diagram

commutative: e
o )
U — (M.)§

g I

Fb,a — Hn,a~

In particular, the scheme Fy, 5 is irreducible.

Proposition 4.4. The morphism p' : Fy, a — Hp p is smooth.
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Proof. For a non-negative integer k, we set A; := C[t]/(t**!), and for a scheme
T over C, we denote by T(Ay) the set of Ag-valued points of T. Suppose we
are given (g)l"* € H, p(Ay11) and ((9), (/)M) € Fy a(Ay) satistying (g)H =
(g)*+1] mod t**+1. Tt is enough to show that ((g), (f)[¥]) extends to an element
(o) (f)*+1]) of B, a(Ags1) over the given point (g)*+1) € H,, 1, (Agy1). Since
Ga: (Ma)§" — Hpa and gp : (My)§' — H, p are smooth, there exist

9" e (Mp)o @c Ar1 and M € (Ma)o & Ay
that satisfy gn (9" 1)) = (9)*™) and ga () = (f)Il. We put
glFl = gl*+ 1 mod R+ € (My)o ©c Ay,
which satisfies <g[k]> = <g>[k]. By the definition of Fy, 4, the ideal Jyu of R ®c Ay
generated by the components of g*! contains the ideal .J si1. Hence there exists

nlkl e Hom(Myp, Ma)o ®c Ax such that fIE = plA] (g[k]) holds. Let A**1 be any
element of Hom(My,, My)o ®c Apy1 satisfying h*+1 mod 51 = nlkl. We put

fle+1] . plhe+1] (g[k+1]) € (Ma)o ®c Agt1-

Since being a complete intersection is an open condition on defining polynomials,
the ideal Jyt1 of R ®c Agq1 defines a family of complete intersections of multi-
degree a over Spec Agq. Thus ((glF+1), (fIF+1)) is the hoped-for Ay i-valued
point of Fy, 4. O

Corollary 4.5. (1) The scheme Fy, o is smooth. (2) The morphism (3 : Z— Zis
smooth. In particular, Z is smooth. (I

Let (g,h) be a point of U®. We have the following natural identifications of
vector spaces:

(4.4) H(Zgy, Nz, ypn) = Tigy Hu o = (My /Ty My )o,
(4.5) H(Z1g), NX 00y /871 Z 1)) = (Ma/ JgMa)o,
(4.6) H°(X(h(9))s Nx 07y /B7) = Tin(g)y Hna = (Ma/ Ji(g) Ma)o-

The restriction map J\/Xwg))/pn — NX<}L(g)>/[p>n|Z<g> of coherent sheaves induces,
via (4.6), a linear map

¢ Tinen Hna = H(Zig), Nix ), 22 Z0g))-
Under the identifications (4.6) and (4.5), the linear map ¢’ is identified with the
natural quotient homomorphism
(Ma/Jh(g)Ma)O — (Ma/JgMa)o.
In particular, ¢’ is surjective. On the other hand, since Z, is a subscheme of
X(n(g)), there is a natural homomorphism
Nz e = Nxip 7871 Z0)

of coherent sheaves over Z,y, which induces, via (4.4), a linear map

gy
C: Tigy Hnp — H(Zig), Ny, 271 210))
Under the identifications (4.4) and (4.5), the linear map (¢ is identified with the

homomorphism

(h)g + (My/JgMyp)o — (Ma/JgMa)o

13
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induced from h : My — M,.

Proposition 4.6. Let (g, h) be a point of U, and P the point o(g,h) = ({g), (h(9)))
of Fya. Then we have the following diagram of fiber product:

d
TpFpa el Tinig) Hn,a

(4.7) (dP/)Pl 0 ig’
TigyHnp — HO(Zgy, N 0y 1P | Z1g))-

Proof. By the identifications (4.4) and (4.6), any vectors of T gy Hy, b and Ty, (g)) Hn,a
are given as elements

g =g mod(JyMp)o and f':= f mod (Jyy)Ma)o

of (My/JyMyp)o and (Ma/Jpg)Ma)o by some g’ € (Myp)o and f' € (Ma)o, respec-
tively. Let ¢ be a dual number: €2 = 0. The vectors g’ and f’ correspond to the
infinitesimal displacements

Zigteqy — SpecCle] and  Xip(g)4cy — SpecCle]

of Z4y and X (4)) defined by the homogeneous ideals J, + eJy and Jy,(y) + €y
of R®c Cle], respectively. Then the vector (g, f'), regarded as a tangent vector to
Hpp x Hpa at ((g),(h(g))), is tangent to [y a if and only if Z4, .4 is contained
in X(4(g)+ef) as a subscheme; that is, there exist elements hy, ho € Hom(My,, Ma)o
such that hy + chy € Hom(My, Ma)o ®c Cle] satisfies the following:

(4.8) (h1 +eh2)(g +eg') = h(g) +ef".
Suppose that hy + cho satisfies (4.8). Because hi(g) = h(g), each row vector of
the matrix hy — h is contained in the syzygy of the regular sequence (g1,...,9s),

and hence every component of h — h is contained in J,. Therefore the two linear

maps (h), and (h1)4 from (My/JgMyp)o to (Ma/JgMa)o are the same. The equality

hi(g") + ha(g) = f’ then tells us that f’ mod (J4Ma)o is equal to (h)4(g'), because

ha(g) € (JyMa)o. Hence (g, f') is contained in the fiber product of ¢ and (.

Conversely, if (g', f') is contained in the fiber product of ¢ and (', then it is easy

to find hy € Hom(My, Ma)o satisfying (h + eho)(g +eg’) = h(g) +f". O
Since Fy, a is reduced by Corollary 4.5 (1), we obtain the following:

Corollary 4.7. Let (g, h) be an arbitrary point of U°t.
(1) The dimension of Fy a is equal to

dim(Ma/Jh(g)Ma)O + dim(Mb/‘]gMb)O - dim(Ma/JgMa)O =
dim H,, o + dim H,, p — dim(Ma/JgMa)o.

