
THE GRAPHS OF HOFFMAN-SINGLETON, HIGMAN-SIMS,
AND MCLAUGHLIN, AND THE HERMITIAN CURVE

OF DEGREE 6 IN CHARACTERISTIC 5

ICHIRO SHIMADA

Abstract. We construct the graphs of Hoffman-Singleton, Higman-Sims, and
McLaughlin from certain relations on the set of non-singular conics totally tan-

gent to the Hermitian curve of degree 6 in characteristic 5. We then interpret
this geometric construction in terms of the subgroup structure of the automor-
phism group of this Hermitian curve.

1. Introduction

The Hoffman-Singleton graph [17] is the unique strongly regular graph of pa-
rameters (v, k, λ, µ) = (50, 7, 0, 1). Its automorphism group contains PSU3(F25) as
a subgroup of index 2. The Higman-Sims graph [14] is the unique strongly reg-
ular graph of parameters (v, k, λ, µ) = (100, 22, 0, 6). See [9] for the uniqueness.
Its automorphism group contains the Higman-Sims group as a subgroup of index
2. The McLaughlin graph [21] is the unique strongly regular graph of parameters
(v, k, λ, µ) = (275, 112, 30, 56). See [10] for the uniqueness. Its automorphism group
contains the McLaughlin group as a subgroup of index 2. Many constructions of
these beautiful graphs are known (see, for example, [4]).

These three graphs are closely related. The Higman-Sims graph has been con-
structed from the set of 15-cocliques in the Hoffman-Singleton graph (see Hafner [13]).
Recently, the McLaughlin graph has been constructed from the Hoffman-Singleton
graph by Inoue [18].

On the other hand, looking at the automorphism group, one naturally expects
a relation of the Hoffman-Singleton graph with the classical unital in P2(F25). In
fact, Benson and Losey [2] constructed the Hoffman-Singleton graph by means of
the geometry of P2(F25) equipped with a Hermitian polarity. They constructed a
bijection between the set of claws in the graph and the set of polar triangles on the
plane compatible with the natural action of PSU3(F25).

In this paper, we give a unified geometric construction (Theorems 1.8 and 1.10) of
the Hoffman-Singleton graph and the Higman-Sims graph by means of non-singular
conics totally tangent to the Hermitian curve Γ5 of degree 6 in characteristic 5.
Using this result, we recast Inoue’s construction [18] of the McLaughlin graph in
a simpler form (Theorem 1.12). We then translate this construction to a group-
theoretic construction in terms of the subgroup structure of the automorphism
group PGU3(F25) of the curve Γ5 (Theorems 1.14, 1.15 and 1.16). In fact, it turns
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out at the final stage that we can construct the graphs without mentioning any
geometry (Theorem 5.6).

1.1. Geometric construction. In order to emphasize the algebro-geometric char-
acter of our construction, we work, not over F25, but over an algebraically closed
field k of characteristic 5. A projective plane curve Γ of degree 6 is said to be a
k-Hermitian curve if Γ is projectively isomorphic to the Fermat curve

Γ5 : x6 + y6 + z6 = 0

of degree 6. Several characterizations of k-Hermitian curves are known; for example,
see [1] for a characterization by reflexivity. Geometric properties of k-Hermitian
curves that will be used in the following can be found in [3], [23], or [15, Chap. 23].
Let Γ be a k-Hermitian curve. Its automorphism group

Aut(Γ) = { g ∈ PGL3(k) | g(Γ) = Γ }
is conjugate to Aut(Γ5) = PGU3(F25) in Aut(P2) = PGL3(k). In particular, its
order is 378000, and it contains a subgroup of index 3 isomorphic to the simple
group PSU3(F25). Let P be a point of Γ. Then the tangent line lP to Γ at P
intersects Γ at P with intersection multiplicity ≥ 5. When Γ = Γ5, the line lP
intersects Γ at P with intersection multiplicity 6 if and only if P is an F25-rational
point. Combining this fact with the result of [8] and [20], we see that a point P of
Γ is a Weierstrass point of Γ if and only if lP intersects Γ at P with intersection
multiplicity 6. Let P denote the set of Weierstrass points of Γ. Then we have
|P| = 126. The group Aut(Γ) acts on P doubly transitively.

Definition 1.1. A line L of P2 is a special secant line of Γ if L passes through two
distinct points of P.

Let S denote the set of special secant lines of Γ. Then we have |S| = 525. The
group Aut(Γ) acts on S transitively. If L ∈ S, then we have |L ∩ Γ| = 6 and

L ∩ Γ ⊂ P.

The incidence structure on the set of Weierstrass points of a Hermitian curve
(over an arbitrary finite field) induced by special secant lines has been studied by
many authors. See [16] for these works.

Definition 1.2. A non-singular conic Q on P2 is said to be totally tangent to Γ if
Q intersects Γ at six distinct points with intersection multiplicity 2.

Let Q denote the set of non-singular conics totally tangent to Γ. Then we have
|Q| = 3150. The group Aut(Γ) acts on Q transitively. For each Q ∈ Q, we have

Q ∩ Γ ⊂ P.

A special secant line L of Γ is said to be a special secant line of Q ∈ Q if L passes
through two distinct points of Q ∩ Γ. We denote by S(Q) the set of special secant
lines of Q. Since |Q ∩ Γ| = 6, we obviously have |S(Q)| = 15.

Non-singular conics totally tangent to a Hermitian curve were investigated by
B. Segre [23, n. 81]. See also [24] for a simple proof of a higher dimensional analogue
of Segre’s results.

A triangular graph T (m) is defined to be the graph whose set of vertices is
the set of unordered pairs of distinct elements of {1, 2, . . . ,m} and whose set of
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edges is the set of pairs {{i, j}, {i′, j′}} such that {i, j} ∩ {i′, j′} is non-empty
(see [5]). It is easy to see that T (m) is a strongly regular graph of parameters
(v, k, λ, µ) = ( m(m − 1)/2, 2(m − 2), m − 2, 4 ).

Our construction proceeds as follows.

