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1. INTRODUCTION

This note is an explanation of the computational data obtained in the paper [1]. The

data are available from the author’s webpage:

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html

The data are written in four files:

e S0S3.txt (Section 2 of the paper [1]),

e PGU.txt (the elements of PGU,(Fy)),

e Borcherds.txt (Sections 4 and 5 of the paper [1]),
e Enriques.txt (Section 6 of the paper [1]).

A zipped folder (X0X3compdata.zip) containing these files is also available from the site

above.

We use the notation of [1] in the following.

(1)

2. CONVENTIONS
Every finite set is sorted in a certain way, and is expressed as a list
lelmy, ..., elmy].

A map f from a finite set X = [elmy,...,elmy] to a finite set Y = [elm], ..., elmy]
is expressed as a list of indices [iy,...,4ps] such that f maps elm, € X to elm; €Y
forv=1,..., M. In particular, a permutation of X is expressed by a permutation of
1,..., M.

Every lattice has a fixed basis. Let L be a lattice of rank m. Then L is expressed by
the Gram matrix with respect to the fixed basis. Each element of L&®Q is expressed by
a row vector of length m with respect to the fixed basis, and every isometry g € O(L)

is expressed by an m x m matrix with respect to the fixed basis. (Recall that O(L)
1
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acts on L from the right.) A map f from a finite set X = [elmy,...,elmy] to L ® Q
is given by the list of row vectors expressing f(elm,) for v = 1,..., M. Let L' be a
lattice of rank n. A linear map from L ® Q to L' ® Q is expressed by an m X n matrix
with respect to the fixed bases of L and L.

The discriminant form (A4, ¢) of an even lattice L of rank n is expressed by a list
[discg, discf, proj, lift].

The list discg = [a4, ..., ax] of integers a; > 1 indicates that the discriminant group

A = LY/L is isomorphic to
L] Z X -+ X L] agL.

Let vq,...,0r be generators of A such that v; generates the ith factor Z/a;,Z of A.

The (i, j)-component of the k x k matrix discf is a rational number that expresses

q(v;) € Q/2Z  ifi=j,

b(v;,v;) € Q/Z it i # j,
where b(z,y) = (¢(z +y) — q¢(z) — q(y))/2. The third item proj is the n x k integer
matrix M such that v — © = vM is the canonical projection LV — A, where v € LV is
expressed by a row vector with respect to the fixed basis of L ® Q (not with respect to
the canonical dual basis of L). Hence the (i, j)-component of M should be regarded
as an element of Z/a;Z. The item 1ift is the list [vq,. .., vg] of elements of LY C L&Q
that are mapped to [vy, ..., U] by the canonical projection. (Again, the vector v; is
written with respect to the fixed basis of L ® @Q.) An automorphism g of (A,q) is
expressed by a k x k integer matrix Mz with respect to the basis vy, ..., 7, of A. Hence
the (7, j)-component of M; should be regarded as an element of Z/a;Z. Note that, by
proj and 1ift, we can easily calculate the image 1.,(g) € O(q) of g € O(L) by the
natural homomorphism 7,: O(L) — O(q).
Let I' = (V,7n) be a finite graph. The set V' = {vy,...,v,} of vertices is sorted in a

certain way. The graph I is expressed by an n x n matrix whose (4, j)-component is

) if 5= 4,
n({vi,v;}) ifi#j.
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A map from a finite simple graph (V, F) to a finite simple graph (V’, E’) is expressed
by a map V' — V"’ of sets of vertices (see Convention (1) above). A map from a finite
graph (V, E) to a lattice L is expressed by a map from V to L (see Convention (2)
above).

(5) Let Z be a normal K3 surface, that is, a normal surface whose minimal resolution
Z is a K3 surface. Then Z has only rational double points as its singularities. The
singularities of Z are described by a list of pairs [type, rs]. Each pair gives the ADE-
type type (expressed by a string such as "A1", "A2", ...) of a singular point P of Z
and the list rs = [ry,...,7,] of classes r; = [C;] € Sz of smooth rational curves C;

on Z that are contracted to the singular point P.

3. THE FILE S0S3.txt

In the file SO0S3.txt, we have the following data, which are related to the materials in
Section 2 of the paper [1].