(2) Let P be the point o(g,h) of Fp.a. Then the dimension of the cokernel of
(dp)p : TpFpa — Tin(g)) Hn,a is equal to

dim Coker ¢ = dim Coker(h), = dim(Ma/(JgMa + h(Myp)))o-

(4.9)

Proposition 4.8. Let (g,h) be a point of U, and let p be a point of Zgy. We put
Q := (p, (), (h(g))), which is a point of Z. Let I, denote the homogeneous ideal of
R defining the point p. Then the dimension of the kernel of (da)q : TQZ~ — To)X
is equal to

(4.10) dim Fy o — dim H,, o — s 4 dim(Ma /(JyMa + Lh(My)))o.
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Proof. Since Z is a closed subscheme of H,p x X with p’ o7 and « being the
projections, the kernel of (da)q is mapped isomorphically to a subspace of Tgy Hy, b
by the linear map d(p’ o m)g. We will show that this subspace

(4.11) (d(p om)q) (Ker(da)q) C TipHnp
coincides with the subspace
(412) (Ipr/JgMb)o N Ker<h>g C (Mb/JgMb)O

under the identification (4.4). Let g’ be an element of (M), and g’ the el-
ement ¢’ mod (JyMy)o of (My/JyMp)o, giving the corresponding displacement
Zg+eq'y — Spec Cle] of Z4y. The subspace (4.11) consists of vectors corresponding
to infinitesimal displacements with p in Zy, .y and with Z, .4 remaining in
X(n(g))- The displacement Z, .. contains p if and only if J, C I, holds, which
is equivalent to §' € (I, Mn/JyMp)o. On the other hand, by Proposition 4.6, the
displacement 7, ., remains in X4y if and only if the corresponding vector of
TgyHn b is contained in Ker ¢. Since ¢ is identified with (h), this holds if and only
if g € Ker(h),. Therefore (4.11) coincides with (4.12) by (4.4). The cokernel of
the homomorphism
(I Mo/ JyM)o = (M /JyMy)o ™% (Ma/ JyMa)o

is (Ma/(JgMa + I,h(My)))o. On the other hand, dim(My /I, My)o is equal to s.
These lead us to the conclusion that dim Ker(da)q is equal to

dim(My /JgMyp)o — s — dim(Ma/Jy Ma)o + dim(Ma/(JgMa + Iph(My)))o,
which coincides with (4.10) by Corollary 4.7 (1). O

In the sequel, we use the following notation. For positive integers d and e, let
Mat(d, e) denote the vector space of all d x e matrices with entries in C, and D(d, e)
the Zariski closed subset of Mat(d, e) consisting of matrices whose rank is less than
min(d, e). It is easy to see that D(d, e) is irreducible. We set

0:=[1:0:---:0] € P".
For a homogeneous polynomial a € R, we put
a(0) := the coefficient of z3°¢“ in a.
Let I, be the homogeneous ideal of R defining o in P":
I, :=(x1,...,2,) C R.

We define linear maps A; : (IbMa)o — C* (i = 1,...,r) and p; : (I,Mp)o —
Cr(j=1,...,8) by

N = (520 g @) o) = (520 52 0).

Let A: (I,Ma)o — Mat(r,n) and u : (I,Mp)o — Mat(s,n) be linear maps defined
by

A(f) p1(g)
A(f) = : and p(g) = :
)\T(f) ,us(g)

15
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Both of A and p are surjective. We define a linear map 7 : Hom(Myp, Ma)o —
Mat(r, s) by
n(h) := (hij(0)),
when % is expressed by an r x s matrix (h;;) with h;; € R,,—p;. Note that, if g is
an element of (I,My)g, then, for any h € Hom(My, Ma,)o, we have h(g) € (I,Ma)o
and A(h(g)) = n(h) - (g).
We define an R-submodule N, of M, by
r—1
N, = @ R(a;) & L,(a,).

i=1
Note that Ker A\, = (I,Na)o holds in (I,M,)s. Note also that an element h of
Hom(My, Ma,)o is contained in Hom(My, N, )o if and only if the r-th row vector of
n(h) is the zero vector. We put

(IoMp)§ = (IoMb)o N (Mp)g',
(LMa)§ = (IMa)o N (Ma)§',
(I.Na)§' == (IoNa)o N (Ma)'.
For f € (M,)§ and g € (My,)§', we have the following:
(4.13) (0.(f)) € X = f € (LMa)', (0,{9)) € Z = g€ (I,Mp)g'.

Let I' be the Zariski closed subset of X consisting of critical points of ¢ : X — H,, a,
and I the Zariski closed subset of Z consisting of critical points of ¢' : Z — H,, p.
‘We put
L,:=7Yo)NT, T :=7"1o)nT".
For f € (I,Ma)§" and g € (I,Mp)&, we have the following:
(0,(f)) €Ty <= A(f) € D(r,n),

(4.14

) (0,49)) € T, 4= plg) € Dl ).
If f € (I,Na)§', then A(f) € D(r,n). Hence we can define a morphism ~ :
(I,Na)§" — T, by

V() = (0, {f)-

Proposition 4.9. The Zariski closed subset I, of X is irreducible, and the mor-
phism v : (I,Na)§t — T, is dominant.

Proof. By (4.13) and (4.14), the map f — (o, (f)) gives a surjective morphism from
AY(D(r,n)) N (I,Ma)§ to T',. Because \ is a surjective linear map and D(r,n)
is irreducible, A=1(D(r,n)) is also irreducible. Since A1 (D(r,n)) N (I,Ma)§' is
Zariski open in A1 (D(r,n)), T, is also irreducible. Let f be a general element of
AY(D(r,n)). Then \(f) is of rank r — 1, and the vector \.(f) can be written as

a linear combination of A1(f),..., Ar—1(f). Since a, > a; for i < r, there exist
homogeneous polynomials ¢1,...,c,—1 with ¢; € R,,_q4, such that, if we put
f7/' = f?"_clfl_"'_crflfrfl and fl = (flw--afrflaf;)Tv

then A\.(f’) = 0 holds, which means f’ € (I,Na)o. From J;y = Jy, we conclude
that (o, (f)) = (o, (f’)) belongs to the image of . Since (o, (f)) is a general point
of T',, the morphism -y is dominant. (I