Proposition 1.3. Let G be the graph whose set of vertices is Q and whose set of
edges is the set of pairs {Q,Q′} of distinct conics in Q such that Q and Q′ intersect
transversely (that is, |Q ∩ Q′| = 4) and |S(Q) ∩ S(Q′)| = 3. Then G has exactly
150 connected components, and each connected component D is isomorphic to the
triangular graph T (7).

Let D denote the set of connected components of the graph G. Each D ∈ D is
a collection of 21 conics in Q that satisfy the following property:

Proposition 1.4. Let D ∈ D be a connected component of G. Then we have

|Q ∩ Q′ ∩ Γ| = 0

for any distinct conics Q,Q′ in D. Since |D| × 6 = |P|, each connected component
D of G gives rise to a decomposition of P into a disjoint union of 21 sets Q∩ Γ of
six points, where Q runs through D.

Using D as the set of vertices, we construct two graphs H and H ′ that contain
the Hoffman-Singleton graph and the Higman-Sims graph, respectively.

Proposition 1.5. Suppose that Q ∈ Q and D′ ∈ D satisfy Q /∈ D′. Then one of
the following holds:

(α) |Q ∩ Q′ ∩ Γ| =

{
2 for 3 conics Q′ ∈ D′,
0 for 18 conics Q′ ∈ D′.

(β) |Q ∩ Q′ ∩ Γ| =


2 for 1 conic Q′ ∈ D′,
1 for 4 conics Q′ ∈ D′,
0 for 16 conics Q′ ∈ D′.

(γ) |Q ∩ Q′ ∩ Γ| =

{
1 for 6 conics Q′ ∈ D′,
0 for 15 conics Q′ ∈ D′.

For Q ∈ Q and D′ ∈ D satisfying Q /∈ D′, we define t(Q,D′) to be α, β or γ
according to the cases in Proposition 1.5.

Proposition 1.6. Suppose that D,D′ ∈ D are distinct, and hence disjoint as
subsets of Q. Then one of the following holds:

(β21) t(Q,D′) = β for all Q ∈ D.

(γ21) t(Q,D′) = γ for all Q ∈ D.

(α15γ6) t(Q,D′) =

{
α for 15 conics Q ∈ D,
γ for 6 conics Q ∈ D.

(α3γ18) t(Q,D′) =

{
α for 3 conics Q ∈ D,
γ for 18 conics Q ∈ D.

For distinct D,D′ ∈ D, we define T (D,D′) to be β21, γ21, α15γ6 or α3γ18

according to the cases in Proposition 1.6.
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Proposition 1.7. For distinct D,D′ ∈ D, we have T (D,D′) = T (D′, D). For a
fixed D ∈ D, the number of D′ ∈ D such that T (D,D′) = τ is

30 if τ = β21,

42 if τ = γ21,

7 if τ = α15γ6,

70 if τ = α3γ18.

Our main results are as follows.

Theorem 1.8. Let H be the graph whose set of vertices is D, and whose set of
edges is the set of pairs {D,D′} such that D ̸= D′ and T (D,D′) = α15γ6. Then
H has exactly three connected components, and each connected component is the
Hoffman-Singleton graph.

We denote by C1, C2, C3 the set of vertices of the connected components of H.
We have |C1| = |C2| = |C3| = 50 and C1 ∪ C2 ∪ C3 = D.

Proposition 1.9. If D and D′ are in the same connected component of H, then
T (D,D′) is either γ21 or α15γ6. If D and D′ are in different connected components
of H, then T (D,D′) is either β21 or α3γ18.

Theorem 1.10. Let H ′ be the graph whose set of vertices is D, and whose set of
edges is the set of pairs {D,D′} such that D ̸= D′ and T (D,D′) is either β21 or
α15γ6. Then H ′ is a connected regular graph of valency 37. For any i and j with
i ̸= j, the restriction H ′|(Ci ∪ Cj) of H ′ to Ci ∪ Cj is the Higman-Sims graph.

The number of 15-cocliques in the Hoffman-Singleton graph is 100. Connect-
ing two distinct 15-cocliques when they have 0 or 8 common vertices, we obtain
the Higman-Sims graph. Starting from Robertson’s pentagon-pentagram construc-
tion [22] (see also [12]) of the Hoffman-Singleton graph and using this 15-coclique
method, Hafner [13] gave an elementary construction of the Higman-Sims graph.

Our construction is related to this construction via the following:

Proposition 1.11. Suppose that i ̸= j ̸= k ̸= i. Then the map

gk : D ∈ Ci ∪ Cj 7→ { D′ ∈ Ck | T (D,D′) = β21 }
induces a bijection from Ci ∪ Cj to the set of 15-cocliques in the Hoffman-Singleton
graph H|Ck. For distinct D,D′ ∈ Ci ∪ Cj, we have

|gk(D) ∩ gk(D′)| =


0 if T (D,D′) = α15γ6,

3 if T (D,D′) = α3γ18,

5 if T (D,D′) = γ21,

8 if T (D,D′) = β21.

Let E1 denote the set of edges of the Hoffman-Singleton graph H|C1; that is,

E1 := { {D1, D2} | D1, D2 ∈ C1, T (D1, D2) = α15γ6 }.
We define a symmetric relation ∼ on E1 by {D1, D2} ∼ {D′

1, D
′
2} if and only if

{D1, D2} and {D′
1, D

′
2} are disjoint and there exists an edge {D′′

1 , D′′
2} ∈ E1 that has

a common vertex with each of the edges {D1, D2} and {D′
1, D

′
2}. By Haemers [11],

the graph (E1,∼) is a strongly regular graph of parameters (v, k, λ, µ) = (175, 72, 20, 36).
Combining our results with the construction of the McLaughlin graph due to

Inoue [18], we obtain the following:
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Theorem 1.12. Let H ′′ be the graph whose set of vertices is E1 ∪ C2 ∪ C3, and
whose set of edges consists of

• {E,E′}, where E,E′ ∈ E1 are distinct and satisfy E ∼ E′,
• {E,D}, where E = {D1, D2} ∈ E1, D ∈ C2 ∪ C3, and both of T (D1, D) and

T (D2, D) are α3γ18, and
• {D,D′}, where D,D′ ∈ C2 ∪ C3 are distinct and satisfy and T (D,D′) =

α15γ6 or α3γ18.
Then H ′′ is the McLaughlin graph.

