
ZARISKI PAIRS ON CUBIC SURFACES

ICHIRO SHIMADA

Abstract. A line arrangement of a smooth cubic surface is a subset of the

set of lines on the cubic surface. We define a notion of Zariski pairs of line

arrangements on general cubic surfaces, and make the complete list of these
Zariski pairs.

1. Introduction

We work over the complex number field C. Cayley and Salmon showed in 1849
that every smooth cubic surface contains exactly 27 lines. The configuration of
these 27 lines is a beautiful historical topic of algebraic geometry. In this paper, we
investigate this configuration from the viewpoint of Zariski pairs.

By a plane curve, we mean a reduced, possibly reducible, projective plane curve.
We say that a pair (C1, C2) of plane curves is a Zariski pair if C1 and C2 have the
same combinatorial type of singularities, but have different embedded topologies in
the projective plane. This notion of Zariski pairs was formulated in Artal-Bartolo’s
seminal paper [1], in which he investigated a pair of 6-cuspidal sextics discovered by
Zariski in 1929, and presented some new examples. Since then, many authors have
studied Zariski pairs of plane curves from various points of view. See, for example,
the survey [2].

We introduce a notion of Zariski pairs of line arrangements on general cubic
surfaces.

Definition 1.1. A point Q of a smooth cubic surface X is said to be an Eckardt
point if three lines on X pass through Q.

A general cubic surface has no Eckardt points. Let X ⊂ P3 be a smooth cubic
surface with no Eckardt points, and let L(X) denote the set of lines on X. We
express the configuration of lines on X by the intersection form

〈`, `′〉 :=


−1 if ` = `′,

0 if ` 6= `′, and ` and `′ are disjoint,

1 if ` 6= `′, and ` and `′ intersect

for `, `′ ∈ L(X).

Definition 1.2. A line arrangement on a general cubic surface is a pair [S,X] of
a smooth cubic surface X with no Eckardt points and a subset S of L(X). In this
situation, we say that S is a line arrangement on X. We denote by A the set of
line arrangements on general cubic surfaces.
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We introduce three equivalence relations ∼d, ∼c, and ∼t on A.

Definition 1.3. Let [S,X] and [S′, X ′] be elements of A.

• We say that [S,X] and [S′, X ′] are deformation equivalent and write

[S,X]∼d [S′, X ′]

if there exists a continuous family X := {Xt | t ∈ [0, 1] } of smooth cubic
surfaces with no Eckardt points connecting X = X0 and X ′ = X1 such
that S is deformed continuously to S′ along X . We denote by [S,X]d the
equivalence class containing [S,X] under the equivalence relation ∼d.
• We say that [S,X] and [S′, X ′] have the same embedded topology and write

[S,X]∼t [S′, X ′]

if there exists a homeomorphism X
∼−→ X ′ that maps the union Λ(S) ⊂ X

of lines in S to the union Λ(S′) ⊂ X ′ of lines in S′. We denote by [S,X]t
the equivalence class containing [S,X] under the equivalence relation ∼t.
• We say that [S,X] and [S′, X ′] have the same combinatorial type and write

[S,X]∼c [S′, X ′]

if there exists a bijection between S and S′ that preserves the intersection
form 〈 , 〉. We denote by [S,X]c the equivalence class containing [S,X]
under the equivalence relation ∼c.

It is obvious that we have the following implications:

[S,X]∼d [S′, X ′] =⇒ [S,X]∼t [S′, X ′] =⇒ [S,X]∼c [S′, X ′].

Therefore we have natural surjections

A/∼d →→ A/∼t →→ A/∼c.
Following the definition of Zariski pairs of plane curves, we make the following:

Definition 1.4. We say that two equivalence classes [S,X]d and [S′, X ′]d form a
Zariski pair of line arrangements on general cubic surfaces (a Zariski pair in A, for
short) if [S,X] and [S′, X ′] have the same combinatorial type, but have different
embedded topologies.

We choose and fix a smooth cubic surface X with no Eckardt points, and denote
byAX := 2L(X) the set of line arrangements onX. Since smooth cubic surfaces with
no Eckardt points are parameterized by a smooth connected variety, the inclusion
AX ↪→ A induces a bijection

AX/∼d ∼= A/∼d.
Since AX is finite, we can regard Zariski pairs in A as a toy model of classical
Zariski pairs of plane curves. In fact, we can enumerate all Zariski pairs in A by a
brute force method. This complete list is the main result of this note.

