
BORCHERDS’ METHOD FOR ENRIQUES SURFACES

SIMON BRANDHORST AND ICHIRO SHIMADA

Abstract. We classify all primitive embeddings of the lattice of numerical

equivalence classes of divisors of an Enriques surface with the intersection
form multiplied by 2 into an even unimodular hyperbolic lattice of rank 26.
These embeddings have a property that facilitates the computation of the
automorphism group of an Enriques surface by Borcherds’ method.

1. Introduction

First we fix notation about lattices. A lattice is a free Z-module of finite rank
with a non-degenerate symmetric bilinear form ⟨ , ⟩ : L×L → Z. A lattice L is even
if ⟨v, v⟩ ∈ 2Z for all v ∈ L. An embedding S ↪→ L of a lattice S into a lattice L is
primitive if the cokernel is torsion-free. A lattice L of rank n > 1 is hyperbolic if
L⊗R is of signature (1, n− 1). For a lattice L and a non-zero integer m, let L(m)
denote the lattice with the same underlying Z-module as L and with the symmetric
bilinear form being the m times that of L. The automorphism group of a lattice
L is denoted by O(L), and an element of O(L) is called an isometry. We let act
O(L) on L from the right. A lattice L is embedded by ⟨ , ⟩ into the dual lattice
L∨ := Hom(L,Z) as a submodule of finite index. The cokernel A(L) := L∨/L
is called the discriminant group of L. We say that L is unimodular if A(L) is
trivial. For an integer k, a vector v of a lattice is called a k-vector if ⟨v, v⟩ = k.
Let R(L) denote the set of (−2)-vectors of a lattice L. A negative-definite root
lattice is a negative-definite lattice L generated by R(L). It is well-known that
negative-definite root lattices are classified by their ADE-types (see, for example,
Chapter 1 of [8]). Let Ln be an even unimodular hyperbolic lattice of rank n. It
is also well-known (for example, see Section V of [20]) that Ln exists if and only if
n ≡ 2 mod 8, and that, if n ≡ 2 mod 8, then Ln is unique up to isomorphism.

The lattice theory is a very strong tool in the study of K3 and Enriques surfaces.
Let Z be a K3 or an Enriques surface defined over an algebraically closed field. We
denote by SZ the lattice of numerical equivalence classes of divisors on Z. Note
that SZ is even, and if rankSZ > 1, then SZ is hyperbolic. Borcherds’ method [2, 3]
is a procedure to calculate the automorphism group Aut(X) of a K3 surface X by
embedding SX primitively into L26, and applying Conway’s result [5] on O(L26).
After the work of Kondo [12], this method has been applied to many K3 surfaces,
and automatized for computer calculation (see [22] and the references therein).

Let Y be an Enriques surface in characteristic ̸= 2 with the universal covering
π : X → Y . Then we have a primitive embedding π∗ : SY (2) ↪→ SX . Note that SY
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No. name rt m4 og

1 12A D8 1376 229 · 37 · 53 · 72

2 12B A7 1824 223 · 36 · 52 · 72

3 20A D4 +D5 1760 225 · 37 · 52 · 7
4 20B 2D4 1888 229 · 34 · 5 · 7
5 20C 10A1 +D6 1632 228 · 36 · 53 · 7
6 20D A3 +A4 2016 216 · 36 · 53 · 7
7 20E 5A1 +A5 1952 220 · 37 · 53

8 20F 2A3 2080 223 · 34 · 52

9 40A 4A1 + 2A3 2016 225 · 35 · 5
10 40B 8A1 + 2D4 1760 230 · 36 · 5 · 7
11 40C 6A1 +A3 2080 220 · 35 · 5 · 7
12 40D 12A1 +D4 1888 228 · 35 · 52

13 40E 2A1 + 2A2 2144 216 · 36 · 52

14 96A 8A1 2144 228 · 33

15 96B 16A1 2016 231 · 35

16 96C 4A1 2208 222 · 35

17 infty 2272 226 · 32 · 5 · 7

Table 1.1. Primitive embeddings

is isomorphic to L10. Hence, to extend Borcherds’ method to Enriques surfaces, it
is important to study the primitive embeddings of L10(2) into L26.

We identify O(L10(2)) with O(L10). We say that two embeddings ι and ι′ of
L10(2) into L26 are equivalent up to the action of O(L10) and O(L26) if there exist
isometries g ∈ O(L10) and g′ ∈ O(L26) such that, for all v ∈ L10(2), one has

ι(v)g
′
= ι′(vg). Our first main result is as follows.

Theorem 1.1. Up to the action of O(L10) and O(L26), there exist exactly 17
equivalence classes of primitive embeddings of L10(2) into L26, and they are given
in Table 1.1.

Explanation of Table 1.1. LetRι denote the orthogonal complement of the image
of a primitive embedding ι : L10(2) ↪→ L26 in L26. Note that Rι is a negative-definite
even lattice of rank 16 with A(L10(2)) ∼= (Z/2Z)10. The item rt is the ADE-type
of the negative-definite root lattice generated by R(Rι). For the embedding infty,
the lattice Rι contains no (−2)-vectors. The item m4 is the number of (−4)-vectors
in Rι. The item og is the order of the group O(Rι).