Since each vertex D ∈ D of H and H ′ is not a single point but a rather com-
plicated geometric object (a collection of 21 conics), we can describe edges of H
and H ′ by various geometric properties other than T (D,D′). Or conversely, we can
find interesting configurations of conics and lines from the graphs H and H ′. In
Section 2, we present a few examples.

Remark 1.13. The graph H ′ of 150 vertices has been constructed in [4] and [13].

1.2. Group-theoretic construction. The automorphism group PGU3(F25) of
the Fermat curve Γ5 of degree 6 in characteristic 5 acts transitively on the sets
Q and D of vertices of the graphs G and H or H ′. Using this fact, we can define
the edges of G, H and H ′ by means of the structure of stabilizer subgroups in
PGU3(F25). For an element x of a set X on which PGU3(F25) acts, we denote by
stab(x) the stabilizer subgroup in PGU3(F25) of x. By Sm and Am, we denote the
symmetric group and the alternating group of degree m, respectively.

Let Q be an element of Q. Then stab(Q) is isomorphic to PGL2(F5) ∼= S5

(see [23, n. 81], [24] or Proposition 3.1). A rather mysterious definition of the
graph G in Proposition 1.3 can be replaced by the following:

Theorem 1.14. Let Q and Q′ be distinct elements of Q. Then Q and Q′ are
adjacent in the graph G if and only if stab(Q) ∩ stab(Q′) is isomorphic to A4.
Moreover, Q and Q′ are in the same connected component of G if and only if the
subgroup 〈stab(Q), stab(Q′)〉 of PGU3(F25) generated by the union of stab(Q) and
stab(Q′) is isomorphic to A7.

It is known that, in the automorphism group of the Hoffmann-Singleton graph,
the stabilizer subgroup of a vertex is isomorphic to A7 (see, for example, [7, page
34]). Proposition 1.3 gives us a geometric interpretation of this isomorphism. Note
that the automorphism group Aut(T (m)) of the triangular graph T (m) is isomor-
phic to Sm by definition.

Theorem 1.15. For each element D of D, the action of stab(D) on the triangular
graph D ∼= T (7) identifies stab(D) with the subgroup A7 of Aut(T (7)) ∼= S7.

In order to define the type T (D,D′) by means of the structure of stab(D) ∼= A7,
we define the following subgroups of A7. See [7, pages 4 and 10] for details. Note
that the full automorphism group of A7 is S7. For a subgroup Σ of A7, we put

ConjA(Σ) := {g−1Σg | g ∈ A7}, ConjS(Σ) := {g−1Σg | g ∈ S7}.

(a) We put
Σa := { g ∈ A7 | g(7) = 7 }.

Then Σa is isomorphic to A6, and is maximal in A7. Moreover we have ConjA(Σa) =
ConjS(Σa).
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(b) We define a bijection ρ : P2(F2) →∼ {1, . . . , 7} by

(a : b : c) 7→ 4a + 2b + c (a, b ∈ {0, 1}),

and let ρ′ : P2(F2) →∼ {1, . . . , 7} be the composite of ρ and the transposition (67).
Then the action of PSL3(F2) on P2(F2) induces two faithful permutation represen-
tations PSL3(F2) ↪→ S7 corresponding to ρ and ρ′, and the images Σb and Σ′

b of
these representations are contained in A7. These subgroups Σb and Σ′

b are of order
168, and are maximal in A7. (Note that PSL3(F2) ∼= PSL2(F7).) We also have

ConjS(Σb) = ConjS(Σ′
b) = ConjA(Σb)∪ConjA(Σ′

b), ConjA(Σb)∩ConjA(Σ′
b) = ∅.

(c) We put

Σc := { g ∈ A7 | {g(5), g(6), g(7)} = {5, 6, 7} }.

Then Σc is isomorphic to the group (A4 × 3) : 2 of order 72, and is maximal in A7.
Moreover we have ConjA(Σc) = ConjS(Σc).

(d) Because of the extra outer automorphism of S6, the group A6 has two
maximal subgroups isomorphic to A5 up to inner automorphisms. One is a point
stabilizer, while the other is the stabilizer subgroup of a total (a set of five synthemes
containing all duads). We fix a total

t0 := {{{1, 2}, {3, 4}, {5, 6}}, {{1, 3}, {2, 5}, {4, 6}}, {{1, 4}, {2, 6}, {3, 5}},
{{1, 5}, {2, 4}, {3, 6}}, {{1, 6}, {2, 3}, {4, 5}}},

and put
Σd := { g ∈ A7 | g(7) = 7, g(t0) = t0 }.

Then Σd is isomorphic to A5, and ConjA(Σd) = ConjS(Σd) holds.
Now we have the following:

Theorem 1.16. Let D and D′ be distinct elements of D. We identify stab(D)
with A7 by Theorem 1.15. Then T (D,D′) is

β21 if and only if stab(D) ∩ stab(D′) is conjugate to Σb or Σ′
b,

γ21 if and only if stab(D) ∩ stab(D′) is conjugate to Σd,

α15γ6 if and only if stab(D) ∩ stab(D′) is conjugate to Σa,

α3γ18 if and only if stab(D) ∩ stab(D′) is conjugate to Σc.

Note that the statement of Theorem 1.16 does not depend on the choice of the
isomorphism stab(D) ∼= A7, which is not unique up to conjugations by elements of
A7, but is unique up to conjugations by elements of S7.

Theorem 1.16 implies that T (D,D′) is determined simply by the order of the
group stab(D) ∩ stab(D′). Combining this fact with Theorems 1.8, 1.10 and 1.12,
we have obtained constructions of the three graphs in the title by the subgroup
structure of PGU3(F25). (See also Theorem 5.6.)

We fix D ∈ D. Let Ci be the connected component of H containing D, and let
Cj and Ck be the other two connected components. The set

ND := { D′ ∈ D | T (D,D′) = β21 }

of vertices that are adjacent to D in H ′ but are not adjacent to D in H decomposes
into the disjoint union of two subsets ND ∩ Cj and ND ∩ Ck.
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Proposition 1.17. Fixing stab(D) ∼= A7 and interchanging j and k if necessary,
we have the following; for any D′ ∈ ND,

D′ ∈ ND ∩ Cj ⇐⇒ stab(D) ∩ stab(D′) is conjugate to Σb,

D′ ∈ ND ∩ Ck ⇐⇒ stab(D) ∩ stab(D′) is conjugate to Σ′
b.