To distinguish embedded topologies, we use the lattice structure on the middle
cohomology group H2(X,Z) of a smooth cubic surface X. The cup-product 〈 , 〉
makes H2(X,Z) a unimodular lattice of rank 7. For a line arrangement S on X,
let H(S) ⊂ H2(X,Z) denote the submodule generated by the classes of lines in S,
and we put

H(S)⊥ := {x ∈ H2(X,Z) | 〈x, y〉 = 0 for all y ∈ H(S) }.
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Recall that a lattice M is said to be even if 〈x, x〉 ∈ 2Z holds for all x ∈M , and to
be odd otherwise.

Our result is as follows:

Theorem 1.5. There exist exactly two Zariski pairs

([S1, X]d, [S2, X]d) and ([T1, X]d, [T2, X]d)

of line arrangements on general cubic surfaces.

(1) The combinatorial type of Si is as follows. We have |Si| = 5, and any dis-
tinct lines `, `′ ∈ Si are disjoint. The embedded topologies of S1 and S2 are
distinguished by the fact that H(S1)⊥ is odd, whereas H(S2)⊥ is even.

(2) The combinatorial type of Ti is as follows. We have |Ti| = 6, and, for µ 6= ν,

〈`µ, `ν〉 =

{
1 if µ = 0 or ν = 0,

0 if µ 6= 0 and ν 6= 0

holds under a suitable numbering `0, . . . , `5 of elements of Ti. The embedded
topologies of T1 and T2 are distinguished by the fact that H1(X \ Λ(T1),Z) ∼=
Z/2Z and H1(X \ Λ(T2),Z) = 0.

The main ingredient of the proof is the result of Harris [5] on the Galois group of
the 27 lines on a cubic surface X. We write the Galois action on L(X) explicitly, and
calculate the orbit-decomposition of AX = 2L(X). Comparing the combinatorial
types and the embedded topologies of these orbits, we obtain Theorem 1.5.

In [8], by the result of Harris [5] on the Galois group of the 28 bitangents of a
smooth quartic plane curve, we obtained many Zariski multiples of plane curves.
For general methods to distinguish embedded topologies by lattices, see [7].

For the actual computation, we used GAP [4]. In [9], we present a detailed
computation data.

Convention. The orthogonal group O(M) of a lattice M acts on M from the
right. The symmetric group S(T ) of a finite set T also acts on T from the right.

2. The 27 lines on a cubic surface

In this section, we recall some basic facts about cubic surfaces and review the
result of Harris [5]. For a general theory of cubic surfaces, we refer the reader to
Chapter 9 of Dolgachev [3]. Harris [5] showed that the Galois group of the 27 lines
on a cubic surface is isomorphic to the odd orthogonal group O−(6,F2). We rewrite
the statement in terms of the Weyl group W (E6) of type E6, which is isomorphic
to O−(6,F2), and describe the Galois action on the 27 lines explicitly.

2.1. Action of W (E6) on the 27 lines. Let P1, . . . , P6 be general six points of
P2, and let X → P2 be the blowing-up at P1, . . . , P6. For a divisor D on X, let
[D] ∈ H2(X,Z) denote its class. Then D 7→ [D] induces an isomorphism from the
Picard group PicX with the intersection form to H2(X,Z) with the cup-product
〈 , 〉. From now on, we identify Pic (X) with H2(X,Z). Let h ∈ H2(X,Z) be
the class of the pull-back of a line on P2, and let ei := [Ei] be the class of the
exceptional curve Ei over Pi for i = 1, . . . , 6. The lattice H2(X,Z) is of rank 7 with
a basis h, e1, . . . , e6, under which the Gram matrix is given by the diagonal matrix

diag (1,−1,−1,−1,−1,−1,−1).
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We express elements of H2(X,Z) as vectors with respect to this basis. The class of
the anti-canonical line bundle −KX is

[−KX ] = (3,−1,−1,−1,−1,−1,−1).