These 17 embeddings have a remarkable property, which is very useful for the
calculation of the automorphism group of an Enriques surface. In order to state
this property, we need to explain the notion of tessellation by chambers. Let L
be an even hyperbolic lattice. A positive cone P(L) is one of the two connected
components of the subspace of L ⊗ R consisting of vectors x ∈ L ⊗ R such that
⟨x, x⟩ > 0. We fix a positive cone P(L) of L, and denote by O(L,P) the stabilizer
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subgroup of P(L) in O(L), which is of index 2 in O(L). A rational hyperplane (v)⊥

is a subspace of P(L) defined by ⟨x, v⟩ = 0, where v ∈ L⊗Q is a vector satisfying
⟨v, v⟩ < 0. Let F be a locally finite family of rational hyperplanes of P(L). A
closed subset D of P(L) is said to be an F-chamber if D is the closure in P(L) of
a connected component of the complement

P(L) \
∪

H∈F
H.

We say that a subset N of P(L) has a tessellation by F-chambers if N is a union
of F-chambers. For example, if F ′ is a subfamily of F , then every F ′-chamber has
a tessellation by F-chambers.

Definition 1.2. Note that P(L) has a tessellation by F-chambers. We say that this
tessellation of P(L) is simple if there exists a subgroup of O(L,P) that preserves
the family F of hyperplanes (and hence the set of F-chambers) and acts on the set
of F-chambers transitively.

Definition 1.3. We say that F-chambers D and D′ are isomorphic if there exists
an isometry g ∈ O(L,P) such that Dg = D′. The automorphism group of an
F-chamber is defined to be

O(L,D) := {g ∈ O(L,P) | Dg = D}.

Definition 1.4. Let D be an F-chamber, and D the closure of D in L ⊗ R. We
say that D is quasi-finite if D \ D is contained in a union of at most countably
many half-lines R≥0vi ⊂ ∂ P(L), where vi are non-zero vectors of L⊗ R satisfying

⟨vi, vi⟩ = 0, P(L) is the closure of P(L) in L⊗ R, and ∂ P(L) := P(L) \ P(L).

Each (−2)-vector r ∈ R(L) defines the reflection sr ∈ O(L,P) into the mirror
(r)⊥, which is defined by xsr := x + ⟨x, r⟩r. Let W (L) denote the subgroup of
O(L,P) generated by reflections sr, where r runs through R(L).

Example 1.5. We put R(L)⊥ := {(r)⊥ | r ∈ R(L)}, which is a locally finite family
of rational hyperplanes. Then an R(L)⊥-chamber DR is a standard fundamental
domain of the action on P(L) of W (L). Hence the tessellation of P(L) by R(L)⊥-
chambers is simple. Note that we have O(L,P) = W (L)⋊O(L,DR).

Definition 1.6. The shape of an R(Ln)
⊥-chamber was determined by Vinberg [31]

for n = 10 and 18, and by Conway [5] for n = 26. Hence we call an R(L10)
⊥-

chamber a Vinberg chamber, and an R(L26)
⊥-chamber a Conway chamber.

It is known that Vinberg chambers and Conway chambers are quasi-finite.

Definition 1.7. Let D be an F-chamber. A wall of D is a closed subset w of D
disjoint from the interior of D satisfying the following; there exists a hyperplane
(v)⊥ ∈ F such that w is equal to D ∩ (v)⊥ and that w contains a non-empty open
subset of (v)⊥. We say that v ∈ L⊗Q defines a wall w of D if w is equal to D∩(v)⊥
and ⟨x, v⟩ ≥ 0 holds for all x ∈ D.

Example 1.8. Let DR be as in Example 1.5. Then the group W (L) is generated
by reflections with respect to the (−2)-vectors defining walls of DR.

Definition 1.9. Let D be an F-chamber, and w a wall of D. Then there exists a
unique F-chamber D′ such that D ∩D′ = w. We call D′ the F-chamber adjacent
to D across the wall w.
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Let ι : S ↪→ L be an embedding of an even hyperbolic lattice S, P(S) the positive
cone of S that is mapped to P(L) by ι ⊗ R, and ιP : P(S) ↪→ P(L) the induced
inclusion. We put

ι∗F := {ι−1
P (H) | H ∈ F , ι−1

P (H) ̸= ∅}.
Then ι∗F is a locally finite family of rational hyperplanes of P(S), and P(S) has
a tessellation by ι∗F-chambers. If all F-chambers are quasi-finite, then so are all
ι∗F-chambers.

In the following, we identify P(L10(2)) with P(L10). If ι : L10(2) ↪→ L26 is a
primitive embedding, then P(L10) has a tessellation by ι∗R(L26)

⊥-chambers. We
call an ι∗R(L26)

⊥-chamber an induced chamber associated with the embedding ι.
Note that every induced chamber is quasi-finite.

In the application of Borcherds’ method for the calculation of Aut(X) of a K3
surface X, we embed SX into L26 primitively and investigate the tessellation of PX

by induced chambers. This tessellation is usually not simple, and in these cases,
the computation of Aut(X) becomes very hard. See, for example, the case of the
singular K3 surface with transcendental lattice of discriminant 11 treated in [22],
or the case of the supersingular K3 surface of Artin invariant 1 in characteristic 5
studied in [9].

Our second main result is as follows.