Remark 4.10. The irreducibility of I" and that of S, a = ¢(I") follow from Propo-
sition 4.9 and the action of PGL(n + 1) on the diagram (4.3).
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Corollary 4.11. Suppose that (o, {f)) is a general point of T,. Then the singular
locus of Xy consists of only one point o, which is a hypersurface singularity of
X(yy with non-degenerate Hessian. ([l

We put
E=a'M\ (@} (T)NB ) and Z,:=(roa) (o)NE,

which are locally closed subsets of Z (possibly empty). A point (o, (g), (f)) of
(toa) (o) C Z is contained in Z, if and only if X is singular at o and Z g is
smooth at 0. The morphism « : Z — X induces a morphism «|Z, : 2, — T,

Remark 4.12. Invoking the action of PGL(n + 1) on the diagram (4.3), we can
paraphrase the second condition of Main Theorem into the condition that a|=Z, :
=, — I', is dominant.

We define a linear subspace V of U = (Mp)o x Hom(My, Ma)o by
V = (I, My)o x Hom(My, Na)o.
We then put V< := V N U and
Vi:={(g9,h) € V| u(g) ¢ D(s,n)} = {(g,h) € V| Zgy is smooth at o}.

By definition, V! is Zariski open in the vector space V, but may possibly be empty.
Recall that v : U — (Ma)o is the morphism defined by v(g,h) = h(g). We have a
morphism

v[V:V — (I,Na)o and v|V%: Vi — (I,Na)S,

which are the restrictions of v to V' and V¥, respectively. By definition again, if
(g,h) € V5, then (o, (g), (h(g))) € Z,. Let £ : V# — =, be the morphism defined by

£(g,h) := (0,{g), (h(9)))-

Then we obtain the following commutative diagram:
14 i .
ve Y (,Ng

(4.15) ¢l 1

=0 — r,.
alZ,

Proposition 4.13. The morphism «o|Z, : E, — I, is dominant if and only if
v|VE:VE — (I,Na)& is dominant.

Proof. Since v is dominant by Proposition 4.9, the commutativity of the digram (4.15)
implies that, if #|V? is dominant, then so is a|Z,. Suppose conversely that a|Z, is
dominant. Let f be a general point of (I,Na)§. Since 7 is dominant, (o, (f)) is a
general point of T',, and hence (o, (f)) is in the image of a|=,. Thus there exists
an element g € (I,Myp)§" such that (o,(g),(f)) € =, which implies that u(g) is
not contained in D(s,n), and that there exists an element h € Hom(My,, M, ), that
satisfies h(g) = f. From A.(f) = 0 and n(h) - u(g) = A(f), the linear independence
of the row vectors of u(g) implies that the r-th row vector of n(h) is a zero vec-
tor. Therefore h is in fact an element of Hom(My, N,)o, which means (g, h) € V.
Hence the general point f = h(g) of (I,Na)§' is contained in the image of v|Vi. O
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Proposition 4.14. Suppose that o|Z, : 2, — T, is dominant. Then there exists a
unique irreducible component . of 2, such that the restriction «|=, : 2 — T, of
alZ, to =

' is dominant. The closure of the image of &€ : V& — Z, in Z, coincides
with 2.

Proof. Since T, is irreducible, there exists at least one irreducible component =/ of
E, that is mapped dominantly onto T', by a|Z,. Let (o, (g), {f)) be a general point
of Z/. Then a(o, (9), (f)) = (o, (f)) is a general point of I',. Since ~ is dominant, we
can assume that (o, (f)) is in the image of 7; that is, f is an element of (I,N,)§'. Let
h € Hom(Mpy, Ma)o be a homomorphism satistying h(g) = f. From u(g) ¢ D(s,n)
and A.(f) = 0, we see that h actually is an element of Hom(My, N,)o. Hence
(g,h) is a point of V% which is mapped to the general point (o, (g), (f)) of =/ by
&. Therefore =/ is the closure of the image of ¢ : Vi - Z, in Z,. Since V! is
irreducible, the uniqueness of Z/, as well as the second assertion, is proved. ([

For an element (g, h) of U, we define a linear map d(y ) : U — (Ma)o by
5(g7h)(G,H) = H(g) + h(G) (G € (Mb)g, H e HOHl(Mb,Ma)O )
Under the natural isomorphisms T(, , U = U and T,y 1)(Ma)o = (Ma)o, the linear
map J(g ) is equal to
(du)(g’h) : T(g,h)U — Tu(g,h) (Ma)o.
By definition, we have
(4.16) Sgm(U) = (JgMa+ h(My))o,
(4.17) Sgm(V) = (JgNa+ I,h(My))o, and
(4.18) (gh) eV = g n)(U) S (Na)o, 0(g,n)(V) < (IoNa)o-
Proposition 4.15. Suppose a, > bs. Then the following conditions on (n,a,b)
are equivalent to each other:
(i) The morphism |2, : E, — T, is dominant.
(ii) If (g,h) € V is general, then (g ) (V') coincides with (1,Na)o-
(iii) If (g,h) € V is general, then the following holds:
dim(Ma/(JgMa + I,h(Mp)))o =n+1 —s.
(iv) There exists at least one (g,h) € V such that
dim(Ma/(JgMa + I,h(Mp)))o <n+1 —s.

Proof. First we show the following:

Claim (1) For any (g, h) € V, dim(Ma/(JgMa+I,h(My)))o is larger than or equal
ton+r—s. (2) If (g,h) € V is chosen generally, then dim(J,Ma + I,h(Mp))o is
equal to dim(JyNa + Ioh(Myp))o + s.

Let (g, h) be an arbitrary element of V. Then (I,h(Mp))o is contained in (I,Na)o =
Ker A,. On the other hand, if f € (JyMa)o, then the r-th component f, of f is
written as g1k1 + - -+ + gsks with k; € Rq, —p;, and A, (f) is equal to

(4.19) k1(o)p1(g) + -+ + ks(0)s(g).

