A NOTE ON QUEBBEMANN'S EXTREMAL LATTICES OF RANK 64: COMPUTATION DATA

ICHIRO SHIMADA

This note is the explanation of the computation data that are used to obtain the main result of the paper

[Q] I. Shimada: A note on Quebbemann's extremal lattices of rank 64.

The data and the paper above are available from the author's webpage [1]. The data are made by GAP (see [2]).

We use the notions and notation of the paper [Q].

The matrix GramE is the Gram matrix of E with respect to the basis e_1, \ldots, e_8 . The matrix GramS is the Gram matrix of $S = E^8$ with respect to the basis

$$(0.1) e_1^{(1)}, \dots, e_8^{(1)}, e_1^{(2)}, \dots, e_8^{(2)}, \dots, e_1^{(8)}, \dots, e_8^{(8)}.$$

(See (3.2) of the paper [Q].)

The matrices VObasis, WIbasis, WIIbasis are the bases of the maximal isotropic subspaces V_0 , $W^{\rm I}$, $W^{\rm II}$ of U=E/3E with respect to the basis e_1,\ldots,e_8 . (See Table 2.1 of the paper [Q].)

The other part of the data consists of records Qrec. Each record Qrec describes a Quebbemann lattice $Q = Q(\Delta, B)$ obtained by $\Delta \in \mathcal{D}^8$ and a ternary code $B \subset V_T$ satisfying p₂-condition. The record Qrec has the following components.

- no is the number of this example $Q=Q(\Delta,B)$. If $Qrec.no \leq 1000$, then the component Qrec.Aut below is "trivial", whereas if Qrec.no > 1000, then the component Qrec.Aut is "order8".
- Aut is either "trivial" or "order8". In the former case, we have $O(Q) = \{\pm 1\}$, and in the latter case, we have $O(Q) \cong \{\pm 1\} \times \mathbb{Z}/8\mathbb{Z}$.
- Delta indicates $\Delta \in \mathcal{D}^8$ that is used in the construction of $Q = Q(\Delta, B)$. Delta is a sequence $[i_1, \ldots, i_8]$ of 8 indexes $i_i \in \{1, 2\}$, which means

$$\Delta = ((V_0, W_1), \dots, (V_0, W_8)),$$

where, for j = 1, ..., 8, the second factor W_j is $W^{\rm I}$ (reps. $W^{\rm II}$) if $i_j = 1$ (resp. $i_j = 2$). (The first factors are all V_0 , and hence $V_T = V_0^8$.)

• Bbasis is an 8×32 matrix with \mathbb{F}_3 -components whose row vectors form a basis of the ternary code $B \subset V_T = V_0^8$. Each row vector v is of the form $(v_1|\ldots|v_8)$, where $v_j \in V_0$ is the j^{th} component of $v \in B$ and is written with respect to the basis V0basis of V_0 .

- Bperphasis is a 24×32 matrix with \mathbb{F}_3 -components whose row vectors form a basis of the ternary code $B^{\perp} \subset W_T = W_1 \oplus \cdots \oplus W_8$. Each row vector v is of the form $(v_1|\ldots|v_8)$, where $v_j \in W_j$ is the j^{th} component of $v \in B^{\perp}$ and is written with respect to the basis WIbasis (resp. WIIbasis) of $W_j \cong W^{\text{I}}$ (resp. $W_j \cong W^{\text{II}}$).
- Qbasis is a 64×64 matrix with \mathbb{Z} -components whose row vectors form a basis of $Q = Q(\Delta, B) \subset S = E^8$. Each row vector $v \in Q$ is written with respect to the basis (0.1) of $S = E^8$.
- GramQ is the Gram matrix of Q with respect to the basis Qbasis, that is, GramQ is equal to $(1/3) \cdot \text{Qbasis} \cdot \text{GramS} \cdot {}^t\text{Qbasis}$, where ${}^t\text{Qbasis}$ is the transposed matrix of Qbasis.
- minvects is the list of minimal-norm vectors of Q modulo the action of $\{\pm 1\}$. Each vector is written with respect to the basis (0.1) of $S = E^8$ (not with respect to the basis Qbasis of Q). From each pair $\{v, -v\}$ of minimal-norm vectors, we choose the one whose left-most nonzero component is positive. The size of minvects is therefore 1305600.
- intpatterns is the list of intersection patterns of minimal-norm vectors. The i^{th} element of this list is the intersection pattern $a(v_i) = [a_1(v_i), a_2(v_i), a_3(v_i)]$ of the i^{th} element v_i of minvects.
- distribution describes the distribution A_Q of intersection patterns of Q by a list of $[a, A_Q(a)]$, where $a = [a_1, a_2, a_3]$ runs through the set of intersection patterns such that $A_Q(a) > 0$. The elements $[a, A_Q(a)]$ in this list are sorted according to the lexicographic order on the 1st component $a = [a_1, a_2, a_3]$.
- rigidifying is a 64×64 matrix with \mathbb{Z} -components whose row vectors form a Γ -rigidifying basis, where $\Gamma = \{\pm 1\}$ when $\operatorname{Qrec.Aut}$ is "trivial", and $\Gamma = \{\pm 1\} \times \langle \tilde{\gamma}_Q \rangle$ when $\operatorname{Qrec.Aut}$ is "order8".

When Qrec.Aut is "order8", the ternary code B is of the form $B(\gamma, v)$ and the record Qrec has the following additional components.

- gamma is the matrix representation of $\gamma \in O(E)$ with respect to the basis e_1, \ldots, e_8 of E.
- gammatilde is the matrix representation of $\tilde{\gamma} \in \mathrm{O}(S)$ with respect to the basis (0.1) of S.
- generator is the vector $v = (v_1 | \dots | v_8) \in V_T = V_0^8$, where each $v_i \in V_0$ is written with respect to the basis VObasis. Then the k^{th} row vectors of Bbasis is $v^{(\tilde{\gamma}^k)}$.
- orbits is the list of indexes $\{k_1,\ldots,k_8\}$ such that the vectors at k_j th positions $(j=1,\ldots,8)$ in the list Qrec.minvects form an orbit of the action of $O(Q)/\{\pm 1\} \cong \mathbb{Z}/8\mathbb{Z}$ on $Min(Q)/\{\pm 1\}$.

Remark 0.1. We have produced 300+100 records Qrec, 300 records with Qrec.Aut being "trivial" and 100 records with Qrec.Aut being "order8". We put only

10+10 of them on the webpage, because of the restriction on the disk usage. Their names are Qrec1 ...Qrec10 and Qrec1001 ...Qrec1010.

Remark 0.2. The 2+2 examples explained in Section 4 of the paper [Q] is Qrec1, Qrec2 and Qrec1001, Qrec1002.

References

- [1] Ichiro Shimada. A note on Quebbemann's extremal lattices of rank 64: computation data. http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html, 2021.
- [2] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.11.0; 2020 (http://www.gap-system.org).

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

 $Email\ address: \verb|ichiro-shimada@hiroshima-u.ac.jp|$