Theorem 1.10. Let ι : L10(2) ↪→ L26 be a primitive embedding that is not of
type infty. Then the number of walls of an induced chamber D is finite, and
each wall of D is defined by a (−2)-vector of L10. If r ∈ R(L10) defines a wall
w = D ∩ (r)⊥ of D, then the reflection sr with respect to r preserves the family of
hyperplanes ι∗R(L26)

⊥ and hence the set of induced chambers. In particular, the
induced chamber adjacent to D across the wall w = D ∩ (r)⊥ is equal to Dsr .

Corollary 1.11. If ι : L10(2) ↪→ L26 is not of type infty, then the tessellation of
P(L10) by induced chambers is simple.

The data of the induced chambers D are given in Table 1.2. Before explaining
the contents of Table 1.2, we recall two classical results about automorphism groups
of Enriques surfaces. Let Y be an Enriques surface. We denote by PY the positive
cone of SY ⊗ R containing an ample class. We then put

NY := {x ∈ PY | ⟨x, [Γ]⟩ ≥ 0 for all curves Γ on Y }.
Then NY has a tessellation by Vinberg chambers, because NY is bounded by the
hyperplanes ([Γ])⊥ defined by the classes [Γ] of smooth rational curves Γ on Y and
every smooth rational curve on Y has the self-intersection number −2.

Let Y be a complex generic Enriques surface. Then we have PY = NY . Barth
and Peters [1] showed that Aut(Y ) is canonically identified with the kernel of the
mod2-reduction homomorphism O(SY ,P) → O(SY ,P) ⊗ F2. Since a Vinberg
chamber has no automorphism group, the group O(SY ,P) is equal to the subgroup
W (SY ). Since the mod 2-reduction homomorphism above is surjective (see [1] and
Section 2.3 of this paper), there exists a union V of

|O(SY ,P)⊗ F2| = 46998591897600 = 221 · 35 · 52 · 7 · 17 · 31
Vinberg chambers such that (i) P(L10) is the union of Vg, where g runs through
Aut(Y ), and (ii) if g ∈ Aut(Y ) is not the identity, then the interiors of V and of Vg

are disjoint.
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No. name walls volindex gD orb isom NK

1 12A 12 212 · 35 · 52 · 7 22 2 + 2 + 2 + 2 + 4 I

2 12B 12 212 · 33 · 5 · 7 23 · 3 6 + 6 II

3 20A 20 28 · 34 · 5 · 7 23 · 3 4 + 4 + 6 + 6 V

4 20B 20 210 · 32 · 5 · 7 26 4 + 8 + 8 III

5 20C 20 26 · 33 · 5 · 7 23 · 3 · 5 5 + 15 20D VII

6 20D 20 26 · 33 · 5 · 7 23 · 3 · 5 5 + 15 20C VII

7 20E 20 27 · 34 · 5 23 · 3 · 5 10 + 10 VI

8 20F 20 29 · 32 · 5 26 · 5 20 IV

9 40A 40 27 · 32 · 5 27 · 3 12 + 12 + 16

10 40B 40 23 · 32 · 5 · 7 27 · 32 16 + 24 40C

11 40C 40 23 · 32 · 5 · 7 27 · 32 16 + 24 40B

12 40D 40 25 · 32 · 5 25 · 32 · 5 10 + 30 40E

13 40E 40 25 · 32 · 5 25 · 32 · 5 10 + 30 40D

14 96A 96 25 · 32 213 · 3 32 + 64

15 96B 96 23 · 32 212 · 33 96 96C

16 96C 96 23 · 32 212 · 33 96 96B

17 infty ∞

Table 1.2. Induced chambers

Kondo [11] and Nikulin [16] classified all complex Enriques surfaces with finite
automorphism group. This classification was extended to odd characteristics by
Martin [13]. It turns out that Enriques surfaces in characteristic ̸= 2 with finite
automorphism group are divided into 7 classes I, . . . , VII. An Enriques surface Y
with finite automorphism group has only a finite number of smooth rational curves
Γ, and NY is bounded by the hyperplanes ([Γ])⊥ defined by these curves. The
configurations of these smooth rational curves are explicitly depicted in [11].

Explanation of Table 1.2. The item walls is the number of walls of an
induced chamber D. Since every wall of D is defined by a (−2)-vector of L10, it
follows that D is a union of Vinberg chambers. The item volindex shows that the
number of Vinberg chambers contained in D is equal to

|O(SY ,P)⊗ F2|/volindex = 221 · 35 · 52 · 7 · 17 · 31/volindex.

The item gD is the order of the automorphism group O(L10, D) of D. The item orb

describes the orbit decomposition of the set of walls under the action of O(L10, D).
The item isom shows that, for example, the induced chambers of the primitive
embeddings 20C and 20D are isomorphic. The item NK shows that, for example, the
induced chamber of the primitive embedding 12A is, under a suitable isomorphism
L10

∼= SY , equal to NY of an Enriques surface Y of type I.

Since all 7 types I, . . . , VII appear in the column NK, our results on the induced
chamber D can be applied to NY for an arbitrary Enriques surface Y with finite
automorphism group in characteristic ̸= 2.
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Borcherds’ method has been applied to Enriques surfaces in [23] and [25] without
using the facts proved in this paper. These facts actually give us a big advantage
in the calculation of the automorphism group Aut(Y ) of an Enriques surface Y by
Borcherds’ method, as is exemplified in [27]. We can also enumerate all polarizations
of Y with a fixed degree modulo Aut(Y ) by means of the method in [24]. These
applications will be treated in other papers.