We have 〈−KX ,−KX〉 = 3, and the complete linear system |−KX | embeds X into
P3 as a smooth cubic surface. We denote by K the sublattice of H2(X,Z) generated
by [−KX ], and by V the orthogonal complement of K in H2(X,Z). Then V is a
negative-definite root lattice of type E6. Indeed, the (−2)-vectors

r1 := (−1, 0, 0, 0, 1, 1, 1),

r2 := (0, 1,−1, 0, 0, 0, 0),

r3 := (0, 0, 1,−1, 0, 0, 0),

r4 := (0, 0, 0, 1,−1, 0, 0),

r5 := (0, 0, 0, 0, 1,−1, 0),

r6 := (0, 0, 0, 0, 0, 1,−1)

constitute a basis of the lattice V , and form the dual graph

(2.1)

r1

r2 r3 r4 r5 r6

,

which is the Dynkin diagram of type E6. Hence we have

O(V ) = W (E6) o 〈g0〉,
where W (E6) ⊂ O(V ) is the Weyl group of type E6 generated by the reflections

σν : x 7→ x+ 〈x, rν〉rν (ν = 1, . . . , 6)

with respect to the roots r1, . . . , r6 ∈ V , and g0 is the involution of V given by

r1 ↔ r1, r2 ↔ r6, r3 ↔ r5, r4 ↔ r4,

which corresponds to the automorphism of the graph (2.1). Note that the order of
W (E6) is 51840.

Our goal is to construct an action

(2.2) W (E6)→ S(L(X))

of the subgroup W (E6) ⊂ O(V ) on the set L(X) of lines on X.

Definition 2.1. For a lattice M , we denote by M∨ the dual lattice

{x ∈M ⊗Q | 〈x, y〉 ∈ Z for all y ∈M },
and by disc(M) the cokernel M∨/M of the natural embedding M ↪→M∨. We call
disc(M) the discriminant group of M .

We refer the reader to [6] for a general theory of discriminant groups. The
discriminant group disc(K) of the lattice K = Z[−KX ] of rank 1 is a cyclic group
of order 3 generated by [−KX ]/3 (mod K). We have inclusions

K ⊕ V ⊂ H2(X,Z) = H2(X,Z)∨ ⊂ K∨ ⊕ V ∨.
Since K and V are primitive in H2(X,Z), the submodule

H2(X,Z)/(K ⊕ V ) ⊂ disc(K)× disc(V )
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is the graph of an isomorphism

γH : disc(V )
∼−→ disc(K).

The normal subgroup W (E6) of O(V ) is the kernel of the natural homomorphism

O(V )→ Aut(disc(V )) = {±1}.

Indeed, the reflections σ1, . . . , σ6 ∈ O(V ) act on disc(V ) trivially, whereas the
involution g0 ∈ O(V ) acts on disc(V ) by −1. Therefore we have

W (E6) =

{
g ∈ O(V )

∣∣∣∣ the isometry g extends to an isometry g̃ of
H2(X,Z) that acts on K trivially

}
.

By g 7→ g̃, we obtain an isomorphism

(2.3) W (E6)
∼−→ { g̃ ∈ O(H2(X,Z)) | [−KX ]g̃ = [−KX ] }.

By ` 7→ [`], we embed L(X) into H2(X,Z). Its image is

L′ := {x ∈ H2(X,Z) | 〈x, x〉 = −1, 〈x, [−KX ]〉 = 1 },

on which W (E6) acts by (2.3). Thus we obtain a homomorphism (2.2). By the
projection H2(X,Z)→ V ∨, the set L′ is mapped bijectively to the set

L′′ := { v ∈ V ∨ | 〈v, v〉 = −4/3, γH(v mod V ) = [−KX ]/3 (modK) },

where γH : disc(V )
∼−→ disc(K) is the isomorphism defined above. Calculating the

action on L′′ of the reflections σν ∈W (E6), we compute (2.2) explicitly as follows.
For i = 1, . . . , 6, let `[i] denote the exceptional curve Ei over Pi. For i, j with

1 ≤ i < j ≤ 6, let `[ij] denote the strict transform of the line on P2 passing through
Pi and Pj . For k = 1, . . . , 6, let `[k̄] denote the strict transform of the conic on P2

passing through the 5 points {P1, . . . , P6} \ {Pk}. The set L(X) consists of these
smooth rational curves. Their classes are

[`[i]] = ei, [`[ij]] = h− ei − ej , [`[k̄]] = 2h− (e1 + · · ·+ e6) + ek.

