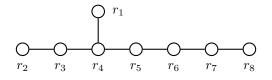
DEL PEZZO SURFACES OF DEGREE ONE AND EXAMPLES OF ZARISKI MULTIPLES: COMPUTATIONAL DATA

ICHIRO SHIMADA

In the files

- CompDataWE8.txt (60 KB),
- OrbitDecompbarDelta.txt (7.4 MB),
- OrbitDecompDelta.txt (5.3 MB), and
- F19model.txt (2 KB),

we present the computational data used in the preprint


• Ichiro Shimada. Del Pezzo surfaces of degree one and examples of Zariski multiples. Preprint.

This document explains the structure and contents of the data. Some parts of the data are formatted using the **Record** format of GAP. In the following, we freely use the notation introduced in the preprint above.

1. BASIS DATA IN CompDataWE8.txt

The file "CompDataWE8.txt" contains the following data. Let X be a del Pezzo surface of degree 1 obtained by blowing-up $\beta: X \to \mathbf{P}^2$ of \mathbf{P}^2 at p_1, \ldots, p_8 .

- GramPic is the Gram matrix of Pic(X) with respect to the basis h, e_1, \ldots, e_8 , where h is the pull-back of the class of a line of \mathbf{P}^2 and e_i is the class of the exceptional curve over p_i .
- GramE8 is the Gram matrix of the negative-definite root lattice \mathbb{E}_8 of type E_8 with respect to the basis r_1, \ldots, r_8 whose dual graph is the Dynkin diagram of type E_8 as below.

Supported by JSPS KAKENHI Grant Number 20H00112, 23K20209, and 23H00081.

ICHIRO SHIMADA

• EmbE8ToPic is the 8×9 matrix such that the right multiplication of this matrix gives the embedding $\mathbb{E}_8 \hookrightarrow \operatorname{Pic}(X)$ inducing

$$\mathbb{E}_8 \cong R(X) = (\alpha_X)^{\perp} \subset \operatorname{Pic}(X).$$

A vector of R(X) is given by the basis of \mathbb{E}_8 with respect to the standard basis r_1, \ldots, r_8 .

- ProjPicToE8 is the 9 × 8 matrix such that the right multiplication of this matrix gives the orthogonal projection from Pic(X) = Zα_X ⊕ R(X) to R(X), where R(X) is equipped with the standard basis r₁,...,r₈ of E₈.
- alphaX is the vector representation of the anti-canonical class $\alpha_X \in \text{Pic}(X)$ with respect to the basis h, e_1, \ldots, e_8 .
- hX is the vector representation of $h \in Pic(X)$ with respect to the basis h, e_1, \ldots, e_8 .
- linerecs is a list of 240 records linerec. Each linerec is a record describing a line *l* in *X* by the following items:
 - linerec.pos is the position of linerec in the list linerecs.
 - linerec.vectPic is the vector representation of the class $[l] \in Pic(X)$ with respect to the basis h, e_1, \ldots, e_8 .
 - linerec.vectE8 is the vector representation of $[l]_R \in R(X) \cong \mathbb{E}_8$ with respect to the basis r_1, \ldots, r_8 of \mathbb{E}_8 .
 - linerec.hdeg is the *h*-degree of *l*.
 - linerec.mults is the list $[\mu_1, \ldots, \mu_8]$ of multiplicities μ_i of $\beta(l)$ at p_i for $i = 1, \ldots, 8$.
- iB is the matrix representation of the action of the Bertini involution i_B on $\operatorname{Pic}(X)$ with respect to the basis h, e_1, \ldots, e_8 .
- iBpairs is the list of *i_B*-pairs. It is a list of pairs [*k*₁, *k*₂] of integers *k*₁, *k*₂ such that 1 ≤ *k*₁ < *k*₂ ≤ 240. A pair [*k*₁, *k*₂] indicates the pair of lines at the *k*₁th position and the *k*₂th position in the list linerecs.
- WE8generators is the list of 8 records grec corresponding to the reflections $s_i \in W(\mathbb{E}_8)$ with respect to the (-2)-vector r_i . The *i*th element grec of WE8generators contains the following items:
 - grec.r is the (-2)-vector r_i in the standard basis r_1, \ldots, r_8 of \mathbb{E}_8 .
 - grec.matE8 is the matrix representation of $s_i \in W(\mathbb{E}_8)$ with respect to the standard basis r_1, \ldots, r_8 of \mathbb{E}_8 .