For the computation, the first author used a mixture of SageMath, PARI, GAP

[30, 29, 28], and the second author used GAP [28]. The explicit computational data
is available at the second author’s webpage [26].

Thanks are due to Professor Igor Dolgachev and Professor Shigeyuki Kondo for
their interests in this work and many comments.

Notation. To avoid possible confusions between L10 and L10(2), we put

S := L10(2).

We identify the underlying Z-modules of L10 and S, and choose positive cones so
that P(L10) = P(S). We also have a natural identification O(L10,P) = O(S,P).
We denote by ⟨ , ⟩S, ⟨ , ⟩10 and ⟨ , ⟩26 the symmetric bilinear forms of S, L10, and
L26, respectively.

2. Proof of Theorems 1.1 and 1.10

2.1. Discriminant form. Let L be an even lattice. Recall that A(L) = L∨/L is
the discriminant group of L. The quadratic form

q(L) : A(L) → Q/2Z
defined by u mod L 7→ ⟨u, u⟩ mod 2Z for u ∈ L∨ is called the discriminant form of
L. Let O(q(L)) denote the automorphism group of the finite quadratic form q(L).
Then we have a natural homomorphism

η(L) : O(L) → O(q(L)).

See Nikulin [15] for the basic properties of discriminant forms. Among these prop-
erties, the following is especially important for us:

Proposition 2.1. Let M and N be even lattices. We consider the following sets:

(a) the set L of even unimodular lattices L contained in M∨ ⊕ N∨, containing
M ⊕N , and containing each of M and N primitively, and

(b) the set Q of isomorphisms between the finite quadratic forms q(M) and −q(N).

Let ϕ be an isomorphism from q(M) to −q(N), let Γϕ ⊂ A(M) ⊕ A(N) denote
the graph of ϕ, and let Lϕ ⊂ M∨ ⊕ N∨ be the pull-back of Γϕ by the natural
projection M∨ ⊕N∨ → A(M)⊕ A(N). Then the mapping ϕ 7→ Lϕ gives rise to a
bijection from Q to L. This bijection Q ∼= L is compatible with the natural actions
of O(M)×O(N) on Q and on L. □

Suppose that L ∈ L, so that N is the orthogonal complement of the primitive
sublattice M ⊂ L. Let ϕ : q(M)

∼−→ −q(N) be the isomorphism corresponding to

L, and O(ϕ) : O(q(M))
∼−→ O(q(N)) the induced isomorphism. We put

O(L,M) := {g̃ ∈ O(L) | g̃ preserves M },
and let g̃ 7→ g̃|M and g̃ 7→ g̃|N denote the restriction homomorphisms from O(L,M)
to O(M) and O(N), respectively. We say that g̃ ∈ O(L,M) is a lift of g ∈ O(M)
if g̃|M = g.
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Corollary 2.2. Let g be an isometry of M . Then the homomorphism g̃ 7→ g̃|N
induces a bijection from the set of lifts g̃ of g to the set of all isometries h ∈ O(N)
of N such that η(M)(g) ∈ O(q(M)) is mapped to η(N)(h) ∈ O(q(N)) by O(ϕ). □

2.2. Kneser’s neighbor method. This method allows us to efficiently compute
all lattices in a given genus. We review the basic idea. For proofs and a more
complete treatment, see [10] and [19].

Recall that two lattices L and L′ are in the same genus if we have an isomor-
phisms

L⊗ Zp
∼= L′ ⊗ Zp and L⊗ R ∼= L′ ⊗ R

of Zp- or R-valued quadratic modules for every prime p, where Zp denotes the ring
of p-adic integers. Suppose that L and L′ are in the same genus. Then, by the
Hasse–Minkowski theorem, we have L⊗Q ∼= L′⊗Q. Thus we may and will assume
that L⊗Q = L′⊗Q. Let p be an odd prime which does not divide the determinant
detL := |A(L)| of L. We say that two lattices L and L′ are p-neighbors if

p = [L : L ∩ L′] = [L′ : L ∩ L′].

Suppose that L and L′ are p-neighbors. Then L⊗Zq = L′⊗Zq for all primes q ̸= p.
Moreover, since p does not divide detL, both L⊗ Zp and L′ ⊗ Zp are unimodular
Zp-lattices isomorphic over the field of p-adic rationals Qp. Thus L⊗Zp and L′⊗Zp

are in fact isomorphic. We have proved that the p-neighbors L and L′ are in the
same genus.

For a given genus G, we denote by C the set of isomorphism classes [L] of lattices
L in this genus. Let p be an odd prime. Set

E := {([L], [L′]) ∈ C × C | L and L′ are p-neighbors}.

Then (C,E) is called the p-neighbor graph of G. Assume further that L ⊗ Zp

represents 0 for a lattice L in this genus. This is certainly the case if the rank of
L is at least 5. In general each connected component of this graph is the union of
several so called proper spinor genera. In the case relevant to us, the genus consists
of a single proper spinor genus, so this does not concern us.

For given L and v ∈ L \ pL with ⟨v, v⟩ ∈ p2Zp, the lattice

L(v) := Lv + Z(v/p) where Lv = {x ∈ L | ⟨x, v⟩ ∈ pZ}

is called the p-neighbor of L with respect to v. One can show that L and L(v) are
indeed p-neighbors, that Lv depends only on v mod pL (as long as ⟨v, v⟩ stays
divisible by p2), and that every p-neighbor of L arises in this fashion.