Remark 1.18. We have

|ConjA(Σ)| =


7 if Σ = Σa,

15 if Σ = Σb or Σ′
b,

35 if Σ = Σc,

42 if Σ = Σd.

Compare this result with Proposition 1.7.

1.3. Plan of the paper. Suppose that an adjacency matrix of a graph Γ is given.
If the number of vertices is not very large, it is a simple task for a computer to
calculate the adjacency matrices of connected components of Γ . Moreover, when
Γ is connected, it is also easy to determine whether Γ is strongly regular or not,
and in the case when Γ is strongly regular, to compute its parameters (v, k, λ, µ).
Since the three graphs we are concerned with are strongly regular graphs uniquely
determined by the parameters, Theorems 1.8, 1.10 and 1.12 can be verified if we
calculate the adjacency matrices of H, H ′ and H ′′. These adjacency matrices are
computed from the list Q of conics by a simple geometry. On the other hand, it
seems to be a non-trivial computational task to calculate the list Q. Therefore, in
Section 3, we give a method to calculate the list Q. This list and other auxiliary
computational data are on the author’s web page

http://www.math.sci.hiroshima-u.ac.jp/~shimada/HSgraphs.html .

In Sections 4 and 5, we indicate how to prove our results by these computational
data. In Section 2, we discuss other geometric methods of defining edges of the
graphs H and H ′.

This work stems from the author’s joint work [19] with Professors T. Katsura
and S. Kondo on the geometry of a supersingular K3 surface in characteristic 5.
The author expresses his gratitude to them for many discussions and comments.
He also thanks the referees for their many useful comments and suggestions on the
first version of this paper.

2. Other methods of defining edges of H and H ′

In this section, we present various ways of defining edges of H and H ′.

2.1. Definition of the edges of H by 6-cliques. By the assertion D ∼= T (7) of
Proposition 1.3, each D ∈ D contains exactly seven 6-cliques of G. Let K denote
the set of 6-cliques in G. We have |K| = 1050, and, for each K ∈ K, we have

|
∪

Q∈K

(Q ∩ Γ)| = 36.

Proposition 2.1. Let K be a 6-clique of G. Then there exists a unique 6-clique
K ′ of G disjoint from K as a subset of Q such that

(2.1)
∪

Q∈K

(Q ∩ Γ) =
∪

Q′∈K′

(Q′ ∩ Γ).
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We denote by PK the set of pairs {K,K ′} of disjoint 6-cliques of G satisfy-
ing (2.1). The edges of the graph H can be defined as follows:

Proposition 2.2. Two distinct vertices D and D′ of H are adjacent in H if and
only if there exists {K,K ′} ∈ PK such that D contains K and D′ contains K ′.

In other words, the set PK can be identified with the set of edges of H. Each
pair in PK has the following remarkable geometric property:

Proposition 2.3. Let {K,K ′} be an element of PK. Then any Q ∈ K and any
Q′ ∈ K ′ intersect at one point with intersection multiplicity 4.

2.2. Definition of the edges of H by special secant lines. For D ∈ D, we put

SD :=
∪

Q∈D

S(Q).

Proposition 2.4. We have |SD| = 105 for any D ∈ D.

Proposition 2.5. Let D and D′ be distinct vertices of H. Then we have

|SD ∩ SD′ | =


45 if D and D′ are adjacent in H,
15 if D and D′ are not adjacent

but in the same connected component of H,
21 if D and D′ are in different connected components of H.

If D and D′ are in different connected components of H, then P is a disjoint union
of 21 sets of six points L ∩ Γ, where L runs through SD ∩ SD′ .

2.3. Definition of the edges of H ′ by doubly tangential pairs of conics.
Suppose that Q,Q′ ∈ Q are distinct. Since Q and Q′ are tangent at each point
of Q ∩ Q′ ∩ Γ, we have |Q ∩ Q′ ∩ Γ| ≤ 2. We say that a pair {Q,Q′} of conics
is doubly tangential if |Q ∩ Q′ ∩ Γ| = 2 holds. It turns out that, if {Q,Q′} is a
doubly tangential pair, then |S(Q) ∩ S(Q′)| is either one or three (see Table 4.3).
For Q ∈ Q, we put

R(Q) := { Q′ ∈ Q | |Q ∩ Q′ ∩ Γ| = 2, |S(Q) ∩ S(Q′)| = 1 },

and for D ∈ D, we put RD :=
∪

Q∈D R(Q). For each set Ci of vertices of a
connected component of H, we put

C̃i :=
∪

D∈Ci

D ⊂ Q.

Then we have |C̃i| = 1050 and C̃1 ∪ C̃2 ∪ C̃3 = Q.

Proposition 2.6. For any Q ∈ Q, we have |R(Q)| = 45 and |R(Q) ∩ C̃i| = 15 for
i = 1, 2, 3. For any D ∈ D, we have |RD| = 735 and

|RD ∩ C̃i| =

{
105 if D ∈ Ci,
315 if D /∈ Ci.

The sets RD determine the edges of H ′ by the following:
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Proposition 2.7. Two distinct vertices D,D′ ∈ D are adjacent in H ′ if and only
if RD and D′ are not disjoint in Q. More precisely, we have

|RD ∩ D′| =


21 if T (D,D′) = β21,
15 if T (D,D′) = α15γ6,
0 if T (D,D′) = γ21 or α3γ18.

We can refine Proposition 2.7 for edges of H ′ not contained in a connected
component of H. For a vertex D ∈ D, we denote by N ′(D) the set of vertices
adjacent to D in the graph H ′. If D ∈ Ci and D′ ∈ N ′(D)∩ Cj with i ̸= j, we have
T (D,D′) = β21, and hence, by definition of the type β21 and Proposition 1.7, we
can define a unique bijection fD,D′ : D → D′ by requiring |Q ∩ fD,D′(Q) ∩ Γ| = 2
for any Q ∈ D.

