HOLES OF THE LEECH LATTICE AND THE PROJECTIVE
MODELS OF K3 SURFACES

ICHIRO SHIMADA

ABSTRACT. Using the theory of holes of the Leech lattice and Borcherds method
for the computation of the automorphism group of a K3 surface, we give an
effective bound for the set of isomorphism classes of projective models of fixed
degree for certain K3 surfaces.

1. INTRODUCTION

Let X be a K3 surface defined over an algebraically closed field %k, and let
d be an even positive integer. Sterk [27] and Lieblich and Maulik [14] showed
that, at least when the base field k£ is not of characteristic 2, there exist only a
finite number of projective models of X with degree d up to the action of the
automorphism group Aut(X) of X. On the other hand, by means of Borcherds
method ([1], [2]), the automorphism groups of several K3 surfaces have been cal-
culated ([5], [6], [8], [10], [11], [23], [25], [28]). Combining this method with the
precise description of holes of the Leech lattice due to Borcherds, Conway, Parker,
Queen, and Sloane ([4, Chapters 23-25]), we obtain an effective bound for the set
of isomorphism classes of projective models of degree d. This bound is applicable
to a wide class of K3 surfaces.

Our result on K3 surfaces is a corollary of Theorem 1.2 on the Conway chamber
of the even unimodular hyperbolic lattice L := II; 25 of rank 26.

We fix some terminologies and notation about lattices. A lattice is a free Z-
module of finite rank with a nondegenerate symmetric bilinear form that takes
values in Z, which we call the intersection form. Let M be a lattice with the
intersection form ( , )as. We let the orthogonal group O(M) of M act on M from
the right. We say that M is hyperbolic if its rank n is > 1 and its signature is
(1,n — 1), whereas M is negative-definite if its signature is (0,n).

We say that M is even if (v, v}y € 2Z holds for all vectors v € M. Suppose that
M is even. We put

Ryu:={reM | (rrpy=-2}

The dual lattice MY of M is the Z-module Hom(M, Z), into which M is embedded
by ( , )ar as a submodule of finite index. We say that M is unimodular it M = MY
holds.

Suppose that M is an even hyperbolic lattice. A positive cone of M is one of the
two connected components of {z € M @ R|(z,z)p > 0}. We denote by Ot (M)
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the stabilizer subgroup of a positive cone of M in O(M). We choose a positive cone
Purr- Then OF (M) acts on Pyy. For each r € Ry, we put

(T)J_ I:{IGPM | <xaT>M :0}7
and denote by s, the element of OF (M) given by
Spi x> x4 (X,

Then s, acts on P); as the reflection in the real hyperplane (r)l. Let Wy, denote
the subgroup of O" (M) generated by all the reflections s,., where r ranges through
Rar. The closure in Py of a connected component of

Pul\ | ()*
re€R M
is called a standard fundamental domain of the action of Wy, on Py.

Let L be an even unimodular hyperbolic lattice of rank 26, and let ( , )1, denote
the intersection form of L. It is well known that L is unique up to isomorphism. We
choose a positive cone Pr, of L. By the negative-definite Leech lattice, we mean an
even negative-definite unimodular lattice A~ of rank 24 with no vectors of square
norm —2. It is well known that A~ is unique up to isomorphism. A vector w € L is
called a Weyl vector if w is a nonzero primitive vector of square norm 0 contained in
the closure of Pr, in L&R such that the lattice (w)®/(w) is isomorphic to A~, where
{(w)= is the orthogonal complement of the submodule (w) := Zw in L. A standard
fundamental domain of the action of Wy, on Py, is called a Conway chamber. For a
Weyl vector w, we put

Re(w):={reRy | (rnwyy=1},
and
D(w):={xePy | (rz)L >0 forall r e Ry (w) }.
We have the following theorem.

Theorem 1.1 (Conway [3]). The mapping w — D(w) gives rise to a bijection from
the set of Weyl vectors to the set of Conway chambers.

Our main result is as follows:

Theorem 1.2. Let w € L be a Weyl vector, and let d be an even positive integer.
Then, for any vector v € D(w) N L with (v,v), = d, we have

0w < bld) = V1081 (25§9d+ 1)

We apply Theorem 1.2 to K3 surfaces X, and obtain an effective bound for
the set of nef classes of self-intersection number d modulo the action of Aut(X) for
certain K3 surfaces (Corollary 1.8). For this purpose, we give a review of Borcherds
method ([1], [2]). See also [23] for the computational aspects of this method.

First we recall the definition of the discriminant forms. Let M be an even
lattice. Then the dual lattice MY is equipped with a canonical Q-valued symmetric
bilinear form extending ( , )as. This Q-valued symmetric bilinear form defines a
finite quadratic form

= 756.20698 - - - d 4+ 1.4295028 - - - .

qu: MY /M — Q/2Z,
which is called the discriminant form of M. (See Nikulin [15] for the basic prop-
erties of discriminant forms.) Let O(qps) denote the automorphism group of the



HOLES OF THE LEECH LATTICE AND K3 SURFACES 3

finite quadratic form gps, and let npr: O(M) — O(gar) denote the natural homo-
morphism.

Let X be a K3 surface, and let Sx denote the Néron—Severi lattice of X with
the intersection form ( , )s. Suppose that rank Sx > 1. Then Sx is an even
hyperbolic lattice. Let P(X) be the positive cone of Sx that contains an ample
class. We let Aut(X) act on X from the left, and on Sx from the right by the
pull-back. Hence we have a natural homomorphism

Aut(X) — OF(Sx).

Suppose that X is defined over C or is supersingular in characteristic # 2. Then
we can use Torelli theorem (Piatetski-Shapiro and Shafarevich [20], Ogus [18], [19])
for X. We put

NX):={zeP(X) | (,C)s >0 for all curves C on X }.
It is well known that N(X) is a standard fundamental domain of the action of
Ws, on P(X). When X is defined over C, we denote by Hx the unimodular
lattice H?(X,Z) with the cup-product, by G x the subgroup of O(Hx) consisting
of isometries of Hx that preserve the 1-dimensional subspace H?°(X) of Hx @ C,
and put

Gx :={ge€0%(Sx) | g extends to an isometry j € Gx }.
When X is supersingular, we put
Gx :={g€ 0" (Sx) | g preserves the period of X }.

(See Ogus [18], [19] for the definition of the period of a supersingular K3 surface.)
Note that, in either case, Gx is of finite index in O%(Sx). By Torelli theorem, the
image of the natural homomorphism Aut(X) — O"(Sx) is equal to

{9eGx | N(X)? =N(X) }.

Suppose that we have a primitive embedding of Sx into the even unimodular
hyperbolic lattice L of rank 26. By changing the sign of the embedding if necessary,
we can assume that P(X) C Pr. Let R denote the orthogonal complement of Sx
in L. Then the even unimodular overlattice L of Sx @ R induces an isomorphism

OL: gsxy = —qr

of finite quadratic forms.

Assumption 1.3. We assume that the following conditions hold.

(a) The negative-definite lattice R cannot be embedded into the negative-
definite Leech lattice A™.

(b) The image ns, (Gx) of Gx by nsy: O(Sx) — O(gsy) is contained in
the image nr(O(R)) of ng: O(R) — O(qr), where O(gs, ) and O(gr) are
identified by the isomorphism dr,.

Remark 1.4. When X is defined over C, we always have a primitive embedding of
Sx into L. See [23, Proposition 8.1].

A closed subset D of P(X) is said to be an induced chamber if there exists
a Conway chamber D(w) such that D = P(X) N D(w) holds and the interior
of D in P(X) is nonempty. Since Py, is tessellated by the Conway chambers,
P(X) is tessellated by the induced chambers. Moreover, since N(X) is bounded
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by hyperplanes of P(X) perpendicular to vectors in Rg, and Rg, is a subset of
Ri by the embedding Sx — L, it follows that N (X) is also tessellated by induced
chambers. We say that two induced chambers D and D’ are G x -congruent if there
exists an element g € G x such that D? = D’. Then we have the following theorem.

Theorem 1.5 ([23]). Suppose that Sx has a primitive embedding into L satisfying
Assumption 1.8 and P(X) C Pr. Then the following statements hold:

(1) FEach induced chamber D is bounded by a finite number of hyperplanes of
P(X), and the group Autg, (D) := {g € Gx | D9 = D} is finite.
(2) The number of Gx-congruence classes of induced chambers is finite.

In [23], we presented an algorithm to calculate a complete set
{Do,...,Dm-1}
of representatives of G x-congruence classes of induced chambers contained in N (X).
We also presented an algorithm to calculate the set of hyperplanes bounding D;
and the finite group Autg, (D;) for each D;. Then, for any vector v € N(X)N Sx,
there exist an automorphism g € Aut(X) and an index ¢ such that v9 € D;. Let
prg: L — SY denote the orthogonal projection. Let w; € L be a Weyl vector such
that
We put
a; := prg(w;).
We have {(a;,a;)s > 0. (See Remark 5.4.) Moreover we have (v, w;)r, = (v, a;)g for
any vector v € Sx. Therefore we obtain the following corollary of Theorem 1.2.