Thus one can classify lattices in the genus G by iteratively computing the neigh-
bors of the lattices in C and testing for isomorphism (see [18]). One can speed
this up by computing the neighbors of a given lattice only up to the action of the
orthogonal group. When we are interested only in the vertices and not in the edges,
we can break the computation when we have “explored” all vertices. The mass of
the genus G is defined as

mass(G) :=
∑
[L]∈G

1

|O(L)|
.

It can be calculated from the invariants of G alone as described in [6]. We can break
the computation as soon as the sum of the reciprocals of |O(L)| reaches mass(G).
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c c c c c c c c c
Figure 2.1. Basis of L10

This procedure is implemented for example in Magma [4]. In the example relevant
to us, the computation with Magma simply exhausted all memory available. Thus we
had to resort to a modified strategy: A random walk through the neighbor graph.

2.3. Proof of Theorems 1.1. Let e1, . . . , e10 be a basis of L10 consisting of (−2)-
vectors that form the configuration in Figure 2.1. Then

(2.1) V := {x ∈ P(L10) | ⟨x, ei⟩10 ≥ 0 for i = 1, . . . , 10}
is a Vinberg chamber, and each V ∩ (ei)

⊥ is a wall of V (see Vinberg [31]). Since
the graph in Figure 2.1 has no non-trivial automorphisms, the group O(L10,P) is
generated by the 10 reflections s1, . . . , s10 with respect to e1, . . . , e10. Recall from
the paragraph Notation at the end of Introduction that we put S := L10(2). In
L10 ⊗ Q = S ⊗ Q, we have L10 = L∨

10 = S ⊂ S∨, and the mapping v 7→ v/2 gives
an isomorphism L10

∼= S∨ of Z-modules, which gives rise to an isomorphism

(L10/2L10, qL) ∼= q(S), where qL(u mod 2L10) :=
1

2
⟨u, u⟩10 mod 2Z

of finite quadratic forms. Hence we see that O(q(S)) is of order 221 ·35 ·52 ·7·17·31 by
Proposition 1.7 of [1]. Since we have explicit generators s1, . . . , s10 of O(L10,P) =
O(S,P), we can confirm that η(S) : O(S) → O(q(S)) restricted to O(L10,P) is
surjective.

Remark 2.3. The surjectivity of η(S) can also be proved by Theorem 7.5 and Lemma
7.7 of Chapter VIII of [14].

Let ι : S ↪→ L26 be a primitive embedding, and let Rι be the orthogonal comple-
ment of the image of ι in L26. Then Rι is of signature (0, 16). By Proposition 2.1,
the discriminant form q(Rι) is isomorphic to −q(S). Since η(S) is surjective, Propo-
sition 2.1 implies that, if a primitive embedding ι′ : S ↪→ L26 satisfies Rι′

∼= Rι,
then ι′ is equivalent to ι up to the action of O(S) = O(L10) and O(L26). Hence
the proof of Theorem 1.1 is reduced to the classification of isomorphism classes of
even lattices R with signature (0, 16) such that q(R) ∼= −q(S). Note that these
conditions on signature and discriminant form determine the genus GR of R. By
the mass formula [6], we see that the mass of this genus is

mass(GR) = 64150367/28766348771328000.

Let u : F2
2 → Q/2Z be defined by u(x, y) := xy. Then one calculates that

−q(S) ∼= −u⊕5 = u⊕5 ∼= q(R)

and that q(D8) ∼= u and q(E8(2)) ∼= u⊕4, where D8 and E8 are the negative-
definite root lattices of ADE-type D8 and E8, respectively. Thus we have found a
first lattice L = D8 ⊕ E8(2) in GR. To find representatives up to isomorphism, we
use a variant of Kneser’s neighbor method for p = 3. Start by inserting L into a list
C. Then enter the following loop. Pick a random L in C and a random v ∈ L \ 3L
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with ⟨v, v⟩ divisible by 3, replace v by v+3w for w ∈ L such that ⟨v, v⟩ is divisible
by 9. Calculate the 3-neighbor L(v) and check if it is isomorphic to any lattice in
the list C. If not add it to C. Break the loop when the mass of the lattices in C
matches mass(GR). By this computation, it turns out that GR is constituted by 17
isomorphism classes in Table 1.1, and hence Theorems 1.1 follows. □

2.4. Conway theory. Let w be a non-zero primitive vector of L26 contained in
∂ P(L26). Note that ⟨w,w⟩26 = 0. We put

[w] := Zw, [w]⊥ := {v ∈ L26 | ⟨v,w⟩26 = 0}.
Then [w]⊥/[w] has a natural structure of an even unimodular negative-definite
lattice, and hence is isomorphic to N(−1), where N is one of the 24 Niemeier
lattices (see, for example, Chapter 16 of [7]).

Definition 2.4. We say that w is a Weyl vector if [w]⊥/[w] is isomorphic to the
negative-definite Leech lattice.

Since the Leech lattice is characterized as the unique Niemeier lattice with no
roots, we can determine whether w is a Weyl vector or not by calculating the set
R([w]⊥/[w]) of (−2)-vectors in [w]⊥/[w].