Proposition 2.8. If D ∈ Ci, D′ ∈ Cj with i ̸= j and T (D,D′) = β21, the conic
fD,D′(Q) belongs to R(Q) for any Q ∈ D.

Proposition 2.9. For D ∈ Ci and j ̸= i, the map (Q,D′) 7→ fD,D′(Q) induces a
bijection from D × (N ′(D) ∩ Cj) to RD ∩ C̃j. In other words, if D ∈ Ci and j ̸= i,
then RD ∩ C̃j is a disjoint union of D′, where D′ runs through N ′(D) ∩ Cj.

3. The list of totally tangent conics

In this section, we give a method to calculate the list of conics totally tangent to
a Hermitian curve in odd characteristic, based on the results in [23, n. 81] and [24].

Let p be an odd prime, and q a power of p. We work in characteristic p. Let Γq

denote the Fermat curve
xq+1 + yq+1 + zq+1 = 0

of degree q + 1. By [8] and [20], we see that, for a point P of Γq, the following are
equivalent;

(i) the tangent line of Γq at P intersects Γq at P with multiplicity q + 1,
(ii) P is an Fq2-rational point of Γq, and
(iii) P is a Weierstrass point of Γq.

Let Pq denote the set of points of Γq satisfying (i), (ii) and (iii). By (ii), we have
|Pq| = q3 + 1. A non-singular conic Q is said to be totally tangent to Γq if Q
intersects Γq at q+1 distinct points with intersection multiplicity 2. Let Qq denote
the set of non-singular conics totally tangent to Γq. In [23, n. 81] and [24], the
following was proved:

Proposition 3.1. (1) The automorphism group Aut(Γq) = PGU3(Fq2) of Γq acts
on Qq transitively, and the stabilizer subgroup of Q ∈ Qq in Aut(Γq) is isomorphic
to PGL2(Fq). In particular, we have |Qq| = q2(q3 + 1).

(2) For any Q ∈ Qq, we have Q ∩ Γq ⊂ Pq.
(3) Let P0, P1, P2 be three distinct points of Pq. If there exists a non-singular

conic Q that is tangent to Γq at P0, P1, P2, then Q ∈ Qq.

A set {p1, . . . , pm} of m points in Pq with m ≥ 3 is said to be a co-conical set of
m points if there exists Q ∈ Qq such that

{p1, . . . , pm} ⊂ Q ∩ Γq.

Then the set Qq is identified with the set of co-conical sets of q + 1 points via
Q 7→ Q ∩ Γq. It is obvious that any co-conical set of q + 1 points Q ∩ Γq is a
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union of co-conical sets of 3 points contained in Q ∩ Γq, and the assertion (3)
of Proposition 3.1 implies that any co-conical set of 3 points is contained in a
unique co-conical set of q + 1 points. Therefore the following proposition, which
characterizes co-conical sets of 3 points, enables us to calculate Qq efficiently.

Proposition 3.2. Let P0, P1, P2 be non-collinear three points of Pq, and let

Pi = (ai : bi : ci)

be the homogeneous coordinates of Pi with ai, bi, ci ∈ Fq2 . We put

κij := aiāj + bib̄j + cic̄j ∈ Fq2 ,

where x̄ := xq for x ∈ Fq2 . Then there exists a non-singular conic Q that is tangent
to Γq at Pi for i = 0, 1, 2 if and only if κ12κ23κ31 is a non-zero element of Fq.

For the proof of Proposition 3.2, we recall a classical result of elementary geom-
etry. Let (L0, L1, L2) be an ordered triple of non-concurrent lines on P2, and let
P0, P1, P2 be points of P2 such that Pi ∈ Li and Pi /∈ Lj for i ̸= j. We denote by
Vi the intersection point of Lj and Lk, where i ̸= j ̸= k ̸= i. We put

∆ := (L0, L1, L2 |P0, P1, P2).

Let T be the intersection point of the lines V1P1 and V2P2, and let R be the
intersection point of L0 and V0T . We denote by γ(∆) the cross-ratio of the ordered
four points V1, V2, R, P0 on L0; that is, if z is an affine parameter of L0, then

γ(∆) :=
(z(V1) − z(R))(z(V2) − z(P0))
(z(V1) − z(P0))(z(V2) − z(R))

.

It is easy to see that there exists a non-singular conic that is tangent to Li at Pi

for i = 0, 1, 2 if and only if γ(∆) = 1.

Proof of Proposition 3.2. Let Li denote the tangent line of Γq at Pi, which is defined
by āix + b̄iy + c̄iz = 0. Since P0, P1, P2 are not collinear, the lines L0, L1, L2

are not concurrent. Since Li ∩ Γq = {Pi}, we can consider γ(∆), where ∆ =
(L0, L1, L2|P0, P1, P2). Since κij = κ̄ji, it is enough to show that

(3.1) γ(∆) =
κ12κ23κ31

κ21κ32κ13
.

Let pi denote the column vector t[ai, bi, ci], and we put p̄j := t[āj , b̄j , c̄j ]. We
consider the unique linear transformation g of P2 that maps L0 to x = 0, L1 to
y = 0, L2 to z = 0, and P1 to (1 : 0 : 1), P2 to (1 : 1 : 0). Then g maps P0 to
[0 : γ(∆) : 1]. Suppose that g is given by the left multiplication of a 3 × 3 matrix
M . Then there exist non-zero constants τ0, τ1, τ2 and s, t, u such that

MP =

 0 t u
sγ(∆) 0 u

s t 0

 , tM−1P̄ =

 τ0 0 0
0 τ1 0
0 0 τ2

 , where P := [p0,p1,p2].

On the other hand, we have

tPP̄ =

 0 κ12 κ13

κ21 0 κ23

κ31 κ32 0

 .

Combining these equations, we obtain (3.1). ¤
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Remark 3.3. By Chevalley-Warning theorem, the non-singular conic Q1 defined by
x2 + y2 + z2 = 0 has q + 1 rational points over Fq, and it intersects Γq at each of
these Fq-rational points with intersection multiplicity 2. Hence we can also make
the list Qq from Q1 by the action of Aut(Γq) = PGU3(Fq2) on P2.