We number elements of L(X) = {`1, . . . , `27} as follows:

(2.4)

`1 := `[1], . . . , `6 := `[6],

`7 := `[12], `8 := `[13], `9 := `[14], `10 := `[15], `11 := `[16],

`12 := `[23], `13 := `[24], `14 := `[25], `15 := `[26],

`16 := `[34], `17 := `[35], `18 := `[36],

`19 := `[45], `20 := `[46], `21 := `[56],

`22 := `[1̄], . . . , `27 := `[6̄].

We let τ ∈ S27 act on L(X) as (`i)
τ := `(iτ ). Then the reflections σν act on L(X)

by the following permutations.

(2.5)

σ1 7→ (4, 21)(5, 20)(6, 19)(7, 24)(8, 23)(12, 22),

σ2 7→ (1, 2)(8, 12)(9, 13)(10, 14)(11, 15)(22, 23),

σ3 7→ (2, 3)(7, 8)(13, 16)(14, 17)(15, 18)(23, 24),

σ4 7→ (3, 4)(8, 9)(12, 13)(17, 19)(18, 20)(24, 25),

σ5 7→ (4, 5)(9, 10)(13, 14)(16, 17)(20, 21)(25, 26),

σ6 7→ (5, 6)(10, 11)(14, 15)(17, 18)(19, 20)(26, 27).
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2.2. Monodromy action on the 27 lines. All cubic surfaces are parameterized
by the projective space P19 = P∗(H0(P3,O(3))). For t ∈ P19, let Xt ⊂ P3 denote
the corresponding cubic surface. We put

U := { t ∈ P19 | Xt is smooth }, U0 := { t ∈ U | Xt has no Eckardt points },
which are Zariski open subsets of P19. We then put

L := { (t, `) | ` ⊂ Xt } ⊂ U ×Grass(P1,P3),

where Grass(P1,P3) is the Grassmannian variety of lines in P3. The first projection
πL : L → U is an étale covering of degree 27, and the fiber Lt of πL over t ∈ U is
the set L(Xt) of lines on the cubic surface Xt. Let b ∈ U0 be the point such that
Xb is the cubic surface X fixed in the previous subsection. We have Xb = X and
Lb = L(X).

Theorem 2.2 (Harris [5]). The image of the monodromy action

µL : π1(U , b) −→ S(Lb)

associated with πL is equal to the image of the homomorphism (2.2).

Proof. We consider the universal family

π : X := { (t, x) ∈ U × P3 | x ∈ Xt } → U
of smooth cubic surfaces. We have a local constant system R2π∗Z on U , and ` 7→ [`]
gives an embedding L ↪→ R2π∗Z over U . The monodromy action

µH : π1(U , b) −→ GL(H2(Xb,Z))

associated with R2π∗Z is compatible with µL via Lb ↪→ H2(Xb,Z), and the image
of µH is contained in the right-hand side of (2.3), because [−KXt ] is the class of a
hyperplane section of Xt ⊂ P3 and hence is invariant under the monodromy. There-
fore the image of µL is contained in the image of the embedding (2.2). Harris [5]
proved that the size of the image of µL is |O−(6,F2)| = 51840 = |W (E6)|. Hence
the image of µL coincides with the image of (2.2). �

The inclusion U0 ↪→ U induces a surjective homomorphism π1(U0, b)→→π1(U , b).
Therefore, for S1, S2 ∈ AXb = 2L(Xb), we see that [S1, Xb] ∼d [S2, Xb] holds if and
only if S1 and S2 belong to the same W (E6)-orbit under the action of W (E6) on
2L(Xb) induced by (2.2).

Remark 2.3. The image of µL is maximal in the sense that

ImµL = { τ ∈ S(Lb) | 〈`, `′〉 = 〈`τ , `′τ 〉 for all `, `′ ∈ Lb }.