Hence the image of (JyMa + Ioh(Myp))o by Ar is spanned by ui(g), ..., us(g),
and therefore is of dimension < s. On the other hand, Ker A\, = (I,Na)o is of
codimension n + r in (M,)o. Hence we obtain

dim(JgMa + I,h(My))o < dimKer A, + s = dim(Ma)o —n —r + s,
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which implies Claim (1).

Let (g, h) be a general element of V. Because ¢ is general in (I, My )o, the vectors
11(9), ..., ps(g) are linearly independent. Let f be an element of (J;Ma)o. By the
assumption a, > b,, the degrees a, — b; of the polynomials k; in the expression
fr = g1k1 + -+ + gsks are non-negative for all j < s. Therefore the coefficients
k;(0) in (4.19) can take any values. Hence the image of (JoMa + I,h(Myp))o by Ar
is of dimension exactly s. Moreover, if f € Ker A, then k(o) = -+ = ks(0) =0
holds. Hence we have Ker A\, C (J4Na)o. Because (Ioh(Mp))o C Ker A,., we have

(JgMa + I,h(Mp))o NKer Ay = (JgNa + I,h(Mp))o.

Therefore Claim (2) is proved.

Since dim(Ma/(JgMa + Ioh(Myp)))o is an upper semi-continuous function of
(g, h), Claim (1) implies that the conditions (iii) and (iv) are equivalent. By (4.17)
and (4.18), the following inequality holds for any (g, h) € V:

dim(Ma)o/(S(gyh)(V) = dim(Ma/(JgNa + Ioh(Mb)))o

4.20
( ) > dim(Ma/I,Na)o =n+ 1.

The condition (ii) is satisfied if and only if the equality in (4.20) holds for a gen-
eral (g,h) € V. The equivalence of the conditions (ii) and (iii) now follows from
Claim (2).

By Proposition 4.13, the condition (i) is equivalent to the following:

(i)’ The morphism v|V#: VE — (I,N,)§ is dominant.
On the other hand, since d(y 5 is equal to (dv)(g.n) : T(gn)U — Ty(g,n)(Ma)o via
the natural identifications T(, ) U = U and T,y n)(Ma)o = (Ma)o, the condition
(ii) is equivalent to the following:

(if)’ The morphism v|V : V — (I,Na)o is dominant.
Since (I,Na)§! is Zariski open dense in (1,Na)o, the implication (i) = (ii) is obvious.
Since V' is Zariski open in V, the implication (ii) = (i) follows if we show that V'
is non-empty under the condition (ii). Suppose that the condition (ii) is fulfilled.
Let (g, h) be a general element of V. Since g is general in (I,Mp)o, the ideal J,
defines a complete intersection of multi-degree b passing through o, and u(g) is of
rank s. By (i), h(g) is a general element of (I,Na)o, and hence .Jj,(,) defines a
complete intersection of multi-degree a passing through o and singular at o. Thus
we have (g, h) € V. O

5. PROOF OF MAIN THEOREM

First we prepare two easy lemmas.

Let L; and Lo be finite-dimensional vector spaces, and let Hom(L1, Ls) be the
vector space of linear maps from L; to Ls. For ¢ € Hom(Lq,Ls), we have a
canonical identification

(5.1) T, Hom(L1, Lo) = Hom(Lq, La).

Let Sy be the closed subscheme of Hom(L;, L) defined as common zeros of all
(k + 1)-minors of the matrices expressing the linear maps in terms of certain bases
of L1 and LQ.

Lemma 5.1. Let po be a point of Sy \ Sg—1. An element ¢ of Hom(Lq, L) is
contained in the subspace T, Sy of T, Hom(L1, Ly) under the identification (5.1)
if and only if p(Ker pg) is contained in Im ¢q.
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Proof. We can choose bases of L; and Ls in such a way that g is expressed by

. I, | O

the matrix (O o
these bases. Then ¢ is contained in T,,S; under the identification (5.1) if and
I, +eA | eB
eC eD
€2 = 0. This matrix is of rank % if and only if D = 0, which is equivalent to

p(Ker ¢g) C Im ¢o. 0

) . Suppose that ¢ is expressed by the matrix (%‘%) under

only if the matrix < ) is of rank k, where ¢ is the dual number;

Let X and Y be connected complex manifolds, Z an irreducible locally closed
analytic subspace of Y, ¢ : X — Y a holomorphic map, and p a point of ¢»~1(Z).

Lemma 5.2. Suppose that Z is smooth at ¥(p), and that we have
(5.2) Ty Z NIm(dyp), =0 and Ty Z +Im(dy), = Typ)Y-

Then ~Y(Z) is smooth at p. Moreover, the dimension of 1 ~*(Z) at p is equal to
dim X —dimY +dim Z.

Proof. By (5.2), we have T,9~'(Z) = (d), ' (Typ)Z) = Ker(dy),, and hence
dim T, ~1(Z) is equal to dim 7}, X — dim Im(d2)),, which is then equal to dim X —
dimY + dim Z. On the other hand, the codimension of ¥y~(Z) in X at p is less
than or equal to the codimension of Z in Y at ¢(p). Combining these facts, we get
the hoped-for results. O

From now on, we assume that (n, a, b) satisfies the conditions required in Main
Theorem. In particular, the morphism «|=Z, : £, — I', is dominant. Let =/ be the
unique irreducible component of E, that is mapped dominantly onto I', by «|Z,
(Proposition 4.14).

Proposition 5.3. Let Q = (0, {(g),(f)) be a general point of 2. Then the following
hold:
(1) The morphism p: Fpa — Hy . a is dominant.
(2) The kernel of (da)q : TQZ — Thq)X is of dimension equal to
dim Fy, o — dim H,, o —m + 21.
(3) The image of (dp)=(q) : Tr(0)Fb,a — T(syHn.a is of codimension 1.