Corollary 1.6. Suppose that Sx has a primitive embedding into L satisfying As-
sumption 1.3 and P(X) C Pr. Then there exist vectors ag,...,am—1 of S satis-
fying {a;, a;)s > 0 such that, for any vector v € N(X) N Sx with (v,v)s =d > 0,
there exist an automorphism g € Aut(X) and an index i satisfying (v?, a;)s < ¢(d).

Since (a;,a;)s > 0, the set of all vectors v € Sx satisfying (v,v)s = d and
(v,a;)s < ¢(d) is finite for each d > 0. Therefore, provided that we have obtained,
by the algorithm in [23], a set of Weyl vectors wy, . .., w,,—1 that give the represen-
tatives of G x-congruence classes of induced chambers, we get an effective bound for
the set of nef vectors of square norm d up to the action of Aut(X). Unfortunately,
we do not yet have a general bound for such a set {wyp, ..., w,_1}. In some cases,
however, the algorithm in [23] terminates very quickly.

Definition 1.7. Let X be a K3 surface that is defined over C or is supersingular
in characteristic # 2, and let h € Sx ® Q be an ample class. We say that (X, h) is a
polarized K3 surface of simple Borcherds type if Sx admits a primitive embedding
Sx — L satisfying Assumption 1.3, P(X) C Pr, and the following condition; there
exists only one G x-congruence classes of induced chambers, and it is represented
by D = P, N D(w) with h = prg(w).

Corollary 1.8. Let (X, h) be a polarized K3 surface of simple Borcherds type. If
v € Sx is a nef vector with {(v,v)s = d > 0, then there exists an automorphism
g € Aut(X) such that (v9,h)s < ¢(d).

Example 1.9. The following polarized K3 surfaces (X, h) are of simple Borcherds
type. For each of them, Aut(X) was determined by Borcherds method.
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e The K3 surface X is the complex Kummer surface Km(Jac(C')) associated
with the Jacobian of a generic curve C' of genus 2, and h is a polarization
of degree 8 that embeds X in P as a complete intersection of multi-degree
(2,2,2). We have rank Sx = 17. See [10].

e The K3 surface X is the complex Kummer surface Km(E x F), where E
and F' are generic elliptic curves, and h is a polarization of degree 28. We
have rank Sx = 18. See [8].

e The K3 surface X is the Fermat quartic surface in characteristic 3, and h
is the class of a hyperplane section. We have rank Sx = 22. See [11].

See Section 5 for further examples.

The problem to classify all Jacobian fibrations on a given K3 surface X up
to the action of Aut(X) has been studied by many authors. For example, this
classification was done for the three K3 surfaces in Example 1.9. See [12] for
Km(Jac(C)), [13], [16], and [17] for Km(E x F), and [22] for the Fermat quartic
surface in characteristic 3. This problem is equivalent to the classification modulo
Aut(X) of primitive nef vectors v satisfying (v,v)s = 0 and a certain condition
corresponding to the existence of a zero section. Our problem can be regarded as
an extension of this problem to the case where (v,v)g > 0.

The proof of Theorem 1.2 relies on the enumeration [4, Table 25.1, Chapter 25]
of holes of A carried out by Borcherds, Conway, and Queen. Hence the correctness
of their list is crucial for our result. Using the data we computed for the proof of
Theorem 1.2, we reconfirmed the correctness of the list. See Remark 2.10. Since
the whole computational data are too large to be put in the paper, we present the
data only on the most important hole (the deep hole of type Day4), and the rest is
put in the author’s web page [24]. ! For the computation, we used GAP [7].

The plan of this paper is as follows. In Section 2, we give a review of the theory
of holes of the Leech lattice, and describe a method to obtain representatives of
equivalence classes of holes. In Section 3, we define several invariants of holes,
and relate them to the set of possible values of (v,w)r, where w € L is a fixed
Weyl vector and v ranges through D(w) N L. Proposition 3.2 in this section is the
principal ingredient of the proof of Theorem 1.2, which is carried out in Section 4.
In Section 5, we discuss some examples, and conclude the paper by several remarks.

Acknowledgements. Thanks are due to Professor Daniel Allcock for stimulat-
ing discussions. We also thank the referee for many valuable comments on the first
version of this paper.

2. HOLES OF THE LEECH LATTICE

We review the theory of holes of the Leech lattice by Borcherds, Conway, Parker,
Queen, and Sloane. See [4, Chapters 23-25] for the details.

We denote by A the positive-definite Leech lattice with the intersection form
(', )ao. Let Ag denote A ® R. We use the basis of A given in [4, Chapter 4,
Figure 4.12], and write elements of Ag as a row vector with respect to this basis.
We put ||x]| := /(x,x)4 for x € Ag, and define the function dy: Ag — R by

da(x):=min{ |x = Al | €A }.

1See also Appendix B.
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By the main result of [4, Chapter 23], we know that the maximum of the function
dy on Ag is V2.
Definition 2.1. A point ¢ of Ag is called a hole if dy attains a local maximum at

c. The radius R(c) of a hole c is defined to be dj(c). We say that a hole c is deep
if R(c) = v/2, whereas c is shallow if R(c) < v/2.

For A € A, we define the Voronoi cell of A by
V) ={xeAr | [x=A| < |lx=X] forall X € A\{A}}.

Then V(A) is a convex polytope, and Ag is tessellated by these Voronoi cells.
Moreover, a point ¢ of Ag is a hole if and only if ¢ is a vertex of a Voronoi cell V()
for some X € A.

Let ¢ be a hole. We put

Poim{A€A | A —cl=R(@)}={AeA | ce V() },
and let P. denote the convex hull of P, in Ag. The following remark is important

in the proof of our main result.

Remark 2.2. The affine space Ag is tessellated by the convex polytopes P., where
c ranges though the set of all holes. This tessellation is dual to the tessellation of
Ar by the Voronoi cells.

In [4, Chapter 23, Section 2], it is shown that |[A; — A;| € {2,v/6,V/8} for any
distinct points A;, A; of P.. We define A, to be the graph whose set of nodes is P
and whose edges are drawn by the following rule:

2’
‘\/67
V8.
Then each connected component of the graph A is an indecomposable Coxeter—
Dynkin diagram; that is, the diagram of type Ay or ai (k > 1), or Dy or dj, (k > 4),
or Ey, or e;, (k=6,7,8). See [4, Chapter 23, Figure 23.1] for these diagram. We say
that Ay, Dy, Ey are extended, and ay, dy, e, are ordinary. (The readers are warned
that this usage of the symbols A, Dy, Ey for extended diagrams and ag, dg, ex for
ordinary diagrams is not standard.) Let

Ag=Ac1U---UAc,
be the decomposition of A; into the connected components, and let
(2.1) Pe=P. U---UPem,

be the corresponding decomposition of the nodes. Let 7.; be the type of the
indecomposable Coxeter-Dynkin diagram A.;. We define the hole type 7(c) of ¢
to be the product

A; and A; are not connected = [|A = Al
A; and A; are connected by a single edge <= ||A; — A
A; and A; are connected by a double edge <= ||A; — A

7(€) :=Te1 " Teym-
Note that, if 7¢; is Ak, Dy, or Ey, then |P, ;| = k + 1, whereas if 7 ; is a, d, or
ek, then |Pe ;| = k.

For a nonempty subset S of Ar, we denote by (S) the minimal affine subspace
of Ar containing S. For an affine subspace E of Ag and a point x of E, we denote
by FEyx the linear space obtained from F by regarding x as the origin. Then Fy is
a linear subspace of the linear space (Ar)x-

By the classification of the deep holes in [4, Chapter 23], we obtain the following:
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Theorem 2.3. Suppose that c is deep. Then each Tc; is extended, and the convex
hull PC,Z- of each Pe ; is an (n; —1)-dimensional simplex containing c in its interior,
where n; = |Pe;|. The linear space (Ar)c is the orthogonal direct sum of the
subspaces (Pe1)cs - -5 (Peym)e. In particular, we have ), (n; — 1) = 24.

By the classification of the shallow holes in [4, Chapter 25], we obtain the fol-
lowing;:

Theorem 2.4. Suppose that ¢ is shallow. Then each 7¢; is ordinary. Moreover,
we have |Pe| = 25, and Pe is a 24-dimensional simplex containing c in its interior.

We say that two holes ¢ and ¢’ are equivalent if there exists an affine isometry
g of A such that ¢ = ¢/. For a hole ¢, we denote by [c] the equivalence class of
holes containing c. The equivalence classes of holes are enumerated in [4, Table
25.1, Chapter 25]. The result is summarized as follows.

Theorem 2.5. There exist exactly 23 equivalence classes of deep holes, and 284
equivalence classes of shallow holes. Each equivalence class [c] is determined uniquely
by the hole type 7(c), except for the following hole types:

2 2
(2.2) airag, drairai, draiiaza;y, agasas.

For each of the hole types in (2.2), there exist exactly two equivalence classes of
holes.

Remark 2.6. The two equivalence classes of each hole type in (2.2) can be distin-
guished by another method. See Remark 3.1.

We describe a method to find a representative element ¢ of each equivalence class
[c] of holes and the set P, of vertices of P..

Let P and P’ be finite sets of A. A congruence map from P to P’ is a bijection
~v: P = P’ such that

Vi = vall = [ (v1) =y (v2)

holds for any vy,ve € P. Suppose that c is a hole. Then the congruence class
containing P, is determined by 7(c), and hence is denoted by [7(c)]. If P’ belongs
to [7(c)], then the convex hull P’ of P’ is circumscribed by a 23-dimensional sphere
of radius R(c), and hence P’ has the circumcenter c(P’).