For a Weyl vector w, we put

C(w) := {x ∈ P(L26) | ⟨x, r⟩26 ≥ 0 for all r ∈ R(L26) with ⟨r,w⟩26 = 1}.
The following theorem is very important.

Theorem 2.5 (Conway [5]). The mapping w 7→ C(w) gives a bijection from the
set of Weyl vectors to the set of Conway chambers. □
Remark 2.6. Let w be a Weyl vector. Since w is primitive and L26 is unimodular,
there exists a vector w′ such that ⟨w′,w′⟩26 = 0 and ⟨w,w′⟩26 = 1. Then every
(−2)-vector r of L26 with ⟨w, r⟩26 = 1 is written as

αλw +w′ + λ, where αλ =
−⟨λ, λ⟩26 − 2

2
and ⟨w, λ⟩26 = ⟨w′, λ⟩26 = 0.

Since ⟨w, λ⟩26 = ⟨w′, λ⟩26 = 0 implies ⟨λ, λ⟩26 ≤ 0, we see that a26 := 2w +w′ is
an interior point of C(w).

2.5. Proof of Theorem 1.10. In Section 2.3, we have calculated the 17 primitive
embeddings ι : S ↪→ L26 explicitly. As was said in Notation, we identify P(S) and
P(L10), and denote by ιP : P(L10) ↪→ P(L26) the induced inclusion.

Our first task is to find a Weyl vector w such that ι−1
P (C(w)) is an induced

chamber, that is, ι−1
P (C(w)) contains a non-empty open subset of P(L10). Recall

that we have fixed a basis e1, . . . , e10 of L10. We put a10 := e∨1 + · · · + e∨10, where
e∨1 , . . . , e

∨
10 are the basis of L∨

10 = L10 dual to e1, . . . , e10. Then a10 is an interior
point of the Vinberg chamber V defined by (2.1), and we have ⟨a10, a10⟩10 = 1240.
By direct calculation, we confirm the equality
(2.2)
{r ∈ R(L26) | ⟨r, ι(a10)⟩26 = 0} = {r ∈ R(L26) | ⟨r, ι(x)⟩26 = 0 for all x ∈ L10},

which means that, if a hyperplane (r)⊥ of P(L26) defined by r ∈ R(L26) passes
through ι(a10), then (r)⊥ contains the image of ιP . (Note that the second set
in (2.2) is identified with R(Rι) by the embedding Rι ↪→ L26.) Therefore a10 is an
interior point of an induced chamber D.
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Definition 2.7. Let L be an even hyperbolic lattice. Suppose that v1, v2 are
vectors of P(L) ∩ (L ⊗ Q). We say that a (−2)-vector r ∈ R(L) separates v1 and
v2 if ⟨r, v1⟩ · ⟨r, v2⟩ < 0. We can calculate the set of (−2)-vectors of L separating v1
and v2 by the algorithm given in Section 3.3 of [21].

We perturb a10 to a′10 ∈ P(L10) ∩ (L10 ⊗ Q) in a general direction so that
a′10 is also an interior point of the same induced chamber D as a10, that is, the
equality (2.2) remains true with ι(a10) replaced by ι(a′10) and there exist no (−2)-
vectors r of L26 separating ι(a10) and ι(a′10). We choose an arbitrary Weyl vector
w0 of L26, and calculate a vector a26 ∈ L26 in the interior of C(w0) by Remark 2.6.
We then calculate the set {±r1, . . . ,±rN} of (−2)-vectors of L26 separating ι(a′10)
and a26. We sort these (−2)-vectors r1, . . . , rN in such a way that the line segment
from a26 to ι(a′10) intersects the hyperplanes (r1)

⊥, . . . , (rN )⊥ in this order. Since
a′10 is a result of general perturbation, these N intersection points are distinct. Let
sν ∈ O(L26,P) be the reflection with respect to rν . We move w0 by s1, . . . , sN in
this order and obtain a new Weyl vectorw := ws1···sN

0 . Then C(w) contains as1···sN26

in its interior, and there exist no (−2)-vectors of L26 separating ι(a′10) and as1···sN26 .
Therefore ι−1

P (C(w)) is the induced chamber D containing a10 in its interior.

Next we calculate the set of walls of the induced chamber D = ι−1
P (C(w)).

We denote by v 7→ vS and v 7→ vR the orthogonal projections L26 → S∨ and
L26 → R∨

ι , and let ⟨ , ⟩R denote the symmetric bilinear form of Rι. It turns out
that ⟨wS,wS⟩S > 0 holds except for the case where ι is of type infty. Henceforth
we assume that ι is not of type infty. We put

R(L26,w) := {r ∈ R(L26) | ⟨w, r⟩26 = 1},
R(L26, D) := {r ∈ R(L26,w) | ⟨rS, rS⟩S < 0},

RD := {rS | r ∈ R(L26, D)}.

For r ∈ R(L26), the hyperplane (r)⊥ of P(L26) intersects the image of ιP if and
only if ⟨rS, rS⟩S < 0. Hence we have

D = {x ∈ P(L10) | ⟨rS, x⟩S ≥ 0 for all rS ∈ RD}.

The set RD can be calculated explicitly as follows. Suppose that r ∈ R(L26, D).
Then we have

⟨wS, rS⟩S + ⟨wR, rR⟩R = 1, ⟨rS, rS⟩S + ⟨rR, rR⟩R = −2.