Proof. First of all, note that Fy, 5 is non-empty because =, is non-empty. Note also
that V¥ is non-empty by Proposition 4.13, and hence is Zariski open dense in V.
By Proposition 4.14, the general point @ of Z/ is the image of a general point of

Vi by & : VP — Z,. Therefore we can choose a general point (g, h) of V first, and

then put @ := £(g, h) = (0, (), (h(9)))-
We start with the proof of (3). By Proposition 4.15, we have

(5.3) 3(g,m) (V) = (JgNa + L,h(Myp))o = (IoNa)o-
In particular, we have
(5.4) dim(Ma/(JgNa + Ioh(My)))o = n + 1.

By Corollary 4.7 (2), to arrive at dim Coker(dp)(g) = 1, all we have to show is
dim(Ma/(JgMa + h(Mp)))o =1,

which is equivalent to

(5.5) dim 0y 1) (U)/6(g. (V) =n+1r —1,
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because of (4.16), (4.17) and (5.4). We define a linear map A, : (M) — C” x C™
by

Y L 8fr 6fr

M) = () £(0). (G0 577(0))).
Then 6¢g.1)(V) = (1oNa)o = Ker ), holds from (5.3). Moreover, we have dgm(U) C
(Na)o by (4.18), and dim A.((Na)g) = n + r — 1. Therefore (5.5) and the following
two conditions are equivalent to each other:

(5.6) (9. (U) = (Na)o,
(5.7) dim A\, 8¢y 1) (U)) > n+7 — 1.

We will prove (5.5) by showing that the inequality (5.7) holds. Forv =1,...,s, we
define 4 = (1{"),... /&) € (Mp)o and 5 = (n%) € Hom(My, Ma)o by

v 0 if j #£v v 0 if (4,7 TV
%(' )= by . and 77z‘(j) T ar—be (. .) i )
ifj=v if (4,4) = (r,v).

Zo
Note that a, > b, by (2.2). We then define v, w®) € §, 1) (U) by
v = 8g (Y, 0) = h(3™),
w®) =g 1) (0,7™)) =1 (g) = (0,...,0, g, x5 )"

Then we have

5 0®) = (B1u(0)...- B 0)) (%];T: )., 83];: ©))-

A (w®)) = ((o,...7o), (gij ), ..., g;’: (0))).

In order to prove (5.7), it is enough to show that the vectors A.(v)) and A, (w®))
span a hyperplane in C" x C". Since (g, h) is general in V, the coefficients h;,(0),
Ohy,,/0xj(0) and 0g, /0x (o) of the homogeneous polynomials g, and h;, that ap-
pear in (5.8) are general except for the following restrictions:

hrp(0) =0 (1 <v <s), hiy(0) =0 if a; < b, and

Ohyy

8.’Ej

(5.8)

(0)=0 (1<j<n) ifa,=b,.

Let A be the 2s X (n+r) matrix whose row vectors are A, (v*)) and A, (w®)). Then
A is of the shape depicted in Figure 5.1, in which the entries in the submatrices
marked with  are general, and the (v,7)-component in the submatrix marked with
f is general except for the restriction that it must be zero if a; < b,,. Since the rank
of a matrix is a lower semi-continuous function of entries, in order to prove that A
is of rank n+r—1, it is enough to show that there exists at least one matrix of rank
n—+r—1 with the shape Figure 5.1. The condition (2.2) implies that r — ¢, < s—t;
holds, and that the (4, )-component of the submatrix £ is subject to no restrictions
fori=1,...,7 —t,. The condition (2.3) implies n+7r < 2s and n+r+1t, —t, < 2s.
Therefore we can define a 2s x (n+7) matrix C of the shape Figure 5.1 by Table 5.1,
where ¢; is the i-th column vector of C' and e, is the column vector of dimension
2s whose v-th component is §,,, (Kronecker’s delta symbol). It is easy to see that
C' is of rank n +r — 1. Hence (5.7), and also (5.5) and (5.6), are proved.
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r—ty, teo—1 n
—_—
s—1tp * |0 *
f s
t { 0 * [0 0
0 * S
r n

FIGURE 5.1. The shape of a 2s x (n + r) matrix

Next we prove (1). Since both of Fy, o and H,, o are smooth and irreducible, it
is enough to show that the morphism p : I, o — Hj, a is a submersion at a general
point of Fy, 5. By Corollary 4.7 (2), it is therefore enough to prove that the following

equality holds for a general (g,h) € U:
(5.9) dim(Ma/(J3Ma + h(My)))o = 0.

Since the left-hand side of (5.9) is an upper semi-continuous function of (g,%) € U,

it suffices to show that there exists at least one (g, h) € U for which (5.9) holds. We

will find (g, ) satisfying (5.9) in a small neighborhood of the chosen point (g, h) in
U. From (5.6), we have

dim(Ma/(J3Ma + h(My)))o < dim(Ma/Na)o = 1

When t, — 1 > tp, When t, — 1 < tp,
e; fl1<i<r—t, €; Hfl1<i<r—t,
Cs—ryi14i Hfr—te<i<r Cs—rti4i fr—to<i<r
c:=<X0 ifi=r ci =10 ifi=r
€i—t, fr<i<s+1 €i—t, ifr<i<s+ity—1tp
€i—1 fs+1l1<i<n+r. Citty—ty, Hs+la—te<i<n+r.

TABLE 5.1. Definition of C
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for any (§,h) in a small neighborhood of (g, k) in U. We suppose the following:

(5.10) o.imU) = (Jg]\{a + h(My,))o is of codimension 1 in (My)o
for any (g, h) in a small neighborhood of (g, h) in U,

and will derive a contradiction. For a sequence ¢ = (c¢1, ..., cs) of complex numbers,
we define 1° = (n5;) € Hom(My, Ma)o by

c 0 ifi<r
ij = ar—bj e
¢y ifi=nr,

and consider the infinitesimal deformation (g, h) + £(0,7°) of (g, h) in U, where €
is the dual number. Here we use the condition a, > b; again. By (5.6), Lemma 5.1
and the assumption (5.10), we have

d(0,ne) (Ker dg.n)) S Imégny = (Na)o

for any ¢, which means that, if (G, H) € Kerd(, ), then n°(G) € (Na)o for any c.
Hence we have