Proposition 2.7. Let ¢ be a hole. Suppose that P’ belongs to [t(c)]. Then c(P’)
is a hole with Py pry = P" and 7(c(P’')) = 7(c).

Proof. For the case where c is deep, this result follows from [4, Chapter 23, Theorem
7]. The proof for the case where c is shallow is almost the same. Let ¢ be a shallow
hole. Then P’ is a 24-dimensional simplex whose circumradius R’ is smaller than
V2. Tt is enough to show that there exist no vectors z € A such that z ¢ P’ and
|z —c(P')|| < R'. Suppose that z € A satisfies z ¢ P’ and ||z — ¢(P’)|| < R’. Then,
for any v; € P’, we have

A< Jlz—vill* = llz = c(P)|* = 2(z — c(P"),vi — c(P"))a + [[vi — c(P)]%,

where the first inequality follows from z,v; € A and z # v;. Since ||z — ¢(P’)| <
R < /2 and ||v; — ¢(P')|| = R' < /2, we have

(2.3) (z —c(P"),v; —c(P"))a < 0.



8 ICHIRO SHIMADA

On the other hand, since ¢(P’) is the circumcenter of the simplex P’ contained in
the interior, there exist positive real numbers a; such that

(2.4) > ai(vi—c(P) =0,

v;EP’
Combining (2.3) and (2.4), we obtain a contradiction. O

Suppose that ¢ is a hole, and let P; and P, be elements of [r(c)]. We can
determine whether the holes ¢(P;) and ¢(Py) are equivalent or not by the following
method. Since P, and P, are finite, we can make the list of all congruence maps ~y
from P; to P,. Since (P;) = (Py) = Ag, each congruence map ~ induces an affine
isometry

W ARQ S AQ.
Then ¢(Py) and ¢(P») are equivalent if and only if there exists a congruence map 7
from P; to Py such that v, maps A C A ® Q to itself.

Remark 2.8. Let c be a hole. Let Aut(P,) denote the group of all congruence maps
from P, to P, and let Aut(P., A) denote the group of all affine isometries of A that
maps P to Pe. If the order of Aut(P,) is not very large, we can calculate Aut(Pe, A)
by selecting from Aut(P,) all the congruence maps g such that g preserves A.

We describe a method to find a representative ¢ of an equivalence class [c] of
hole type 7(c). The case where 7(c) = A%* is described in [4, Chapter 23] in
details. Hence we assume that 7(c) # A3*. Then the graph A, contains no double
edges. By an affine translation of A, we can assume that P, contains the origin
O of A. Then F. is a subset of the set N<g := {O} UN; UNg of cardinality
1+ 196560 + 16773120, where

deZZ{)\EA | </\,)\>A=2d}.

We make the set N<g, and search for a subset P’ of N<g such that the congruence
class of P’ is [7(c)]. If 7(c) is not on the list (2.2), then ¢(P’) is a representative
of [c] and P,(pr) is equal to P’ by Theorem 2.5 and Proposition 2.7. Suppose that
7(c) is on the list (2.2). We search for subsets Pj,..., Pj of N<g contained in
the congruence class [7(c)] until ¢(Py) is not equivalent to ¢(Py). Then ¢(P{) and
¢(Pj;) are representatives of the two equivalence classes of hole type 7(c).

Remark 2.9. For the computation, we used the standard backtrack algorithm.
See [9] for the definition of this algorithm.

In the author’s web page [24], we present a representative element c of each
equivalence class [c] and the set P, of vertices of P. in the vector representation.

Remark 2.10. The computation above relies on the enumeration [4, Table 25.1,
Chapter 25] of equivalence classes of holes of A. In order to show that this enumer-
ation is complete, Borcherds, Conway, and Queen used the volume formula

Vol 1
2.
(2:5) Z At PC,A) = [Cool”

where vol(P,) is the volume of P, Aut(Pe, A) is defined in Remark 2.8, Coy is the
Conway group, and the summation is taken over the set of all equivalence classes of
holes. Using the sets P, that we computed, we have reconfirmed the equality (2.5).
The volume vol(P,) can be computed easily from P.. The groups Aut(P,, A) for
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deep holes ¢ are studied in detail in [4, Chapters 23 and 24]. For the shallow holes,
we can use the method described in Remark 2.8, except for the holes of type

10

21 11 22 12 23 25
asay”, diai,

asaq , asay , aiay , a6y, Qay .

For example, for the hole ¢ = c303 of type 7(c303) = azai!, the order of Aut(P,) is
2211 11! = 163499212800, which is too large to be treated by this naive method.
To deal with these holes, we need some consideration involving Golay codes and
Mathieu groups. In particular, a characterization of Golay codes by Pless [21] plays
an important role. See a note presented in the web page [24]. 2

3. GEOMETRY OF HOLES AND THE INTEGER POINTS IN A CONWAY CHAMBER

Let ¢ be a hole of radius R(c). Suppose that c is shallow. Then there exists a
positive rational number s(c) that satisfies

(3.1) R(c) = ,[2 - %

When c is deep, we put s(c) := co. It is obvious that s(c) depends only on [c].
Let v be a point of A ® Q. We define m(v) to be the order of v mod A in the
torsion group (A ® Q)/A =2 (Q/Z)?*. Tt is obvious that m(v) is invariant under the
action of affine isometries of A.
Note that ¢ belongs to A ® Q, because c is the intersection point of the bisectors
of distinct two points of Pe. It is obvious that m(c) depends only on [c].

Remark 3.1. The invariant m(v) enables us to distinguish the two equivalence
classes of each hole type in (2.2).

(1) For the two equivalence classes [c42] and [c43] with 7(cq2) = 7(cq3) = a17as,
we have m(cy2) = 33 and m(cq3) = 99.

(2) For the two equivalence classes [cy5] and [cy6] with 7(cy5) = T(c46) = drairay,
we have m(cyg5) = 144 and m(cy) = 48.

(3) For the two equivalence classes [c130] and [c131] with 7(c130) = 7(c131) =
drayiaza3, we have m(cy39) = m(ciz1) = 54. For v = 130 and 131, let v} and v?2
be the two vertices of P., that correspond to the two nodes of valency 1 in the
Coxeter-Dynkin diagram of type az in dyajjaza3. For i = 1 and 2, let ¢!, be the
circumcenter of the 23-dimensional face of P, that does not contain v?. Then we
have {m(clsg), m(c230)} = {120,240} and {m(cls;),m(c34;)} = {480}. Therefore
c1309 and ci31 are not equivalent.

(4) For the two equivalence classes [c1g1] and [cig2] with T(c181) = T(c182) =
a3asas, we have m(cig;) = m(cige) = 60. For v = 181 and 182, let vl and
v2 be the two vertices of P, that correspond to the two nodes of valency 1 in
ag. For i = 1 and 2, let ¢!, be the circumcenter of the 23-dimensional face of
P., that does not contain v’. Then we have {m(clg;), m(clg;)} = {350,70} and
{m(cigs), m(clgy)} = {350}. Therefore cig1 and c;go are not equivalent.

We then define the invariant N(c) of [c] as follows. When c is deep, we put
m(c)/2 if m(c) is even,

Ne) = {m(c) if m(c) is odd.

2See also Appendix A.
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When c is shallow, we define N(c) to be the least positive integer such that
N(c)/s(c) € Z.
For a positive real number r, we put
E(r):={x€Ar | da(x) >r}.
Let ¢ be a hole. We put
Ze(r):={x€Pc | |[x=A|| >r forall A€ P, }.
Then we obviously have
(3.2) E(r)NPe C Zc(r).
Note also that, if r < R(c), then we have ¢ € Z.(r). Let 6(c) be the minimal real
number such that, if r satisfies 6(c) < r < R(c), then Ec(r) is contained in the
interior of P.. For r with 6(c) < r < R(c), we put
o(e,r) :==max{ ||x —c| | x € Ec(r) }.

Since #(c) and o(c,r) depend only on the congruence class of the polytope P,
they depend only on the hole type 7(c), and hence only on the equivalence class
[c]. Tt is easy to see that o(c,r) is a decreasing function with respect to 7, and that
o(c, R(c)) = 0. For simplicity, we put
o(c,r) =0 for r > R(c).

In fact, the function o(c,r) can be calculated from the real number 6(c) (see Sec-
tion 4.1).

Using these invariants of holes, we can state our principal result. For each even

positive integer d, we put
d
pa(z) :==1/2— o2

which is a function defined for = > /d/2.

Proposition 3.2. Let w € L be a Weyl vector, and let d be an even positive integer.
Let v be a point of D(w)NL with (v,v)r, = d, and suppose that b := (v, w)1, satisfies
b > \/(m Then there exists a hole c for which b satisfies one of the following
conditions.

(I) b* divides N(c)?d, and b* < s(c)d,
(I) pa(b) < 0(c), or

(IT0) pa(b) > 6(c) and o(c, pa(b)) > —

m(c)b’

Remark 3.3. When c is deep, the second condition in (I) is vacuous.
For the proof of Proposition 3.2, we use the following lemma.
Lemma 3.4. For any hole ¢’ € [c], we have N(c) (c’,c')r € Z.