4. Geometric construction

In this section, we work in characteristic 5. By a list, we mean an ordered finite
set. We put

α :=
√

2 ∈ F25 = F5(α).
With the help of Proposition 3.2, we construct the following lists. They are available
from the web page given at the end of Introduction.

• The list P of the Weierstrass points of Γ5; that is, the list of F25-rational
points of Γ5.

• The list S of sets of collinear six points in P, which is regarded as the list
S5 of special secant lines L of Γ5 by L 7→ L ∩ Γ5.

• The list Q of co-conical sets of six points in P, which is regarded as the list
Q5 of totally tangent conics Q by Q 7→ Q ∩ Γ5.

In the following, conics in Q5 are numbered as Q1, . . . , Q3150 according to the order
of the list Q. For example, the first member of Q is

{ (0 : 1 : ±2), (1 : 0 : ±2), (1 : ±2 : 0) },
and hence the conic Q1 is defined by φ1 : x2 + y2 + z2 = 0. From the lists P, S and
Q, we obtain the following lists:

• The list SQ = [S(Q1), . . . ,S(Q3150)] of the sets S(Qi) of special secant lines
of conics Qi.

• The list EQ = [φ1, . . . , φ3150] of the defining equations φi of conics Qi.
From the list Q, we compute a 3150× 3150 matrix M0 whose (i, j) entry is equal to
|Qi ∩Qj ∩Γ5|. From the list SQ, we compute a 3150× 3150 matrix M1 whose (i, j)
entry is equal to |S(Qi) ∩ S(Qj)|.

Suppose that a non-singular conic C is defined by an equation txFC x = 0,
where FC is a 3 × 3 symmetric matrix. Then two non-singular conics C and C ′

intersect at four distinct points transversely if and only if the cubic polynomial

f := det(FC + tFC′)

of t has no multiple roots. From the list EQ, we calculate the discriminant of the
polynomials f for Qi, Qj ∈ Q5, and compute a 3150× 3150 matrix M2 whose (i, j)
entry is 1 if |Qi ∩ Qj | = 4 and is 0 if i = j or |Qi ∩ Qj | < 4.

From the matrices M1 and M2, we compute the adjacency matrix AG of G. From
the matrix AG, we compute the list D of the connected components of G. It turns out
that D consists of 150 members D1, . . . , D150, and that each connected component
has 21 vertices. For example, the connected component D1 of G containing Q1

consists of the conics given in Table 4.1, and their adjacency relation is given in
Table 4.2, where distinct conics Q at the ith row and the jth column and Q′ at the
i′th row and the j′th column are adjacent if and only if {i, j} ∩ {i′, j′} ̸= ∅. Thus
an isomorphism D1

∼= T (7) of graphs is established. Using the list Q, we confirm∪
Q∈D1

(Q ∩ Γ5) = P5.
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Q1 : x2 + y2 + z2 = 0

Q309 : (2 α + 2) x2 + (3 α + 2) y2 + z2 = 0

Q434 : (3 α + 2) x2 + (2 α + 2) y2 + z2 = 0

Q1454 : 2 z2 + xy = 0

Q1535 : 4 x2 + 4 y2 + 4 z2 + 4 xy + yz + zx = 0

Q1628 : x2 + y2 + z2 + xy + yz + zx = 0

Q2063 : 3 z2 + xy = 0

Q2120 : 4 x2 + 4 y2 + 4 z2 + xy + 4 yz + zx = 0

Q2187 : x2 + y2 + z2 + 4 xy + 4 yz + zx = 0

Q2445 : 2 y2 + zx = 0

Q2489 : 3 y2 + zx = 0

Q2511 : (2 α + 2) x2 + y2 + (3 α + 2) z2 + (3 α + 2) xy + (2 α + 2) yz + zx = 0

Q2556 : (2 α + 3) x2 + 4 y2 + (3 α + 3) z2 + (2 α + 2) xy + (2 α + 3) yz + zx = 0

Q2592 : (3 α + 2) x2 + y2 + (2 α + 2) z2 + (3 α + 3) xy + (2 α + 3) yz + zx = 0

Q2615 : (3 α + 3) x2 + 4 y2 + (2 α + 3) z2 + (2 α + 3) xy + (2 α + 2) yz + zx = 0

Q2708 : 2 x2 + yz = 0

Q2790 : 3 x2 + yz = 0

Q3082 : (2 α + 3) x2 + 4 y2 + (3 α + 3) z2 + (3 α + 3) xy + (3 α + 2) yz + zx = 0

Q3086 : (3 α + 2) x2 + y2 + (2 α + 2) z2 + (2 α + 2) xy + (3 α + 2) yz + zx = 0

Q3116 : (3 α + 3) x2 + 4 y2 + (2 α + 3) z2 + (3 α + 2) xy + (3 α + 3) yz + zx = 0

Q3122 : (2 α + 2) x2 + y2 + (3 α + 2) z2 + (2 α + 3) xy + (3 α + 3) yz + zx = 0

Table 4.1. Vertices of D1

− Q1 Q309 Q2615 Q2511 Q3116 Q3122

− Q434 Q3082 Q3086 Q2556 Q2592

− Q1535 Q1628 Q2120 Q2187

− Q1454 Q2489 Q2790

− Q2708 Q2445

− Q2063

Table 4.2. Adjacency relation on D1

Since Aut(Γ5) acts on Q5 transitively, it acts on D transitively. Thus we have
proved Propositions 1.3 and 1.4.