Since Rι is negative-definite, the condition ⟨rS, rS⟩S < 0 implies −2 < ⟨rR, rR⟩R ≤
0, and if ⟨rR, rR⟩R = 0, then we would have rR = 0, r = ι(rS) and hence rS ∈ S,
which is impossible because ⟨r, r⟩26 = −2 whereas ⟨rS, rS⟩S = 2⟨rS, rS⟩10 is a
multiple of 4. Since S∨ = 1

2S, the discriminant form of S takes values in Z/2Z.
Naturally, the same is true for q(Rι) ∼= −q(S). This means that ⟨v, v⟩R is integral for
any v ∈ R∨

ι . In particular, if v ∈ R∨
ι satisfies −2 < ⟨v, v⟩R < 0, then ⟨v, v⟩R = −1.

Therefore we have rR ∈ VR for all r ∈ R(L26, D), where

VR := {v ∈ R∨
ι | ⟨v, v⟩R = −1}.

For v ∈ VR, we put a(v) := 1− ⟨wR, v⟩R, and let a(VR) be the set {a(v) | v ∈ VR}.
For each a ∈ a(VR), we calculate

VS(a) := {u ∈ S∨ | ⟨wS, u⟩S = a, ⟨u, u⟩S = −1},
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which is finite because ⟨wS,wS⟩S > 0. We calculate the sum u+ v ∈ S∨ ⊕R∨
ι for

all pairs (v, u) of v ∈ VR and u ∈ VS(a(v)), and check whether u + v is in L26 or
not. Thus we calculate

R(L26, D) = L26 ∩ {u+ v | v ∈ VR, u ∈ VS(a(v))}

and the set RD. It turns out that the hyperplanes (rS)
⊥ for rS ∈ RD are distinct,

and thatRD spans L10⊗Q over Q. We will show that each rS ∈ RD defines a wall of
D. We can calculate the finite group G of isometries of L10 that preserves the finite
set RD ⊂ L10. Recall that a10 is an interior point of D. We put σ10 :=

∑
g∈G ag10,

which is an interior point of D fixed by G. We put t := −⟨σ10, rS⟩S/⟨rS, rS⟩S, and
consider the point σ′

10 := σ10 + t · rS on (rS)
⊥. Then we have ⟨σ′

10, r
′
S⟩S > 0 for all

r′S ∈ RD \ {rS}, which means that σ′
10 is an interior point of the subset D ∩ (rS)

⊥

of (rS)
⊥. Therefore D ∩ (rS)

⊥ is a wall of D. Note that, since ⟨rS, rS⟩S = −1 for
rS ∈ RD and 2S∨ ⊂ S, we see that 2rS ∈ L10 and ⟨2rS, 2rS⟩10 = −2. Therefore
each wall of D is defined by a (−2)-vector 2rS of L10. The group G is equal to
O(L10, D).

The assertions in Theorem 1.10 and Table 1.2 about the walls of an induced
chamber are now proved for the induced chamber D = ι−1

P (C(w)) defined by this
particular Weyl vector w. The data volindex of D in Table 1.2 is calculated by
the method given in [25].

To prove that the induced tessellation of P(L10) is simple and thus complete the
proof of Theorem 1.10, it is enough to prove the following:

Proposition 2.8. For each wall D ∩ (r)⊥ of D, where r ∈ R(L10), there exists an
isometry g̃ ∈ O(L26,P) with the following property: the isometry g̃ preserves the
image of ι : S ↪→ L26 and its restriction g̃|S ∈ O(S,P) = O(L10,P) to S is equal to
the reflection sr ∈ O(L10,P) with respect to r ∈ R(L10).

Suppose that Proposition 2.8 is proved. Since g̃ preserves R(L26), the isometry
g̃|S = sr of S preserves the family ι∗R(L26)

⊥ of hyperplanes and hence preserves
the tessellation of P(L10) by induced chambers. Since D and Dsr have the common
wall D ∩ (r)⊥, it follows that Dsr is the induced chamber adjacent to D across the
wallD∩(r)⊥. For any induced chamberD′, there exists a chain of induced chambers

D = D(0), D(1), . . . , D(m) = D′

such that D(i−1) and D(i) are adjacent for i = 1, . . . ,m. By induction on the
length m of the chain, we can prove that there exists an isometry g̃′ ∈ O(L26,P)
preserving ι(S) such that the induced isometry g̃′|S of S maps D to D′. Therefore
the tessellation of P(L10) by induced chambers is simple.