Proof. Let Ay € A be an element of P, and we put ¢” := ¢’ — A\g. Note that
¢’ € [c] and hence m(c)c” € A. Moreover, we have (c”,c”)y = R(c)?. Hence we
have

(c/,c/Va = R(c)* +2(c”, M) a + (Ao, Ao)a-
Suppose that c is deep. Then we have R(c)? = 2 € Z, and 2N (c) ¢”” € A. Therefore
N(c)(c’,c')a € Z holds. Suppose that c is shallow. Then we have N(c)R(c)? € Z



HOLES OF THE LEECH LATTICE AND K3 SURFACES 11

by (3.1). By the list [24], we confirm that m(c) divides 2N (c), and thus we obtain
2N(c)(c”, Ao)a € Z. Therefore N(c)(c’,c’)a € Z holds. O

Proof of Proposition 3.2. Let U denote the hyperbolic plane; that is, U is the lattice
of rank 2 with a basis ey, es with respect to which the Gram matrix is

0 1
1 0/
L=UsA",
where A~ is the negative-definite Leech lattice. Then L is an even unimodular
hyperbolic lattice of rank 26. A vector of L ® R is written as (a,b,v), where

(a,b) =ae; +bey e U®R and v € A ® R. The intersection form ( , )i, of L is
given by

We put

{(a,b,v), (a0, v )}y, = abl +a'b— (v,v'),.
We choose the positive cone Pr, of L ® R in such a way that the primitive vector
wp := (1,0, 0)

of square norm 0 is contained in the closure of P, in L ® R. Since (wp)*/(wp) is
isomorphic to A~, we see that wy is a Weyl vector. Since the group OT (L) acts
on the set of Weyl vectors transitively, it is enough to prove Proposition 3.2 for the
Weyl vector wy.

For A € A, we put

2

Ty = (; — 1,1,)\> € Ry, where A\ :=(\ M.

Then we have Ry, (wg) = {rx | A € A}, and hence
D(wg)={z€Pr | {(x,ra)r, >0 forall A€ A}

Let v = (a,b,v) be an arbitrary vector of D(wg) N L satisfying (v,v)r, = d, and
suppose that b = (v, wp)1, satisfies b > \/d/2.
Note that a, b, and v satisfy the following conditions:
(i) a,b€Z and v € A,

2

A
(ii) {(v,r\)p =a-+ (2 - 1) b— (v,A\)a > 0 for all vectors A € A,

(iil) (v,v)r, =2ab— (v,v)y =d.

By condition (iii), we have

a_l(d (YY)

b 2\ b2 b'b/n )"
Combining this with the assumption b > 1/d/2, we see that condition (ii) is equiv-
alent to

v d
. oA >0 /2- = .
(3.3) Hb )\H >4/2 = forall AeA

In other words, we have

(3.4) v/b € E(pa(b)).
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By Remark 2.2, there exists a hole ¢ such that the convex polytope P, contains
the point v/b. By (3.2) and (3.4), we have

v
(3.5) 7 € Ec(pa(d)).
We will show that b satisfies one of conditions (I), (II) or (III) for this hole c.

Lemma 3.5. Suppose that v/b is equal to the hole ¢, and let N be a positive integer
such that N {(c,c)p € Z. Then b* divides N2d.

Proof. We put M := N (c,c)p € Z. By condition (iii) and the assumption v/b = c,
we have

4
“T o TaN
Multiplying 2N on both sides, we obtain

L::NTd:2Na—Mb€Z.

Moreover, we have

_d M
“Top T ern
Multiplying 2L on both sides, we obtain
Ld Nd?
This completes the proof. (Il

Case 1. Suppose that v/b is equal to the hole c¢. From the case A € P,
in (3.3), we obtain /2 — d/b? < R(c) = 1/2 — 1/s(c), and hence b* < s(c)d. By
Lemmas 3.4 and 3.5, we also have that b? divides N(c)?d. Therefore b satisfies
condition (I).

Case 2. Suppose that v/b is not equal to ¢ . Then m(c)v and bm(c)c are
distinct points of A by the definition of m(c) and hence ||m(c) v — bm(c)cl||® > 4
holds. Therefore we have

(36) H% B CH = m(2c)b'

We assume that b does not satisfy condition (II). Then Z.( pq(b)) is contained in
the interior of P.. By (3.5) and the definition of o(c,7), we have

(3.7) H% - CH < o (c,pa(h)).

Combining (3.6) and (3.7), we see that b satisfies condition (III). O

4. PROOF OF THEOREM 1.2

4.1. Computation of the hole invariants. The values of s(c), m(c), and N(c)
can be easily obtained from the set P. of vertices of P.. To calculate the value of
f(c) and the function o(c,r), we use the following lemma.

Lemma 4.1. Let ¢ be a hole. Let Fiy,...,Fy be the 23-dimensional faces of P..
Then each F; is a 23-dimensional simplex.
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Proof. If ¢ is shallow, then the convex polytope P, is a 24-dimensional simplex,
and it has exactly 25 faces of dimension 23, each of which is obviously a simplex.
Suppose that ¢ is deep. We consider the decomposition (2.1) of P.. Note that
P is an (n; — 1)-dimensional simplex in the (n; — 1)-dimensional affine space
(Pe,i) containing P ; for ¢ = 1,...,m, where n; = |P.;|. If F' is a 23-dimensional
face of Pe, then the intersection F' N (P ;) is an (n; — 2)-dimensional face of the
simplex Pc;. Conversely, if F () is an (n; — 2)-dimensional face of the simplex
?m for i = 1,...,m, then the convex hull F of the vertices of F(1) ... F(™) g
a 23-dimensional face of P.. By Theorem 2.3, we see that the sum Y, (n; — 1) of
the numbers of the vertices of F(V, ... F(™) is 24. Hence their convex hull F is a
23-dimensional simplex. ([l

The proof above also indicates a method to make the list of all 23-dimensional
faces Fi,..., Fa of Pe. Let h; denote the point on (F}) such that the line passing
through ¢ and h; is perpendicular to (F;). Then h; lies in the interior of Fj, and
F} is circumscribed by a 22-dimensional sphere in the 23-dimensional affine space
(F;) with center h; of radius

R; = \/R(c)? ~ [h; — c[}2
Therefore we have

(4.1) 0(c) = max{R; | j=1,...,.M},
max(0, /R(c)2 — 0(c)2 — /12 — 6(c)?).

Example 4.2. Let ¢c; € Ag be the point such that

Q
=
o
5
N~—
I

46¢y = [15,-2,—1,-2,5,—1,-2,4,0,0,—6,12, —1,0,0,0,5, —4, —2,0,3,12,2, 14].

Then c; is a deep hole with 7(c;) = Day. We have m(c;) = 46. The convex
polytope P, is a 24-dimensional simplex, and its vertices are given in Table 4.1.
The nodes of the graph A, correspond to these vertices in the way indicated in the
graph in Table 4.1. Let F}; be the 23-dimensional face of P, that does not contain
A;. Then ||h; — c1||? is calculated as in Table 4.2. Note that, by the symmetry of
the simplex Pg,, we have |h; — c1|| = ||hgs—; — c1]] and ||h; — ¢cq|| = |he — ¢4
Therefore we have

6(cy)? = 8647/4324.

In the list [24], we present the values of these invariants s,m, N, and 62.

4.2. Definition of the set S(d). For simplicity, we introduce three series of sets
Si([c], d), Su([c],d), Smi([c],d) of positive integers, which correspond to the three
possibilities in Proposition 3.2. Let ¢ be a hole, and let d be an even positive
integer. We put

Si([c],d) :={ b€ Zsy | b* divides N(c)?d, and b* < s(c)d }.
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A1 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

X2 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

A5 = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1]

A+ = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]

Xs = [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

Xs = [1,0,0,0,0,0,0,0,0,0,—1,0,0,0,0,0,0,0,0,0,0,0,0, 1]

Az = [2,-1,-1,-1,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

xs = [0,0,0,0,0,-1,-1,2,1,0,0,0,0,0,0,0,1,—-1,0,0,—1,1,0,0]

Ag = [2,1,1,1,1,1,1,20000000000000001]

Ao = 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]

Au1 = [2,0,-1,-1,0,0,-1,1,0,0,-1,1,0,—1,1,0,0,—1,0,0,0,1,0,0]

A2 = [2,-1,0,0,-1,0,0,0,-1,0,0,0,-1,1,0,0,0,0,0,0,1,0,0,0]

Az = [L,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Au = 10,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]

A5 = [-1,0,0,1,1,1,1,-1,0,-1,0,1,0,0,—1,0,0,1,—1,0,0,0,1,0]

A = [-3,1,1,0,1,0,0,1,1,1,0,0,1,-1,0,0,1,—1,0,0,—1,1,0,0]

Az = [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Ais = [1000100111000 ~1,0,0,0,-1,0,0,0,1,0,0]

Ay = [3,— ~1,-1,0,0,—-1,—1,-1,1,0,1,0,0,0,0,1,0,0,0,0, 0]

Ao = [200,1,1,1,0 0,1,0,1,0,0,0,0,0,1,0,-2,0,0,0,0,1]

Aoy = [5,—-1,-2,-2,—1,-1,0,0,0,0,—1,1,0,0,0,—1,0,0,1, 1,2, —1,—1,2]

App = [52320,1,00 ~1,1,1,-2,-1,0,0,2,-1,0,0,2, —2,2,2, —3]

X3 = [1,0,0,0,0,0,0, 10O000,0,0,0,0,0,0,0,1,0,71,1]

As = [L,0 1,1,0,1,0 0,-1,-1,2,0,0,0,0,1,0,0,-2,0,0,0,1]

A2z = [4, —1,0, — 1,2,0,—1,—1,2,1,0,07 -2,0,0,0,0,0,0,0,1]
A1 Azq
Ao Az A A23 Ao

TABLE 4.1. Vertices of P,
J 1 3 4 5 6 7 8
|hj —cq||? | 1/4324 1/3312 1/2875 1/2484 1/2139 1/1840 1/1587
J 9 10 11 12 13
th—c1||2 1/1380 1/1219 1/1104 1/1035 1/1012.