(511) (G,H) € Ker §(g,h) = GGe (IoMb)O-

Because (2.3) implies 2s > n + r, there exists a non-trivial linear relation

> @)+ A @) =0 (B, €0C)
v=1 v=1

among the vectors (5.8) in C” x C™. Since g is general in (I,My,)o and s < n, the
vectors \.(w®)) (v =1,...,s) are linearly independent, and hence at least one of
ag,...,0s is non-zero. We put

GlaHl <Zau’7 v) Zﬂn(u>

Then we have

S
8(g.m) (G, Hy) Z a, 0™ +3 " Bw™) € Ker A, = (I,Na)o = 6. (V),
v=1

where the last equality follows from (5.3). Hence there exists (G2, Hz) € V such
that (G1 — Go, Hy — H3) € Kerd(, ). On the other hand, since G> € (I,Mp)o
and at least one of a1,...,as is non-zero, we have G — G2 ¢ (I,Myp)o, which
contradicts to (5.11). Hence there must exist a point (§,h) € U in an arbitrary
small neighborhood of (g, h) such that (5.9) holds. Therefore p is dominant.

Finally we calculate dim Ker(da)g. By Proposition 4.8, we see that dim Ker(da) g
is equal to

dim Fy o — dim H, o — 5 + dim(Ma/(J; Ma + I,h(Mp)))o.

The fourth term is equal to n+r—s by Proposition 4.15. Since n+r—2s = —m+2l,
we complete the proof of the assertion (2). O

Now we are ready to the proof of Main Theorem.
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Proof of Main Theorem. For a locally closed analytic subspace A of H,, 5, we denote
by

the pull-back of the right square of the diagram (4.3) by A < H,, a.
There exists a Zariski open dense subset U of H,, o such that

Zy 2y

Wul ltﬁu
Fu — u
PU
is locally trivial over U in the category of topological spaces and continuous maps,
that ¢y is smooth, and that py is smooth or Fy, is empty. It is enough to show
Fp(Xp) # 0 and Im ¢ (Xp) 2 Vin(Xp, Z) for at least one point b of U, where X,
denotes the complete intersection corresponding to a point b of U.

By Proposition 5.3 (1), F,,(X}) is non-empty for any b € U.

By the assumption of Main Theorem, the morphism «|=, : Z, — I, is dominant,
and hence, by Proposition 4.14, there exists a unique irreducible component =/ of
E, that is mapped dominantly onto T', by «|Z,. Let Q := (o, (g), (f)) be a general
point of Z/. Then a(Q) = (o, (f)) is a general point of I',. By Corollary 4.11, the
point o is the only singular point of Xy, and it is a hypersurface singularity with
non-degenerate Hessian. In particular, the image of (d@)a (@) : Ta(Q)X — T(f)Hn,a
is of codimension 1 in Ty H, a. On the other hand, by Proposition 5.3 (3), the
image of (dp)ﬂ,(Q) : Tw(Q)Fb,a — T(f)Hn,a is also of codimension 1 in T<f>Hn,a.
Hence there exists a smooth curve C' in H,, , passing through (f) that satisfies

(5.12) Im(d¢)a(Q) N T<f>C =0, Im(dp),r(Q) N T<f>C =0,

and C NU # (). We choose a sufficiently small open unit disk A in C with the
center (f), and consider the following diagrams:

Ze 2% g Zh 28 XA
(513) ﬂ'cl id)c and TFAl id)A
Fe — C FAn — A

pc PA

We can assume that A* := A\ {(f)} is contained in «. By Lemma 5.2, the
analytic space Xa is smooth of dimension m + 1. Moreover, the holomorphic map
oda : Xan — A has only one critical point, which is the point (o, (f)) on the central
fiber X4y, and at which the Hessian of ¢a is non-degenerate. We select a point
b of U from A*. Then we have a vanishing cycle [¥] € H,,(Xp,Z), unique up
to sign, associated to the non-degenerate critical point (o, (f)) of ¢a. It is known
that V,,,(Xp,7Z) is generated by [Xp] as a module over the group ring Z[m (U, b)].
(See [9].) On the other hand, the image of the cylinder homomorphism ,(X3)
is w1 (U, b)-invariant. Therefore it is enough to show that the image of ¥y (Xp)
contains [X].
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We put O := 7(Q) € Fy 2. By Lemma 5.2 and (5.12), the scheme F¢ in the left
diagram of (5.13) is smooth at O, and

(5.14) dimp Fo = dim Fy, o — dim Hy, 5 + 1.

From the construction of Z¢, we see that Ker(da)g is contained in the subspace

TQZNC of TQZN, and that Ker(da)g coincides with Ker(dac)g. Hence, by Proposi-
tion 5.3 (2), we have

(5.15) dim Ker(dac)g = dim Fy, o — dim H,, o — m + 21.

Since ZNC is a closed analytic subspace of Fo x X with m¢ and a¢ being projections,
we have

(5.16) Ker(dmc)g NKer(dac)g =0

in TQz;‘,:C. In particular, the linear map (dn¢)q : TQEC — ToFe maps Ker(dac)g
isomorphically to a linear subspace of ToFc. By the dimension counting (5.14)
and (5.15), this subspace

(dﬁc)Q(Ker(dac)Q) C ToFe

is of codimension m — 20+ 1. Hence there exists a closed subvariety F(, of Fo with
dimension m — 2] + 1 that passes through O, is smooth at O, and satisfies

(5.17) ToF{ N (dre)g(Ker(dac)g) = 0.
‘We put
FAi= FLFa, Bhimng (Fe) and Zh =5 (FA),
and let
2, %y Z0%
(5.18) o | loc and  ay| Lea
Fo — C FA — A

be the restriction of the ﬁlicagrams (5.13). The right diggram of (5.18) is the pull-
back of the left diagram of (5.18) by A — C.

Since the fiber of 7 passing through @ is smooth at Q) by the definition of =,,
the holomorphic map 7/ is also smooth at Q. Moreover, from (5.16) and (5.17),
we have

Ker(do/A)Q = TQZ~'AﬂKer(dozA)Q
(dﬂc)él(ToFé)ﬂKer(dac)Q = 0.