Using the matrix M0 and the list D, we confirm Proposition 1.5 and 1.6. We
then calculate a 3150 × 150 matrix whose (ν, j) entry is t(Qν , Dj) if Qν /∈ Dj

and 0 if Qν ∈ Dj . We then calculate a 150 × 150 matrix T whose (i, j) entry is
T (Di, Dj) if i ̸= j and 0 if i = j. Then Proposition 1.7 is confirmed. From the
matrix T, we obtain the adjacency matrix AH of the graph H in Theorem 1.8. It
turns out that H has exactly three connected components whose set of vertices are
denoted by C1, C2, C3. Then it is easy to confirm that each connected component
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a(Q) s(Q) n(Q) N an example

6 15 − 1 x2 + y2 + z2 = 0

0 3 [4, 0, 0, 0] 10 (2 α + 2) x2 + (3 α + 2) y2 + z2 = 0

0 3 [0, 2, 0, 0] 20 (α + 2) x2 + α y2 + α z2 + yz = 0

1 5 [0, 0, 0, 1] 24 3 α x2 + (3 α + 4) y2 + (3 α + 1) z2 + yz = 0

2 3 [0, 2, 0, 0] 30 (3 α + 2) x2 + y2 + z2 = 0

0 0 [0, 2, 0, 0] 30 (2 α + 1) x2 + (2 α + 1) y2 + (2 α + 1) z2 + xy + yz + zx = 0

2 1 [0, 2, 0, 0] 45 (2 α + 3) x2 + y2 + z2 = 0

1 0 [1, 0, 1, 0] 120 3 α x2 + (α + 2) y2 + 3 z2 + 3 xy + (2 α + 3) yz + zx = 0

0 1 [4, 0, 0, 0] 390 3 α x2 + α y2 + α z2 + yz = 0

1 1 [2, 1, 0, 0] 600 (4 α + 2) x2 + (3 α + 4) y2 + (3 α + 1) z2 + yz = 0

0 0 [4, 0, 0, 0] 1880 4 x2 + 4 y2 + (2 α + 4) z2 + (4 α + 4) xy + yz + zx = 0

Table 4.3. Classification of conics by intersection pattern with Q1

of H is a strongly regular graph of parameters (v, k, λ, µ) = (50, 7, 0, 1). Therefore
Theorem 1.8 is proved. Using T and the sets C1, C2, C3, we confirm Proposition 1.9.

We then calculate the adjacency matrix AH′ of the graph H ′ form T. Then
it is easy to confirm that, for any i and j with i ̸= j, H ′|(Ci ∪ Cj) is a strongly
regular graph of parameters (v, k, λ, µ) = (100, 22, 0, 6). Thus Theorem 1.10 is
proved. Using T, the adjacency matrix of H and the sets C1, C2, C3, we confirm
Proposition 1.11. Then Theorem 1.12 follows from [18], or we can compute the
adjacency matrix of H ′′ and confirm Theorem 1.12 directly.

Note that the conic Q1 ∈ Q5 defined by x2 + y2 + z2 = 0 has a parametric
presentation

t 7→ (t2 + 4 : 2t : 2 t2 + 2).
Using the list EQ and this parametric presentation, we can calculate

n(Qi) := [ν1, ν2, ν3, ν4]

for each i > 1, where νm is the number of points in Q1 ∩ Qi at which Q1 and Qi

intersect with intersection multiplicity m. In Table 4.3, we give the number N of
conics Q that have an intersection pattern with Q1 prescribed by n(Q) and

a(Q) := |Q1 ∩ Q ∩ Γ5|, s(Q) := |S(Q1) ∩ S(Q)|.

Next we prove results in Section 2.1. By the adjacency matrix AG of the graph
G and the list D, we can construct the list K of 6-cliques in G. Using Q, D, K and
the adjacency matrix of H obtained from T, we confirm Propositions 2.1, 2.2, and
construct the list PK. The two 6-cliques containing Q1 are

Ka = {Q1, Q309, Q2511, Q2615, Q3116, Q3122},
Kb = {Q1, Q434, Q2556, Q2592, Q3082, Q3086}.

Then their partners in PK are

K ′
a = {Q8, Q171, Q827, Q936, Q1973, Q2038},

K ′
b = {Q22, Q160, Q816, Q947, Q1984, Q2034},

the defining equations of whose members are given in Table 4.4. Each of these
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Q8 : 3 α x2 + (3 α + 4) y2 + (3 α + 1) z2 + yz = 0

Q171 : 2 α x2 + (2 α + 1) y2 + (2 α + 4) z2 + yz = 0

Q827 : (2 α + 4) x2 + 2 α y2 + (2 α + 1) z2 + zx = 0

Q936 : (3 α + 1) x2 + 3 α y2 + (3 α + 4) z2 + zx = 0

Q1973 : (3 α + 4) x2 + (3 α + 1) y2 + 3 α z2 + xy = 0

Q2038 : (2 α + 1) x2 + (2 α + 4) y2 + 2 α z2 + xy = 0

Q22 : 2 α x2 + (2 α + 4) y2 + (2 α + 1) z2 + yz = 0

Q160 : 3 α x2 + (3 α + 1) y2 + (3 α + 4) z2 + yz = 0

Q816 : (3 α + 4) x2 + 3 α y2 + (3 α + 1) z2 + zx = 0

Q947 : (2 α + 1) x2 + 2 α y2 + (2 α + 4) z2 + zx = 0

Q1984 : (2 α + 4) x2 + (2 α + 1) y2 + 2 α z2 + xy = 0

Q2034 : (3 α + 1) x2 + (3 α + 4) y2 + 3 α z2 + xy = 0.

Table 4.4. Conics in K ′
a and K ′

b

conics intersects Q1 only at one point with intersection multiplicity 4. For exam-
ple, Q8 intersects Q1 only at (0 : 3 : 1). Since Aut(Γ5) acts on Q5 transitively,
Proposition 2.3 is proved.

Remark 4.1. From Table 4.3, we see that there exist exactly 12 conics Q′ ∈ Q5 that
intersect Q1 only at one point with intersection multiplicity 4 but are not contained
in K ′

a ∪ K ′
b. An example of such a conic is

4α x2 + (4 α + 4) y2 + (4 α + 1) z2 + yz = 0.

These 12 conics are contained in C̃1.

The proofs in Sections 2.2 and 2.3 are analogous and we omit the details.

Remark 4.2. Some families of strongly regular graphs have been constructed from
Hermitian varieties in Chakravarti [6].

5. Group-theoretic construction

In order to verify the group-theoretic construction (Theorems 1.14, 1.15, 1.16
and Proposition 1.17), we make the following computational data. Since the order
378000 of PGU3(F25) is large, it uses too much memory to make the list of all
elements of PGU3(F25). Instead we make the lists of elements of

GS := stab(p1), where p1 = (0 : 1 : 2) ∈ P5, and
GT := a complete set of representatives of PGU3(F25)/GS .