TABLE 4.2. ||h; — cq|?
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T(d) = {beZ>0

= {b€Z>o b§1l2_3(0)2}.

If b ¢ Sii([c], d), then o(c, /2 — d/b?) is defined. We put

Consider the rational function

o) = (VAP AR - ) (- o)

m(c)t t2

of t. By (4.2), we see that a positive real number ¢, satisfying /2 — d/t3 > 0(c)

satisfies
d 2
olcy/2—=5 | =
ts m(c)ty

if and only if ¥ (to) is non-negative and

2

>
mc)to =

R(c)? —0(c)? —
holds. We put

t+ (R(c)* —2)t2.

Welt)i= 2 ) = (ot +) - R S

Note that W, is a strictly decreasing linear function of ¢ having a positive root
B(c,d) if c is deep, whereas ¥, is an upward convex quadratic function of ¢ having
a negative root «(c,d) and a positive root 5(c,d) if c is shallow. Hence we have

2
m(c)y/ R(c)? - 0(c)?

Smi([c],d) = { b e Z>o \ Su(lc], d)

<b< B(c,d) } :
In terms of the invariants s, m, and 62, the function 3(c,d) is given as follows:

~ dm(c)*+4
(4.3) Bl d) = eV iR

when c is deep, whereas

B(c,d) = V45(c)?(2—6(c)?) + d s(c) mé;:()z)— VAs(©)2(2=0(c)?) — 4s(c)

when c is shallow.
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Example 4.3. Let c¢; be the deep hole with 7(c;) = Dy given in Example 4.2.
Recall that we have m(c1) = 46 and 2 — 0(c;)? = 1/4324. By (4.3), we see that
B(c1,d) is equal to the function ¢(d) given in the statement of Theorem 1.2. On
the other hand, we have

2 2
= —+1081 = 2.859....
m(c1)y/R(c1)? —0(c1)? 23

Hence we have
Su(ler], d) USm(fer],d) ={b€Zso | b<o(d) }.
Finally, we put
S(d) :=J ( Sillel,d) U Su(fe], d) U Sn([e],d) ).
[c]

where [c] ranges through the set of all equivalence classes of holes. Then Proposi-
tion 3.2 can be rephrased as follows:

Proposition 4.4. Let w € L be a Weyl vector, and let d be an even positive integer.
Then, for any vector v € D(w) NL with (v,v)r, = d, we have (v, w)1, € S(d).

4.3. Proof of Theorem 1.2. We compare the sets Si([c], d), Sii([c], d), S ([c], d)
and prove Theorem 1.2. After the comparison, it turns out that the the set
Smi([e1], d) given by the deep hole ¢; of type Doy is the largest.

Theorem 1.2 follows from Proposition 4.4 by the following lemma.

Lemma 4.5. The set S(d) coincides with {b € Zsq|b < ¢(d)}.

Proof. The fact that S(d) includes {b € Z~¢ |b < ¢(d)} follows from Example 4.3.
In order to show the opposite inclusion, we prove the following claims.

Claim 4.6. If b € Si([c],d), then b < ¢(d).
We put
te = min( N(c),/s(c) ).

Then Si([c],d) is included in {b € Zwo|b < peVd}. Since vd < d for any even
positive integer d and ¢(0) > 0, Claim 4.6 follows from

/1081
<%:756.20...,

He
which can be confirmed by numerical computation for each equivalence class [c].
Claim 4.7. If b € Su([c],d), then b < 5(c, d).

This claim follows from
2

d _ R(c)? — 6(c)? 2
\Ifc< W)—( “Wf—m> > 0.

Claim 4.8. Suppose that [c] # [c1]. Then f(c, d) < ¢(d) holds for all even positive
integers d.
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1 discT; T; (hi,hi)s References
a b ¢

1 3 2 1 2 78 [29]

2 4 2 0 2 5  [29]

3 7 2 1 4 28  [28]

4 8 2 0 4 612 [23]

5 12 2 0 6 18 [23]

6 12 4 2 4 16 |8

715 2 1 8 12 [23], [25]

8 16 4 0 4 10 [8]

9 20 4 2 6 11

10 24 2 0 12 15/2  [25]

11 3 6 0 6 5 [25]

TABLE 5.1. Singular K3 surfaces of simple Borcherds type

Suppose that ¢ is deep. Then f(c,d) is a linear function of d, and hence we
can write it as f(c)d + g(c). We have f(c) > 0. Hence the hoped-for inequality
B(e,d) < B(cy,d) follows from
~529+/1081 d g(c) —g(cy)

O ten =" ™ =)~ flen) = >
which we can confirm by numerical computation again. Suppose that c is shallow.
In order to prove ((c,d) < ¢(d), it is enough to show that ¥.(¢(d)) < 0. Since
U, (¢(d)) is a quadratic polynomial in d, and its coefficient of d? is negative, we can
prove W.(¢4(d)) < 0 for any even positive integer d by showing that the quadratic
equation Ue(¢(z)) = 0 in variable z has no roots larger than 2.

Combining these three claims, we complete the proof of Lemma 4.5 and hence
that of Theorem 1.2. O

5. EXAMPLES AND REMARKS

We continue the list of polarized K3 surfaces (X, h) of simple Borcherds type in
Example 1.9.

A complex K3 surface X is said to be singular if Sx is of rank 20. For a singular
K3 surface X, the orthogonal complement of Sy in Hx = H?(X,Z) is called the
transcendental lattice of X. By [26], we see that, for each even positive-definite
lattice T; of rank 2 whose Gram matrix

a b
]

is given in Table 5.1, there exists a singular K3 surface X;, unique up to isomor-
phism, such that the transcendental lattice of X; is isomorphic to T;. Then X;
possesses an ample class h; such that (X;,h;) is of simple Borcherds type. The
automorphism group Aut(X;) of each X; has been determined in the papers cited
in Table 5.1.

In [6], it was shown that the generic quartic Hessian surface X possesses an
ample class h € Sy ® Q with h? = 20 such that (X, h) is of simple Borcherds type.
In this case, we have rank Sy = 16.
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In [8], it was shown that the complex Kummer surface Km(FE x E), where FE is
a generic elliptic curve, possesses an ample class h € Sx ® Q with h2 = 19 such
that (X, h) is of simple Borcherds type. In this case, we have rank Sx = 19.

Remark 5.1. In [5], it was shown that the supersingular K3 surface X in charac-
teristic 2 with Artin invariant 1 possesses an ample class h € Sx ® Q with h% = 14
such that Corollary 1.8 holds for (X, h).

Remark 5.2. There exists a singular K3 surface X, unique up to isomorphism, such
that its transcendental lattice is of discriminant 11. We showed in [23] that there
exists a primitive embedding Sx < L satisfying Assumption 1.3 and P(X) C Py
such that the number of G x-congruence classes of induced chambers is 1098.

Remark 5.3. In all known examples of polarized K3 surfaces (X,h) of simple
Borcherds type, the orthogonal complement R of Sy in L contains a sublattice
of finite index generated by the set Rr of vectors of R with square norm —2.
See [1, Lemma 5.1] and [23, Remark 6.7].

Remark 5.4. Let Sy — L be a primitive embedding satisfying Assumption 1.3
and P(X) C Pr, and let a := prg(w) be the image of a Weyl vector w € L
by the orthogonal projection prg : L — SY. We show that (a,a)s > 0. Since
the orthogonal complement R of Sx in L is negative-definite, we have {(a,a)s >
(w,w)y, = 0, and the equality holds if and only if a = w. Therefore, if (a,a)s =0,
then we have w € Sy, and hence (w)!/{w) 2 A~ contains R, which contradicts
condition (b) in Assumption 1.3 .
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APPENDIX A. RECONFIRMATION OF THE ENUMERATION OF HOLES

This appendix is a detailed version of Remark 2.10. In the following, TABLE
means Table 25.1 of [4, Chapter 25] calculated by Borcherds, Conway, and Queen.
In TABLE, the equivalence classes of holes of the Leech lattice A are enumerated.
The purpose of this appendix is to explain a method to reconfirm the correctness
of TABLE.

The fact that there exist at least 23 + 284 equivalence classes of holes can be
established by giving explicitly the set P. of vertices of the polytope P, for a
representative c of each equivalence class [c]. See Remark 3.1 and the computational
data given in the author’s web page [24]. (See also Appendix B.)