 $\mathbf{2}$

- grec.matPic is the matrix representation with respect to the basis h, e_1, \ldots, e_8 of Pic(X) of the element of $O(\text{Pic}(X), \alpha_X)$ corresponding to s_i by the isomorphism $O(\text{Pic}(X), \alpha_X) \cong W(R(X)) \cong W(\mathbb{E}_8)$.
- grec.permOnLines is the permutation σ on the set of lines of X induced by s_i . A line l_k at the kth position in the list linerecs is mapped by s_i to the line $l_{k^{\sigma}}$ at the k^{σ} th position in linerecs.
- grec.permOniBpairs is the permutation τ on the set of i_B -pairs induced by s_i . An i_B -pair at the kth position in iBpairs is mapped by s_i to the i_B -pair at the k^{τ} th position in iBpairs.
- WE8size is the size 696729600 of $W(\mathbb{E}_8)$.

2. Orbits

The two files "OrbitDecompbarDelta.txt" and "OrbitDecompDelta.txt" describe the orbit decompositions of $\overline{\Delta}(\mathbb{E}_8)^{\{k\}}$ and $\Delta(\mathbb{E}_8)^{\{k\}}$ by $W(\mathbb{E}_8)$.

The file "OrbitDecompbarDelta.txt" contains the data OrbitDecompbarDelta of the orbit decomposition of the sets $\overline{\Delta}(\mathbb{E}_8)^{\{k\}}$ by the group $\overline{W}(\mathbb{E}_8)$ for $k = 1, \ldots, 9$, where

$$\overline{\Delta}(\mathbb{E}_8) := \Delta(\mathbb{E}_8) / \{\pm \mathrm{id}\}, \quad \overline{W}(\mathbb{E}_8) := W(\mathbb{E}_8) / \{\pm \mathrm{id}\}.$$

This action is given by the action on the set $[120] := \{1, \ldots, 120\}$ of the permutation group generated by grec.permOniBpairs, where grec runs through WE8generators. The *k*th member of OrbitDecompbarDelta is the list of orbits in $\overline{\Delta}(\mathbb{E}_8)^{\{k\}}$. Each orbit $o \subset [120]^{\{k\}}$ is expressed by the record orbrec with the following items.

- orbrec.leng is the length k.
- orbrec.minrep is a representative of *o*, which is the element of *o* that is minimum with respect to the lexicographic order on $[120]^{\{k\}}$.
- orbrec.size is the size |o|.

Analogously, the file "OrbitDecompDelta.txt" contains the data OrbitDecompDelta of the orbit decomposition of the sets $\Delta(\mathbb{E}_8)^{\{k\}}$ by the group $W(\mathbb{E}_8)$ for $k = 1, \ldots, 7$. This action is given by the action on the set $[240] := \{1, \ldots, 240\}$ of the permutation group generated by grec.permOnLines, where grec runs through WE8generators. The *k*th member of OrbitDecompDelta is the list of orbits in $\Delta(\mathbb{E}_8)^{\{k\}}$. Each orbit $o \subset [240]^{\{k\}}$ is expressed by the record orbrec with the following items.

• orbrec.leng is the length k.

ICHIRO SHIMADA

- orbrec.minrep is a representative of *o*, which is the element of *o* that is minimum with respect to the lexicographic order on $[240]^{\{k\}}$.
- orbrec.size is the size |o|.

3. \mathbb{F}_{19} -model

The file "F19model.txt" contains the data for the proof of Proposition 4.4 of the paper. An element of \mathbb{F}_{19} is given by an integer *a* such that $0 \leq a < 19$.

- Spoints is the list [p₁,..., p₈] of 8 points of P² written in an affine coordinate system (x, y) on P².
- 9lines is the list of 9 records eqrec describing the 9 lines l₁,..., l₉. The kth member of 9lines describes β(l_k) by the following items:
 - eqrec.pos is the position of the line ℓ_k in the list linerecs of the 240 lines in Y_p .
 - eqrec.hdeg is the *h*-degree of ℓ_k .
 - eqrec.mults is the list $[\mu_1, \ldots, \mu_8]$ of multiplicities μ_i of $\beta(\ell_k)$ at p_i for $i = 1, \ldots, 8$.
 - eqrec.eq is the equation of β(l_k) with respect to the affine coordinate system (x, y) of P². The variables x and y are written as "xx" and "yy", respectively. When the h-degree of l_k is 0 (that is, when k = 1), this equation is just a string "a point".

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

 $Email \ address: \verb"ichiro-shimada@hiroshima-u.ac.jp"$

4