Proof of Proposition 2.8. The isometry g̃ with the hoped-for property is explicitly
given in [26] for each wall of D, and thus the proof of Theorem 1.10 is completed.
□

We explain the method by which we found the isometry g̃ ∈ O(L26,P). It is
based on some optimistic heuristics. The isometry g̃ does not have to satisfy the
conditions (i) and (ii) below. To our surprise, this method worked for every wall
w = D ∩ (r)⊥ of the induced chamber D. We put

Q := {v ∈ L26 | ⟨v, x⟩26 = 0 for all x ∈ ιP(w)}.
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No. name |VR| dw nw ar ADE-type of Σ numb

1 12A 256 1 70 1 2A1 +D8 10
8 D9 2

2 12B 144 2 21 1 2A1 +A7 12
3 20A 160 1 22 1 2A1 +D4 +D5 10

4 2D5 6
5 D4 +D6 4

4 20B 128 1 14 1 2A1 + 2D4 12
4 D4 +D5 8

5 20C 192 1 30 2 8A1 +A3 +D6 15
6 10A1 +D7 5

6 20D 96 2 15/2 1 2A1 +A3 +A4 15
3 A4 +D4 5

7 20E 112 1 10 1 7A1 +A5 10
2 3A1 +A3 +A5 10

8 20F 80 2 5 1 2A1 + 2A3 20
9 40A 96 1 6 1 6A1 + 2A3 12

2 2A1 + 3A3 12
3 4A1 +A3 +D4 16

10 40B 160 1 16 2 6A1 +A3 + 2D4 16
4 8A1 +D4 +D5 24

11 40C 80 1 4 1 8A1 +A3 16
2 4A1 + 2A3 24

12 40D 128 1 10 2 10A1 +A3 +D4 30
4 12A1 +D5 10

13 40E 64 2 5/2 1 4A1 + 2A2 30
2 2A2 +A3 10

14 96A 64 1 2 1 10A1 32
2 6A1 +A3 64

15 96B 96 1 4 2 14A1 +A3 96
16 96C 48 2 1 1 6A1 96
17 infty 32 1 0

Table 2.1. Walls of D

Since dim (r)⊥ = 9, the even lattice Q is negative-definite of rank 26− 9 = 17 and
contains Rι. Let ⟨ , ⟩Q denote the symmetric bilinear form of Q. We calculate the
set R(Q) of (−2)-vectors of Q. The hyperplanes of Q⊗ R defined by ⟨x, r′⟩Q = 0,
where r′ ∈ R(Q), divide Q⊗R into a finite number of regions, and they correspond
bijectively to the Conway chambers containing ιP(w). We put

(2.3) Σ := {r′ ∈ R(Q) | ⟨w, r′⟩26 = 1},
where we regard R(Q) as a subset of R(L26) by the embedding Q ↪→ L26. Let
Pw be an interior point of the wall w = D ∩ (r)⊥ in (r)⊥. Locally around Pw, the
Conway chamber C(w) is defined by the inequalities ⟨x, r′⟩26 ≥ 0, where r′ runs
through Σ. Let C(w′) be the Conway chamber defined locally around Pw by the
opposite inequalities ⟨x, r′⟩26 ≤ 0, where r′ runs through Σ. Then C(w′) is one of
the Conway chambers that induce the induced chamber D′ adjacent to D across
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the wall w; ι−1
P (C(w′)) = D′. We search for isometries g̃ of L26 such that (i) g̃

maps Σ to −Σ, and (ii) the restriction g̃|⟨Σ⟩⊥ of g̃ to the orthogonal complement
⟨Σ⟩⊥ in L26 of the sublattice ⟨Σ⟩ generated by Σ is the identity. If g̃ satisfies (i) and
(ii), then g̃ fixes ιP(Pw) ∈ ⟨Σ⟩⊥ ⊗ R and g̃ maps C(w) to C(w′). We then check
the following conditions: (iii) g̃ preserves the image of ι, and hence its restriction
g̃|S to S maps D = ι−1

P (C(w)) to the adjacent chamber D′ = ι−1
P (C(w′)), and (iv)

g̃|S is equal to the reflection sr. If we find an isometry g̃ satisfying (iii) and (iv),
we are done.

Explanation of Table 2.1. We denote by dw the minimal positive integer
such that dwwS ∈ S, where wS is the image of w by the orthogonal projection
L26 → S∨. We put nw := ⟨wS,wS⟩10. For a (−2)-vector r defining a wall of D, we
put ar := ⟨wS, r⟩10. The root system Σ is defined by (2.3). The item numb is the
number of walls with the described properties.

Remark 2.9. Let ϕ : q(S)
∼−→ −q(Rι) be the isomorphism induced by L26 ⊂ S∨⊕R∨

ι ,

and O(ϕ) : O(q(S))
∼−→ O(q(Rι)) the isomorphism induced by ϕ. Proposition 2.8

can also be proved by showing that the image of η(S)(sr) ∈ O(q(S)) by O(ϕ)
belongs to the image of η(Rι) : O(Rι) → O(q(Rι)).

Example 2.10. In [17], Ohashi classified all fixed-point free involutions of the
Kummer surfaceX := Km(Jac(C)) associated with the Jacobian variety of a generic
genus-2 curve C, and showed that X has exactly 6 + 15 + 10 fixed-point free in-
volutions modulo conjugation in Aut(X). The automorphism group Aut(X) had
been calculated by Kondo [12] by Borcherds’ method. Let π : X → Y be the quo-
tient morphism by a fixed-point free involution of X. We compose the embedding
ιX : SX ↪→ L26 used in [12] with the pull-back homomorphism π∗ : SY (2) ↪→ SX ,
and obtain a primitive embedding ιY : SY (2) ↪→ L26. We see that ιY is of type 20E
for 6 Enriques surfaces, of type 40A for 15 Enriques surfaces, and of type 40C for
10 Enriques surfaces.

See [27] for more examples, and for applications to the calculation of Aut(Y ).
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[31] È. B. Vinberg. Some arithmetical discrete groups in Lobačevskĭı spaces. pages 323–348, 1975.
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