In order to see that there exist no other equivalence classes, Borcherds, Conway,
and Queen used the volume formula (2.5). The volume vol(P,) of P, can be easily
calculated from the set P. of vertices, and the result coincides with the values
given in the third column of TABLE. The equality (2.5) holds when |Aut(P., A)]
is replaced by the value g = g(c) given in the second column of TABLE and the
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no. type a B v |Aut(P.) g(c)
293 a5a§0 as as 10 2-219.10! 720
299 d4a%1 d4 a1 21 621' 120960
303 asall az ay 11 2-211.11 7920
304 asza?® a3z a; 22 222! 887040
305 aad? a; ay 12 21212 190080
306 axa® ay a 23 2.231 10200960
307 a® a; a1 24 25! 244823040

TABLE A.1. Shallow holes with large Aut(P.)

summation is taken over the set of the equivalence classes of holes listed in TABLE.
Therefore, in order to show the completeness of TABLE, it is enough to prove the
inequality

(A1) |Aut(Pe, A)| < g(c)

for each hole ¢ that appears in TABLE. The groups Aut(P., A) for deep holes are
studied in detail in [4, Chapters 23 and 24]. Hence we will prove the inequality (A.1)
for shallow holes c.

Let ¢ be a shallow hole that appears in TABLE. Then P, is a 24-dimensional
simplex, and P, consists of 25 points of A. Recall that Aut(P,) is the group of
permutations g of P, such that ||p? — ¢?|| = ||[p — ¢|| holds for any p,q € P.. Each
permutation g € Aut(P,) induces an affine isometry gy: A®@ Q =% A ® Q, and we
have

(A.2) g € Aut(P.,A) <= gx preserves A C A® Q.

When Aut(P.) is not very large, we can make the list of elements of Aut(P,, A)
by the criterion (A.2). We can also use the following trick to reduce the amount of
the computation.

Example A.1. Consider the shallow hole cag7 of type djaj. We have |Aut(P.)| =
64-4!.9! = 11287019520. We choose two vertices v and vo that correspond to nodes
of two a; in dja}, and consider the subgroup Stab(vy,vs) of Aut(P,) consisting of
permutations that fix each of v; and vy. Then the index of Stab(vy,v2) in Aut(P,)
is at most 72. We see by the criterion (A.2) that Aut(P., A)NStab(vy, v2) is of order
6, and hence |Aut(P., A)| is at most 72 x 6 = 432 = g(cag7). In fact, Aut(Pe, A) is
isomorphic to (((C5 x C5) : Qg) : C3) : Ca, where C,, is the cyclic group of order n
and Qg is the quaternion group.

This brute-force method works for shallow holes except for the seven cases listed
in Table A.1.

A.1. Golay codes and Mathieu groups. The values g(c) in Table A.1 suggest
that the groups Aut(P., A) are related to Mathieu groups. (See Table A.2.) For
each shallow hole ¢ in Table A.1, we construct a code that is related to a Golay
code, and clarify the relation between Aut(P., A) and the corresponding Mathieu
group.

Remark A.2. In Remarks (ii) of [4, Chapter 25], it is stated that Aut(P,A) is
isomorphic to the Mathieu group May for the shallow hole c397 of type a3°.
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|M21| = 20160 = g(ngg)/G
|Mao| = 443520 = g(cs04)/2
|Masz] = 10200960 = g(c306)
|M24| = 244823040 = g(0307)
|Mu| = 7920 = g(cs03)
M| = 95040 = glcas)/2

TABLE A.2. Orders of Mathieu groups

We fix notions and notation about codes, and recall the definitions of Golay
codes and Mathieu groups. Let F be either Fy or F3, and let [ be a positive integer.
A code of length | over F is a linear subspace of F!. Let C be a code of length
l. When F = Fy, we say that C is binary, and when F = F3, we say that C is
ternary. When dimC = d, we say that C is an (I,d)-code. Each element of C
is called a codeword. The weight wt(z) of a codeword x = (x1,...,2;) is defined
to be the cardinality of {i|xz; # 0}. The minimal weight of C' is the minimum of
{wt(z) |2z € C\ {0}}. The weight distribution of a code C' is the expression

0t wit wl? ... wlm
that indicates that C' contains exactly n; codewords of weight w; for i =1,...,m,

where 0, ws, ..., w,, are distinct weights, and that |C| =14 n; + - - - + n,, holds.
For a linear subspace V of F!, the intersection C' NV is also a code of length 1.
For a positive integer k < [, let pr: F! — F* denote the projection

(x1,...,21) = (T1,...,2k).

Then pr,(C) is a code of length k.

Let G; denote the subgroup of GL;(F) consisting of monomial transformations,
that is, G; is the group of linear automorphisms of F! generated by permutations
of coordinates and multiplications by a non-zero scalar on one coordinate. When
F = Fy, we have G; & &, and when F = F3, we have G; = {+1}! x &;. The
automorphism group of a code C of length [ is defined to be

Aut(C):={geG | C9=C1}.

Two codes C' and C’ of length [ are said to be equivalent if there exists a mono-
mial transformation g € G; such that C’ = CY9. The weight distribution and the
isomorphism class of the automorphism group depend only on the equivalence class
of codes.

The binary Golay code Coq is the binary (24,12)-code generated by the row
vectors of the matrix in Table A.3. The ternary Golay code Ci2 is the ternary
(12, 6)-code generated by the row vectors of the matrix in Table A.4. We have the
following theorem, which will be used frequently in the next section.

Theorem A.3 (Pless [21]). (1) Let C be a binary (24, 12)-code. Then the following
conditions are equivalent:

o C is equivalent to the binary Golay code Coy,
o the minimal weight of C is 8, and
e the weight distribution of C is 01 879 122576 16759 241,

(2) Let C be a ternary (12,6)-code. Then the following conditions are equivalent:
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rr o o o o 0o o000 0 00101 011100011
o010 0OOOOOOOOTI1L11T1 100100 410O0
o010 0O0OO0OOOO0ODOOOLIITI1T111001T0®01
o o0 o1 0 o0 O0O0OO0OO0OOOI1T1TO0WO0OO0OI1IT1TT1TH0T1TT1o0O0
00 o0 01 00OOODOOOBLILI1TOODOLI 1T 1T o011
o o0 o o0 o010O0OO0O0O0OOO0O0OI1TT1TWO0WO0OT11TWO0OW0OTUGO0OTI1TTI1TT11
o oo oo o1 o0o0O0OO0OO0OI1TO0OO0OT1TT1T 1T 0101 01
o0 o0 o0o0O0OOT 1TWO0OO0OO0OO0ODOTI11TO0OT1TT1TO0T1T 111000
o oo o0 o0o0O0OO100O0O0O0I1TWO0OT1TT1T01T11T 100
o o o oo o o0o0o01W0UOO0OWO0ODT1TO0T1T1T011 1T 1oO0
o0 o o0 o0O0OO0OOTODOLILIL»TOoooOOoO 1TOI1L 1 o011 11

10 0 000 0OO0OO0OO1T11110O01O0O01O0 1]

TABLE A.3. A basis of Cas
1 0 0O0OOO O 1 1 1 1 1
o1 0 0 0 0 2 0 1 2 2 1
0o 01 0o 0 0 2 1 01 2 2
0o 0 0 1 0 0 2 2 1 0 1 2
o o0 o0 o0 1 0 2 2 2 1 0 1
0o 0 0 o0 o0 1 2 1 2 2 10

TABLE A.4. A basis of Cqo

o C is equivalent to the ternary Golay code Ciz,
o the minimal weight of C' is 6, and
e the weight distribution of C is 0! 6264 9440 1224,

Let F be Fy. The automorphism group of Cay is the Mathieu group Mayy. As
a subgroup of the full symmetric group Ga4 of the set {x1,..., 224} of coordinate
positions of F24, the Mathieu group My is 5-transitive. For a positive integer
k < 24, let G denote the subgroup of G4 consisting of permutations that fix each
of xx41,...,x94. For k = 21,2223, we define the Mathieu group My, by

My, := Moy N Sy..

Let F be F5. We have a natural homomorphism from Gis to the full symmetric
group &y of the set {x1,...,z12} of coordinate positions of Fi2. The image of
Aut(Cy2) by this homomorphism is the Mathieu group Mis. The kernel of the pro-
jection Aut(Ci2) — Mo is of order 2 and is generated by the scalar multiplication
by —1. The action of Mi5 on {x1,...,x12} is 5-transitive. The stabilizer subgroup
of £19 in M7 is the Mathieu group Mi;.

A.2. Construction of a code. Let [c] be one of the equivalence classes listed in
Table A.1. The hole type 7(c) is of the form af”, where «, 3, and v are given in
Table A.1. We put

p=2, F=Fy, when 8 =a;, and
p=3, F=TF3, when 8 =as.