Therefore o/y is an immersion at Q. We have dim FA = m — 2] + 1. Note that
H,,(Xyp,Z) is torsion free. Hence the right diagram of (5.18) satisfies all the condi-
tions required in Theorem 3.1 (2). We put

FA(Xp) i= piy 1(0),  ZA(Xp) i=ma H(FA(XD)),
and consider the family
Z\(Xp) — Xy
(5.19) |
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of [-dimensional closed analytic subspaces of X;. By Theorem 3.1, the image of the
cylinder homomorphism

wllg(Xb) . Hm_gl(F/A(Xb),Z) — Hm(Xb,Z)

associated with the family (5.19) contains the vanishing cycle [£] € H,,(Xy,Z).
By the construction, ¥4 (Xp) is the composite of the homomorphism

Hm—Ql(F/A(Xb)’Z) - m—2l(Fb(Xb)7Z)

induced from the inclusion FA (X};) — Fyp(X,) and the original cylinder homomor-
phism 1, (X}). Hence the image of 1y (X}) contains [p). O

We put FL(X,) = ps '(b), and let F/(X,) be the union of irreducible com-
ponents of F/,(X;) with dimension m — 2I. Then F/i(X3) contains an (m — 2[)-
dimensional sphere representing the vanishing cycle [0y] € Hy—21(Fa (X)), Z) asso-
ciated to the non-degenerate critical point O of p/y. Let T be the Zariski closure of
ol (n N (FE(Xp))) in Xp. Then T is of dimension m — 1, and [%3] = £, (X3) ([03))
is represented by a topological cycle whose support is contained in 7. Therefore
we obtain the following:

Corollary 5.4. Suppose that (n,a,b) satisfies the conditions of Main Theorem. Let
X be a general complete intersection of multi-degree a in P™. Then every vanishing
cycle of X is represented by a topological cycle whose support is contained in a
Zariski closed subset of X with codimension . (I

6. GROBNER BASES METHOD

Suppose we are given a triple (n, a, b) that satisfies the conditions (2.2) and (2.3)
of Main Theorem. We will describe a method to determine whether this triple
satisfies the second condition of Main Theorem.

First we choose a prime integer p, and put

R®) =T, [z0,...,2n).

We define graded R®-modules Mép), Ml()p)7 N.,ﬁ”l and ideals Iép), Jg”) of R®) in
the same way as in §4 except for the coefficient field. We generate an element g =
(g1,.-.,95)" of (Ic(,p)Mlgp))o and a homomorphism h = (h;;) € Hom(M,()p),Nzgp))o
in a random way. Then we can calculate

(6.1) dimg, (M) /(JO MP) + 1P R(MP)))o

by means of Grébner bases. If this dimension is < n+r — s, then the condition (iv)
of Proposition 4.15 is fulfilled, because this condition is an open condition. Hence
the morphism «|Z, : 2, — T', is dominant.

7. APPLICATION OF A THEOREM OF DEBARRE AND MANIVEL

From now on, we use the following terminology. A sequence always means a
finite non-decreasing sequence of positive integers. For a sequence a, let min(a)
and max(a) be the first and the last elements of a, respectively, and let |a| denote
the length of a. Let a’ be another sequence. We denote by a W a’ the sequence
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of length |a|] + |a’| obtained by re-arranging the conjunction (a,a’) into the non-
decreasing order. For an integer a > 2, we define (a)! to be the sequence (2,...,a)
of length a — 1, and for a sequence a = (aq,...,a,) with min(a) > 2, we put

al:=(a)'W-- W (a,)!.

We sometimes write a sequence by indicating the number of repetition of each
integer in the sequence by a superscript. For example, we have (2,3,3,4)! =
(2,2,2,2,3,3,3,4) = (24,33,4).
Let n and ¢ be positive integers, and a = (ay,...,a,) a sequence. According
to [5], we put
- a; + E
S(n,a,0) = (0 +1)(n—0) 72( , )

i=1

and 0_(n,a, ) := min{d(n, a, £),n — 2¢ — |a|}.

Theorem 7.1 ([5], Théoréme 2.1). A general complete intersection of multi-degree
a in P" contains an ¢-dimensional linear subspace if and only if 6_(n,a,£) > 0.
O

Theorem 7.2. Let a = (ay,...,a,) be a sequence satisfying min(a) > 2 and
Si_ya; < n. Let a’ be a sub-sequence of a such that max(a’) = max(a), and
let a” be the complement to a’ in a. (When a’ = a, a’ is the empty sequence.)

Suppose that a positive integer \ satisfies the following:
(7.1) f_(n—la'l,a’t,A—=1)>0, [a’|<X and n—r>2\—[a"|).

We put b := (1"~ wa”. Then F,(X) is non-empty for a general complete inter-
section X of multi-degree a in P™, and the image of the cylinder homomorphism
Y (X) contains Vy, (X, Z).

Proof. Note that I =n — |b| is equal to A — |a”|. Since max(a’) = max(a), we can
assume that a, is a member of a’. Let f = (fi,...,f-)T be a general element of
(I,Na)o, and let Y; be the hypersurface of degree a; defined by f; = 0. We put

X' = ﬂ Y; and X" := ﬂ Y;.

a;€a’ a;€a’’

By Proposition 4.9, X’ is a general member of the family of complete intersections
of multi-degree a’ possessing a singular point at 0. By means of the projection with
the center o, we see that X’ contains a linear subspace of dimension ¢ > 0 that
passes through o if and only if a general complete intersection of multi-degree a’!
in P12l contains an (¢ — 1)-dimensional linear subspace. By Theorem 7.1, the
first condition of (7.1) implies that X’ contains a linear subspace A of dimension
A passing through o. In particular, we have A < n — |a’|. Using this inequality
and the second and the third conditions of (7.1), we can easily check that (n,a,b)
satisfies the conditions (2.2) and (2.3) in Main Theorem.