Then we have |GS | = 3000 and |GT | = 126, and each element of PGU3(F25)
is uniquely written as τσ, where σ ∈ GS and τ ∈ GT . We then calculate the
permutation on the set P5 induced by each of the 3000 + 126 elements of GS

and GT . From this list of permutations, we calculate the permutation on the set
Q5 induced by each element of GS and GT , and from this list, we calculate the
permutation on the set D induced by each element of GS and GT . Thus we obtain
three permutation representations of PGU3(F25) on P5, Q5 and D, each of which
is faithful.
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No. a(Q) s(Q) n(Q) stab(Q1, Q) N

1 6 15 − S5 1

2 0 3 [4, 0, 0, 0] A4 10

3 0 3 [0, 2, 0, 0] D12 20

4 1 5 [0, 0, 0, 1] D10 24

5 2 3 [0, 2, 0, 0] D8 30

6 0 0 [0, 2, 0, 0] D12 30

7 2 1 [0, 2, 0, 0] D8 45

8 1 0 [1, 0, 1, 0] 0 120

9 0 1 [4, 0, 0, 0] Z/2Z 180

10 0 1 [4, 0, 0, 0] (Z/2Z)2 210

11 1 1 [2, 1, 0, 0] Z/2Z 600

12 0 0 [4, 0, 0, 0] 0 720

13 0 0 [4, 0, 0, 0] Z/2Z 900

14 0 0 [4, 0, 0, 0] Z/3Z 80

15 0 0 [4, 0, 0, 0] (Z/2Z)2 180

Table 5.1. stab(Q1, Q)

Remark 5.1. In order to determine the structure of subgroups of PGU3(F25), it
is more convenient to use these permutation representations than to handle 3 × 3
matrices with components in F25.

Then we calculate stab(Q1) and its subgroups

stab(Q1, Q) := stab(Q1) ∩ stab(Q)

for each Q ∈ Q5. Combining this data with the adjacency matrix AG of the graph
G, we confirm the first-half of Theorem 1.14.

If Q ∈ Q5 is distinct from Q1, then stab(Q1, Q) is isomorphic to one of the
following groups:

0, Z/2Z, Z/3Z, (Z/2Z)2, D8, D10, D12, A4,

where D2n is the dihedral group of order 2n. Table 4.3 is refined to Table 5.1 by
using this new data. The action of stab(Q1) ∼= S5 decomposes Q5 into 64 orbits,
and each row of Table 5.1 contains

N · |stab(Q1, Q)|/120

orbits of size 120/|stab(Q1, Q)|. From each of these orbits other than {Q1}, we
choose a representative conic Q and confirm the following:

Q ∈ D1 =⇒ | 〈stab(Q1), stab(Q)〉 | = 2520,

Q /∈ D1 =⇒ | 〈stab(Q1), stab(Q)〉 | > 2520.

Thus the second-half of Theorem 1.14 is verified.

Remark 5.2. The conics in Q5 that are in the connected component D1 of G but
are not adjacent to Q1 in G form one of the three orbits of size 10 in the 6th row
of Table 5.1.
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We then calculate stab(D1) and its subgroups

stab(D1, D) := stab(D1) ∩ stab(D)

for each D ∈ D. An isomorphism κ : D1 →∼ T (7) of graphs is obtained from the
triangle in Table 4.2 by putting κ(Qν) = {i, j} if Qν ∈ D1 is at the ith row and the
jth column of the triangle. This map κ gives rise to a homomorphism

stab(D1) → Aut(T (7)) = S7.

We confirm that this homomorphism is injective, and verify Theorem 1.15. Using
the matrix T, we also confirm Theorem 1.16 and Proposition 1.17.

Remark 5.3. Each connected component of the graph H is an orbit of the action
of the subgroup PSU3(F25) of index 3 in PGU3(F25) on D.

Combining all the results above, we can construct the Hoffmann-Singleton graph
and the Higman-Sims graph from PGU3(F25) without using any geometry. We put

∆ := PGU3(F25) ∩ PGO3(F25).

Remark 5.4. We have PGO3(F25) = {M ∈ PGL3(F25) | tMM is a diagonal matrix}.
Since Q1 is defined by x2 + y2 + z2 = 0, we have ∆ = stab(Q1).

Consider the following five elements of PGU3(F25):

g2 :=

 1 0 0

0 ω 0

0 0 ω−1

 (ω := 2 + 3α), g3 :=

 1 3 2

3 1 2

2 2 1

 ,

g4 :=

 0 1 0

1 0 0

0 0 4

 , g5 :=

 1 0 0

0 0 4

0 4 0

 , g6 :=

 0 1 0

1 0 0

0 0 1

 .

Remark 5.5. The elements gi (i = 2, . . . , 6) belong to stab(D1), and correspond to
(1, 2)(i, i + 1) ∈ A7 by the isomorphism stab(D1) ∼= A7 induced by κ : D1

∼= T (7).
Since these five permutations (1, 2)(i, i + 1) generate A7, we see that the elements
g2, . . . , g6 generate stab(D1).

Theorem 5.6. Let Γ be the subgroup of PGU3(F25) generated by g2, . . . , g6 above.
Then Γ is isomorphic to A7. Moreover, if γ ∈ PGU3(F25) satisfies ∆ ∩ γ−1∆γ ∼=
A4, then Γ is generated by ∆ and γ−1∆γ.

Let V denote the set of subgroups of PGU3(F25) conjugate to Γ. Then, we have
|V| = 150, and for distinct elements Γ′, Γ′′ ∈ V, the group Γ′ ∩ Γ′′ is isomorphic to
one of the following:

A6, PSL2(F7), (A4 × 3) : 2, A5.

For n = 360, 168, 72, 60, we define a subset En of the set of unordered pairs of
distinct elements of V by

En := { {Γ′, Γ′′} | |Γ′ ∩ Γ′′| = n }.
Then the graph (V, E360) has exactly three connected components C1, C2, C3, and
each Ci is the Hoffmann-Singleton graph. Moreover, for any i ̸= j, the graph
(V, E360 ∪ E168)|(Ci ∪ Cj) is the Higman-Sims graph.

We can also construct the McLaughlin graph from V and En by the recipe of
Inoue [18] in the same way as Theorem 1.12.
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