HOLES OF THE LEECH LATTICE AND K3 SURFACES 23

We consider the case ¢ # c397. (The case ¢ = ¢3¢y will be treated in Section A.4.)
We decompose P, to the disjoint union of A and B, where the vertices in A corre-
spond to the nodes of a and the vertices in B correspond to the nodes of 5”. Since
a # 3, we have a direct product decomposition

Aut(P.) = Aut(4) x Aut(B),

where Aut(A) and Aut(B) are the groups of symmetries of the Coxeter—Dynkin
diagrams « of A and ¥ of B, respectively. Since Aut(A) is very small, we can
easily calculate Aut(A) N Aut(P., A) by the criterion (A.2). It turns out that, in
all cases, the group Aut(A) N Aut(P,, A) is trivial. Therefore the second projection
Aut(P.) — Aut(B) embeds Aut(Pe, A) into Aut(B). We denote by

Autp(P.,A) C Aut(B)

the image of Aut(P., A). For the proof of the inequality (A.1), it is enough to show
that the order of Autg (P, A) is at most g(c).

Let (A) and (B) denote the minimal affine subspaces of Ag that contain A and
B, respectively. We have
dim(A) = |A| -1, dim(B)=|B|—-1, dim(A)+dim(B) =23, (4)yn(B)=0.
Let Ag/(A) be the quotient of Ag by the equivalence relation

x~y < a+z—ye€ (A for one (and hence all) a € (A4),
that is, we have x ~ y if and only if  — y is parallel to (A). We denote by
p A]R — AR/<A>
the quotient map. Then Ag/(A) has a natural structure of the linear space of
dimension |B| over R with p({A)) being the origin, and
L:=p(A)

is a discrete Z-submodule of Ag/(A) with full rank. Let M denote the Z-submodule
of Ar/(A) generated by p(B). Then M is also a discrete Z-submodule with full

rank, and is equipped with a canonical basis {p(b) | b € B}. It is obvious that M is
contained in L. Therefore we have

McCLCM®Q.

Note that Aut(B) acts on M naturally, and that each element of the subgroup
Autp(Pe, A) of Aut(B) preserves L C M ® Q.

Let n denote the least positive integer such that nL. C M. Then we have a
submodule nL/nM of M/nM = (Z/nZ)B. Tt turns out that n is divisible by p.
We define a submodule F' of M/nM as follows.

e When § = a;, we put b := (n/2)b, and
F =P (Z/nZ)b.
beB

e Suppose that 8 = as. We label the elements of B as by, b),...,b,,b), in
such a way that the nodes corresponding to b; and b} are connected in the
Coxeter-Dynkin diagram af. We then put b; := (n/3) b; + (2n/3) b}, and

F .= QV} (Z/nZ) b;.
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Note that F' does not change even if we interchange b; and b}, because we
have (n/3) (b; + 2b}) = —(n/3) (2b; + ) in M/nM.
Then we have F' = F”. We define a code I' of length v over F by
I':=(nL/nM)NF.

The group Aut(B) acts on F, and is identified with the group G, of monomial
transformations of F¥. (When 8 = aq, the transposition of b; and b} corresponds
to the multiplication by —1 on the ith coordinate of F”.) Under this identification,
we have

Autp(Pe, A) C Aut(T).
In the next section, we describe this code I' explicitly, and derive an upper bound
of |[Aut(Pe, A)| = |[Autg(Pe, A)| from Aut(T).

A.3. Description of the code T.

A.3.1. The shallow hole ca93 of type asai’. In this case, we have n = 15. The
ternary code I' is a (10, 5)-code with weight distribution

0L 430 660 7120 620 ()12
It turns out that ' is equivalent to the code pryo(Ci2 N'V), where V is the linear
subspace of Fi? defined by z11 +212 = 0. We can calculate its automorphism group
directly, and see that Aut(T") is of order 1440. Hence Aut(Fe, A) is contained in the
group Aut(A) x Aut(T") of order 2880. We calculate Aut(P., A) by applying the

criterion (A.2) to these 2880 elements. Then we see that Aut(P., A) is isomorphic
to the symmetric group of degree 6, and hence its order is g(cag3) = 720.

A.3.2. The shallow hole cag9 of type dya?'. In this case, we have n = 14. The
binary code I" is a (21, 11)-code with weight distribution
01 6168 8210 101008 12280 14360 ].621.
We construct a linear embedding
1T F3?

such that pry; o ¢ is the identity map of I', and that every codeword of the image
IV := (') is of weight 0, 8, 12, or 16. Let f1,..., 511 be a basis of I'. We define
B € T34 as follows. When the weight of 3; is 6, 10, or 14, we put

(Ag) /Bz, = (6% ‘07171)7 or /B'Z = (/67 | 17071)a or Bz/ = (61 | ]-7]-a0)
When the weight of 3; is 8, 12, or 16, we put

Bi:=(5:10,0,0).
We search for a combination of choices in (A.3) such that every element of the linear
subspace of F3* generated by 8],..., 3], has weight 0, 8, 12, or 16. If 3;,..., 51,
satisfy this condition, then the linear embedding I' — F3* defined by ; — £

satisfies the properties required for .. By this method, we find exactly six such
embeddings. We fix one of them. The weight distribution of IV is

01 8378 121288 16381.

Then the code T’ generated by I'" and the vector € := (1,1,...,1) € F3* of weight
24 is equivalent to Co4. This means that I' is equivalent to the code pry; (Caya NV),
where V C F§4 is the linear subspace defined by xoo + 223 + 24 = 0.
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Let &% be the full symmetric group of the coordinate positions {zag, T23, T24}.
We have Gg; x 6% C Gg4. We will construct an injective homomorphism

Aut(T) — Aut(T) N (&2 x &5).

Since Aut(f) N Sy is isomorphic to Moy, the order of Aut(f) N (621 x G%) is at
most 6 X |Ma1| = g(cagg). Since Autp(P.,A) C Aut(T), the existence of such an
injective homomorphism will imply the desired inequality |Autp(Pe, A)| < g(c299).

Let pry: F3* — F3 denote the projection (z1,...,724) > (T22,723,724). Then
T := prj(I”) is defined in F3 by x9s + 223 + 724 = 0, and hence we have a natural
identification

(A.4) GL(T) = &,

Let g € G621 be an automorphism of I'. Then, via ¢: I' 2 IV, the automorphism g
induces a linear automorphism ¢’ of the linear space I'. Since the linear subspace
1~} (Ker pry|r/) of I' consists exactly of codewords of weight 0, 8, 12, and 16, it is
preserved by g, and hence ¢’ induces a linear automorphism of 7. By (A.4), there
exists a unique permutation ¢” € &% such that (g,¢") € Ga1 x &% preserves I".
Since (g, g") preserves € = (1,1,...,1), this pair (g,¢") is in fact an automorphism
of .

A.3.3. The shallow hole c303 of type azail. In this case, we have n = 18. The
ternary code T is an (11, 5)-code with weight distribution

01 6132 9110'

Let I' < Fi? be the linear embedding given by = — (z]0), and let I denote its
image. We put

Y:={ycFi' | wt(y) =11, and wt(z +y) =2mod 3 forall z € T }.

Then Y consists of 24 vectors. We choose an element 3y € Y, and let T'; (resp. I'y)
be the code of length 12 generated by IV and (yo |1) (resp. (yo|2)). Then both of
fl and f‘g are equivalent to C15. This means that I" is equivalent to prq;(C12 NV),
where V is the linear subspace of Fi? defined by 212 = 0. Moreover, the two codes
I'; and Ty are distinct, and for each y € Y, one and only one of the following holds:

((y|1) el and (y|2)eTly) or ((y|1)eTy and (y|2)eTly).

Let g € Gy1 be an automorphism of I'. Since g preserves Y, one and only one
of (g]1) € Gia or (g| —1) € Gy is an automorphism of T';. Hence |Aut(I)| is
bounded by the order of 2. M.

On the other hand, let f4 € Aut(A) be the non-trivial element of Aut(A) =
Z/2Z, and let fp be the element of Aut(B) which corresponds to the scalar mul-
tiplication by —1, that is, fp is the product of transpositions of b; and b} for
i=1,...,11. Note that fp belongs to Aut(I'). By the criterion (A.2), we see that
neither fp nor fafp is in Aut(P., A). Hence Autpg(Pe, A) is a proper subgroup of
Aut(T"). In particular, its order is at most |My1]| = 7920 = g(c303).

A.3.4. The shallow hole c304 of type aza3®. In this case, we have n = 16. The
binary code T is a (22, 11)-code with weight distribution

01 677 8330 10616 12616 14330 1677 221
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Let f31,..., 511 be a basis of I'. We define 3] € F3* by

e (B:10,0) if wt(3;) is 8, 12, or 16,
(Bl 1,1) if wt(B;) is 6, 10, 14, or 22.

Then the image I of the linear embedding I' < F3* defined by f3; — f3] is a binary
(24, 11)-code with weight distribution

01 g407 191232 15407 941
We enumerate the set
Y :={yecF2 | wt(y) =7, and wt(z +y) =3 mod 4 for all z € T }.

Then Y consists of 352 vectors. We choose yo € Y, and define the code Ty
(resp. T'1p) to be the code of length 24 generated by I and (yo|0,1) (resp.
(y0]1,0)). Then both of I'y; and 'y are equivalent to Cys. This means that
I is equivalent to the code pryy(Ces N'V), where V' C F3* is the linear subspace
defined by o3 + 24 = 0. Moreover, the two codes fm and fm are distinct, and
for each y € Y, one and only one of the following holds:

((y\o,nefm and(y|1,0)ef10) or ((y|0,1)Efmand(y|1,0)€f‘01).