3. Orbit decomposition and Zariski pairs

3.1. W (E6)-orbits. Recall that X = Xb. We calculate the orbit decomposition of
AX = 2L(X) under the action of W (E6). By the numbering (2.4), a line arrange-
ment on X is expressed as a subset of {1, . . . , 27}. We write a line arrangement
S ⊂ L(X) as an increasing sequence [s1, . . . , sn] of integers in {1, . . . , 27}. In par-
ticular, for S = [s1, . . . , sn] and γ ∈ S27, we denote by Sγ the increasing sequence
of integers obtained by sorting the set {sγ1 , . . . , sγn}. Let Cn ⊂ AX = 2L(X) be the
set of line arrangements consisting of n lines. We introduce the lexicographic order
≺ on each Cn, that is, if

S(0) := [s
(0)
1 , . . . , s(0)n ] and S(1) := [s

(1)
1 , . . . , s(1)n ]
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procedure IsMinimal (a line arrangement S = [s1, . . . , sn])
flag := true

for all γ ∈W (E6) do
if Sγ ≺ S then

flag := false, and break from the for-loop
end if

end for
if flag then

Append S to minreps

if n = 0 then m := 0
else m := sn
end if
for all t from m+ 1 to 27 do

S′ := [s1, . . . , sn, t]
IsMinimal(S′)

end for
end if

end procedure

Procedure 3.1. IsMinimal

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

|orbits| 1 1 2 4 8 18 39 73 135 234 363 509 641 715

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27

|orbits| 715 641 509 363 234 135 73 39 18 8 4 2 1 1

Table 3.1. Number of orbits |Cn/∼d|

are distinct elements of Cn, then we say S(0) ≺ S(1) if and only if, for the smallest

index i such that s
(0)
i 6= s

(1)
i , we have s

(0)
i < s

(1)
i . A line arrangement S ⊂ L(X) is

said to be minimal if S is minimal with respect to ≺ in the orbit

o(S) := {Sγ | γ ∈W (E6) }.

Every W (E6)-orbit in AX contains a unique minimal element. Note that, if S =
[s1, . . . , sn] is minimal, then so is [s1, . . . , sm] for any m < n. Therefore, by setting
minreps := [ ] and putting the empty line arrangement [ ] to the recursive pro-
cedure IsMinimal given in Procedure 3.1, we obtain the complete list minreps of
minimal representatives of W (E6)-orbits. Thus we obtain 5486 orbits as is given in
Table 3.1.

3.2. Zariski pairs. We compare the combinatorial types of all W (E6)-orbits in
AX . It turns out that the natural surjection AX/∼d →→AX/∼c has exactly two
fibers of size > 1. Each of them is of size 2, and the two elements in the fiber have
different embedded topologies, as is shown in Sections 3.2.1 and 3.2.2 below. As a
corollary, we obtain the following:

Corollary 3.1. The equivalence relations ∼d and ∼t on A are the same. �
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3.2.1. A pair of arrangements of 5 lines. Let o(S1) and o(S2) be the W (E6)-orbits
whose minimal representatives are

S1 = [1, 2, 3, 4, 5] and S2 = [1, 2, 3, 4, 21],

respectively. We have |o(S1)| = 432 and |o(S2)| = 216. Each of these line arrange-
ments consists of disjoint 5 lines, and hence they have the same combinatorial type.
(Recall that `21 = `[56].) On the other hand, we see that H(S1)⊥ is an odd lattice
and H(S2)⊥ is an even lattice. Therefore they have different embedded topologies.

3.2.2. A pair of arrangements of 6 lines. Let o(T1) and o(T2) be the W (E6)-orbits
whose minimal representatives are

T1 = [1, 2, 3, 4, 5, 27] and T2 = [1, 2, 3, 4, 21, 26],

respectively. We have |o(T1)| = |o(T2)| = 432. Their combinatorial types are given
by the dual graphs

27

1 2 3 4 5

and

26

1 2 3 4 21
,

respectively, and hence they have the same combinatorial type. (Recall that `21 =
`[56], `26 = `[5̄] and `27 = `[6̄].) We have

H1(X\Λ(Ti)) ∼= H3(X,Λ(Ti)) ∼= Coker(H2(X)→
⊕
`∈Ti

H2(`)) ∼=

{
Z/2Z for i = 1,

0 for i = 2.

Here we omit Z in the (co)homology groups. Therefore they have different embed-
ded topologies.
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