We put Z := AN X"”. Then Z is a complete intersection of multi-degree b con-
tained in X5y = X’ N X" and passing through o. Moreover, since the polynomials
fi (a; € @") are general with respect to A, Z is smooth. Thus the second condition
of Main Theorem is also satisfied. O
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n a
6 (3)
7 (3)
8 (2,3),(3),(4)
9 (2,3),(3),(3%), (4)
10 | (2,3),(3),(3%),(4)
11| (2%,3),(2,4),(3), (3%),(4), (5)
12| (2%,3),(2,3),(2,3%),(2,4), (3), (3%),(3), (5)
13 | (2%,3),(2%,4),(2,3),(2,3%),(2,4),(3),(3%),(3%),(3,4), (5)
14 | (2°,3),(2%,4),(2,5),(3), (3%), (3%),(3,4), (4), (4%), (5)
15 | (2%,3),(22,3%),(22,4),(2,3),(2,3%),(2,3%),(2,3,4), (2,5), (3), (3%),
(3%), (3"), (4), (4), (6)
16 | (21,3),(2%,4),(2%,5),(2,3),(2,3%),(2,3%),(2,3,4),(2,5), (3), (3%),
(3%),(3%),(3,5), (6)
17 | (2°,4),(2%,5),(2,4),(2,4%),(2,6), (3), (3%), (3%), (3), (3%,4), (3,5), (6)
18 | (2°,3),(2%,4),(2%,3,4),(22%,5),(2,3,5), (2,6), (4,5)
19 | (2%,4),(2%,5),(2,3),(2,3%),(2,3%),(2,3Y),(2,3,5), (2,6), (3), (3%),
(3%),(3),(3%),(3,6),(7)
20 (237374)7(2375)’(2276)7(3)7(32)7(33)7(34) (35)7(3275)7(376)7(7)
21 | (2°,4),(2%,5),(22,3,5),(2%,6),(2,7)
22 | (2%,5),(2%,6),(2,3,6),(2,7)
23 | (2°,4),(2%3,5),(2%,6), (3), (3%), (3%), (3"),(3%),(3%),(3,7), (8)
24 | (2°,5),(2%,3,6),(2%,7)
25 | (2%,6)
26 | (2°%,5),(2%,7)
27 | (2°,6)

8. THE GENERALIZED HODGE CONJECTURE FOR COMPLETE INTERSECTIONS

Suppose we are given a pair (n,a) satisfying min(a) > 2 and Y a; < n. We
put k :=[(n —>_ a;)/ max(a)] + 1. The Hodge structure of the middle cohomology
group H™(X) of a general complete intersection X of multi-degree a in P™ satis-
fies (1.1). We will investigate the consequence of the generalized Hodge conjecture
that there should exist a Zariski closed subset T of X with codimension k such that
every element of H,,(X,Q) is represented by a topological cycle whose support is
contained in T. Note that H,,(X,Q) is generated by vanishing cycles and, if m is
even, the homology class of an intersection of X and a linear subspace of P". Hence,
by Corollary 5.4, this consequence is verified if we can find b with the following

TABLE 8.1. The 148 pairs

properties:

(8.1)

l:=n—|bl=k and

(n,a,b) satisfies the assumptions of Main Theorem.




VANISHING CYCLES, GHC AND GROBNER BASES

n a b n a b n a b
10 |(2%,3) [(17,2) 15 |(24,3) [(1°,2%) 18 (2,3) |(1'%,2)
11 [(2,3) [(17,2) 16 |(2%,3) |(1'9,2%) (2,3%) |(1'%,2,3)
(2,3%) |(17,2,3) (2%,3%) ] (1%°,23,3) (2,3%) |(1'2,2,3%)
12 [(2%,3) |(17,2%) 17 [(23%,3) [(1%3,2) (2,3%) |(1'2,2,3%)
13 [(22,3) |(1%,2%) (2%,3%) | (1,23, 3) 19 [(2%,3) |(1'2,2%)
(22,3%)| (18, 2%,3) (22,3) | (1*,2%) (2%,3%)] (1*2,24,3)
14 [(22,3) [(1%,2 (22,3%) | (1,22, 3) 20 |(2%,3) |(1'%,2%)
(22,3%)](1%,2%,3) (22,3%) | (1,22, 3%) (2%,3%) | (1**,23,3)
(2,3) |(1°,2) 18 |(2%,3) |(1'3,2) (23,3%)] (113,23, 3%)
(2,3%) 1(1%,2,3) (22,3%) [ (1%%,2,3)
(2,3%) [(1%,2,3%) (22,3%) ] (1'%, 2,3%)

TABLE 8.2. Examples of triples obtained by Grébner bases method

In the following, we assume m > 2k. This inequality m > 2k fails to hold if and
only if m < 2 or a = (2) or (a = (2,2) and m even). In these cases, the Hodge
conjecture has been already proved.

Proposition 8.1 ([14], [16]). (1) If k = 1, then b = (1"1) satisfies (8.1).
(2) Ifa=(2"), then b = (1"~[/2] 27=1Y satisfies (8.1).

Proof. Put a’ = a in the case (1) and a’ = (2) in the case (2), and apply Theo-
rem 7.2. ([l

In these cases, the consequence of the generalized Hodge conjecture is verified in
any dimension.

We have made an exhaustive search in n < 40, and found 148 pairs (n, a) that are
not covered by Proposition 8.1, but for which Theorem 7.2 yields b satisfying (8.1)
by taking an appropriate sub-sequence a’. We list up these (n,a) in Table 8.1. No
such (n,a) are found in n > 27. Even if (n,a) does not appear in Table 8.1, the
calculation of the dimension (6.1) by Grébner bases sometimes gives us b with (8.1).
Examples of these (n,a,b) in n < 20 are given in Table 8.2. From these results,
we can find b with (8.1) for any (n,a) with n < 9. When n = 10, a = (2,4) and
a = (5) appear in neither Tables 8.1 nor 8.2.

As a closing remark, let us return to the classical example of cubic threefolds ([2]).
Our method shows that, not only the family of lines b = (13), but also the family of
curves with b = (12,2) or (1,2?) or (23) give a surjective cylinder homomorphism
on the middle homology group Hs(X,Z) of a general cubic threefold X.
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