Let 0 € Gay denote the transposition of x93 and a4, and let &5 be the subgroup
{id, 0} of Ga4. We have Gay x &5 C Goy. Since Aut(Ip1) N Soq is isomorphic to
Mo and 2 x | Maa| = g(cs04), it is enough to construct an injective homomorphism

Aut(F) — Aut(f‘01) N (622 X 6/2)

Note that ¢ interchanges fm and 1:‘10. Let ¢ € G55 be an automorphism of T'.
Since g preserves Y, one and only one of (g,id) € Ga3 x &) or (g,0) € Gaz X &)
induces an isomorphism of I'g;. Hence the mapping

(g, ld) if (g, ld) maps f01 to f017
g (g,0) if (g,id) maps To; to Iy,

gives the desired injective homomorphism.

A.3.5. The shallow hole c305 of type ajai?. In this case, we have n = 21. The
ternary code I' is a (12, 6)-code of minimal weigh 6, and hence is equivalent to Cia.
Therefore |Autp(Pe, A)| is at most |2.M12| = 2 x 95040 = g(c305)-

A.3.6. The shallow hole c3os of type aza?®. In this case, we have n = 18. The
binary code I is a (23, 11)-code with weight distribution

01 8506 121288 16253.

Let T’ < F2! be the linear embedding given by # + (|0). Then the code T in F3*
generated by the image of this embedding and the vector ¢ = (1,1,...,1) € F3* is
equivalent to Ca4. This means that I is equivalent to the code prys(Ceq NV'), where
V C IF§4 is the linear subspace defined by zo4 = 0. Hence we obtain an injective
homomorphism Aut(I') — Aut(T) N Saz = Mos.
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A.4. The shallow hole c3g7 of type a?°. Let ¢ be a shallow hole with 7(c) = a?°.
Let wg,...,v24 be the vertices of P., and let ¢; be the circumcenter of the 23-
dimensional face of P, that does not contain v;. Then there exists a unique vertex
v such that m(cx) = 12 and m(c;) = 24 for j # k, where m: A® Q — Zso
is defined in Section 3. We put A := {v;} and B := P, \ A. Then Aut(P., A)
is contained in Aut(B) C Aut(P.). We construct a code I' of length 24 by the
method described in Section A.2. In this case, the quotient map p: Ag — Agr/(4)
is just the translation x — x — vy, and M is the sublattice of A generated by v; — vy
(j # k). We have n = 10, and the binary code I := (10A N 5M)/10M of length 24
is equivalent to Cay. Hence Aut(P., A) is embedded into May.

APPENDIX B. THE EXPLANATION OF THE COMPUTATIONAL DATA

The part of the LaTeX source file of this preprint between \end{appendix} and
\end{document} contains the following data of holes of the Leech lattice A in GAP
format [7].

e ADEades is the list

[ IlAllI’ IIA2II, e, IIA24|I’
IID4I|, |ID5II’ RN IID24|I, IlE6l|, IIE7II’ IIE8II’
Ilalll s lla2ll s RN n a24ll , Ila25" s
Ild4l| s IId5Il s e, lld24ll , Ild25ll s lle6ll s lle7ll , Ile8ll]

of names of indecomposable Coxeter—Dynkin diagrams.

e GramLeech is the Gram matrix of A with respect to the fixed basis of A;
that is, the basis given in Figure 4.12 of [4].

e CartanMatrices is the record of the Cartan matrices of the indecomposable
Coxeter—Dynkin diagrams in ADEades. For example, we have

CartanMatrices.A3 = [[2,—1,0,—1],
[—1,2,—1,0],
[Oa _17 2a _1]
[-1,0,—1,2]].

e LeechHoleRecords is the list whose ith member is the record LHrec that
describes the following data of the ith equivalence class [c;] of holes:
— LHrec.number is the number ¢ of the equivalence class, which ranges
from 1 to 23 + 284 = 307.
— LHrec.depth is "deep" (when ¢ < 23) or "shallow" (when i > 24).
— LHrec.type is the list of indecomposable Coxeter—-Dynkin types that
indicates 7(c;). For example, when i = 18, we have

LHI‘eC.type=["D4", I|A5|I, IIA5II, IlA5l|’ |IA5II]’

which means that 7(c15) = DyAz.

— LHrec.center is a representative hole ¢; of the equivalence class [c;]
written as a row vector with respect to the fixed basis of A.

— LHrec.vertices is the list of vertices A; of the convex polytope Pe,,
each of which is written as a row vector with respect to the fixed basis
of A. Suppose that LHrec.type = [Xi,...,Xk]. Then the vertices of
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P, are sorted in the list LHrec.vertices = [Ay, ..., A,] in such a way
that the n x n matrix
2
[ 1A = X507 ]
is equal to the matrix obtained from

CartanMatrices.(X;)

CartanMatrices.(Xy)

by replacing the entries as follows: 2+ 0, 0+— 4, —1 — 6, —2 — 8.
— LHrec.s is s(c¢;).
— LHrec.m is m(c;).
— LHrec.N is N(c;).
— LHrec.thetasquare is 0(c;)?.
— LHrec.svol is the scaled volume 24! - vol(Py,) of Pe,.
— LHrec.g is the order of the group Aut(F, 7A)
For the shallow holes except for the ones with numbers 293, 299, 303, 304,
305, 306, 307, we also record the following data:
— LHrec.aut is the structure of the group Aut(P,,, A) calculated by GAP’s
StructureDescription.
— LHrec.generators is a list of generators of Aut(Pe,,A) regarded as
a permutation group of LHrec.vertices. This list of generators was
calculated by GAP’s GeneratorsSmallest.
For the shallow holes with numbers 293, 299, 303, 304, 305, 306, 307, see
Appendix A.

Example B.1. Consider the shallow hole ¢ = c3g2 of type aja;. Let LHrec be the
302nd record in LeechHoleRecords:

LHrec := LeechHoleRecords[302].
The center LHrec.center is
c = [-1/3,2/9,2/9,2/9,1/3, 0, 2/9, 0, 1/9, —1/9, 0, 1/9,
0, 1/9, —2/9, 1/9, 0, 1/9, —1/9, 0, —1/9, 1/9, 2/9, 2/9].
The list of vertices of P, is given in Table B.1. The automorphism group Aut(Pe, A)
is of order 2688, and is isomorphic to
(Cy x Cy x Cy x C): PSL(3,2).

As a permutation group of the list LHrec.vertices, this group is generated by the
six permutations in the following list:

LHrec.generators :=
[(7,9)(10,24)(11,23)(12,22)(13,15)(16,19)(17,20)(18,21),
(7,10,16)(8,11,17)(9,12,18)(13,22,19)(14, 23, 20)(15, 24, 21),
(4,6)(10,21)(11,20)(12,19)(13,15)(16,22)(17,23)(18,24),
(4,7)(5,8)(6,9)(10,16)(11,17)(12, 18)(19, 21)(22, 24),
(1,3)(10,16)(11,17)(12,18)(13,15)(19,24)(20, 23)(21, 22),
(1,4)(2,5)(3,6)(10,12)(16,19)(17,20)(18,21)(22, 24)].
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[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0],
[1,0,0,0,0,—1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0],
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,—1,0,0,0,0,0,0,0,0,0,0,0,0, 1],
[-1,0,0,0,1,0,0,1,1,0,1,0,0,0,—1,0,0,0, —1,0,0,0,1,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
[2,0,0,0,—1,0,1,-1,—1,—1,0,0,—1,1,0,0,—1,1,0,0,1,0,0,0],
[-6,2,2,2,2,1,1,-1,1,1,1,-1,0,0,—1,1,1,0,—1,0, —1,0, 1, 0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0],
[1,0,—1,-1,1,0,1,0,0,—1,—1,2,0,0,0,0,1,0,0,—2,0,0,0, 1],
[-3,0,2,2,1,0,0,0,1,0,1,—1,0,1,—1,0,0,0,—1,1,—1,0,1,0],
[~1,0,0,0,1,0,0,1,1,1,0,0,0, —1,0,0,0, —1,0,0,0,1,0,0],
[-3,1,1,1,2,1,1,—-1,0,—-1,0,1,1,0,—1,0,0,1,—1,0,—1,0, 1,0],
[0,0,0,0,0,—1,-1,2,1,0,0,0,0,0,0,0,1,—1,0,0,—1,1,0,0],
[-2,0,1,0,1,0,1,0,1,0,1,0,1,0,—2,0,0,0,0,0,0,0,0, 1],
[3,0,-2,0,0,0,0,-1,0,—1,—1,1,0,0,1,—1,0,1,0, 1,1, -1, —1,2],
[-5,2,3,2,0,1,0,0,—1,1,1,-2,—1,0,0,2, —1,0,0,2, —2,2,2, —3],
[-3,1,1,1,1,0,1,0,1,0,0,0,1,0,—1,0,0,0,0,0, 1,0, 1,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],
[5,—1,—-1,—1,-1,-1,0,0,—2,—1,-1,1,—1,1,0,0,—1,0,1,0,1,0,0,0],
[-3,2,2,0,1,0,0,0,1,1,0,—1,0,—1,0,1,0,—1,1,0,—1,1,0,0]].

TABLE B.1. LeechHoleRecords[302] .vertices
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