3.1. QP-graphs. The set of vertices of the Petersen graph P is the list
Ve =11,...,10].

The set of vertices of a QP-graph Q is the list
Vo =11,...,40].

e PG is the Petersen graph P.

e GraphQPO is the graph Q,.

e GraphQP1 is the graph Q;.

e QPgamma0 is the QP-covering map vq: Qp — P.

e (QPgammal is the QP-covering map v;: Q1 — P.

e GramQPO is the Gram matrix of (Qy).

e GramQP1 is the Gram matrix of (Q;).

e embQPO is the canonical map Qy < (Qp). (See Convention (4).) From embQPO,
we can recover the basis of (Qy) with respect to which GramQPO is written. We do

not have a simple description of this basis.
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e embQP1 is the canonical map Q; — (Q;). From embQP1, we see that (Q;) has a

basis consisting of the classes of the vertices

1,2,3,4,5,6,7,9,10,11, 13, 14, 15,17, 18,21, 23, 25, 29, 33.

discQPO is the discriminant form of (Qp).

discQP1 is the discriminant form of (Q;).

AutPG is Aut(P), which is a list of permutations of Vp = [1,...,10].
AutQPO is Aut(Qy), which is a list of permutations of Vg, = [1, ..., 40].
AutQP1 is Aut(Q;), which is a list of permutations of Vg, = [1,...,40].

3.2. The line configuration L5 on X3 and the lattice S3. We denote by I the
element v/—1 € Fg. An element of Fg is written as a + b I, where a,b € {0,1,—1}.

e L112egs is the list of equations of lines on X3 =2 F3. An equation
1171 + A12%2 + 1373 + A14T4 = G217 + A22T2 + G373 + A24T4 = 0
of a line with a;; € [Fg is expressed by the matrix
11 Q12 a3 dig
(21 Qg2 G23 A4
The set L1715 is sorted according to the list L112eqs. We denote by /¢; the ith

element of L;19.

GraphL112 is the dual graph of Lq15.

GramS3 is the Gram matrix of Ss.

discS3 is the discriminant form of Ss.

L112vs expresses the embedding L1715 < S3 given by ¢ — [], that is, L112vs is
the list [ [¢1],..., [¢112] ] of vectors representing the classes of lines. Looking at

L112vs, we see that the set of classes of lines
gl) 627 637 647 €57 667 677 €97 6107 6117 €177 6187 ng?
lor, Loz, Loz, los, log, Lo, L33, U35, Lag

is the basis of Ss.
e h3 is the ample class hy € Ss.
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3.3. The configuration £, on X, and the lattice 5.

e GraphL40 is the dual graph of L49. We identify £,y with the set of vertices of Q;.
Hence GraphL40 is identical to GraphQP1.

e The matrix GramSO is the Gram matrix of S;. We fix a basis of Sy so that GramS0
is identical with GramQP1.

e discS0 is the discriminant form of Sy. Note that discSO0 is identical with discQP1.

e L40vs expresses the canonical embedding L4 < Sp given by ¢ — [{]. Since we
have identified L4y with the set of vertices of Q;, the item L40vs is identical to
emb(QP1.

e hO is the ample class hg € Sp.

3.4. The embeddings p.: L4 — L1712 and p: Sy — Ss.

e rhol is the embedding p,: L49 — L112.
e rho is the embedding p: Sy — Ss.

4. THE FILE PGU.txt

The group PGU4(Fy) is very large (of order 13063680). Hence this group is recorded
in the following way in the file PGU.txt. For each line ¢, € L15, we choose an element
7, € PGUy(Fy) such that

0 = Y.
Let D be the set of lines ¢; such that (/1,¢;) = 0. Then we have ¢ € D and |D| = 81.
For each ¢, € D, we choose an element o(¢,) € PGU,(Fy) such that

g =g, G =y,
We define the following subsets of PGU4(Fy):
PGUr = {g€PGU4(Fy) |t =b, lG="1lo} ={p1,...,pras},
PGUs = {o(t,) € PGU4(Fy) | 4, € D} ={oy,...,08},
PGUr = {m,..., 7112}

Since PGUy(Fg) acts transitively on the set of ordered pairs of disjoint lines on X3, every

element of PGU(FFy) is uniquely written in the form

piome (1<i<1440, 1<j <81, 1<k<112).
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Therefore, as a set, PGUy(IFg) can be obtained as the Cartesian product
PGUR X PGUS X PGUT

Caution. The group PGU,(Fy) acts on P? from the left, and acts on L135 and Sz from
the right by the pull-back. Therefore, if a line £ € L5 is defined by an equation Ax = 0,
where A is a 2 x 4 matrix, then, for g € PGU4(Fy), the line £9 = g=1(¢) is defined by the
equation (Ag)z = 0.

e The three lists PGUR, PGUS, PGUT are the lists of matrices in PGU,(IFg) representing
the elements of PGUpg, PGUg, PGU7, respectively. An item of each of these lists
is a 4 x 4 matrix g with components in Fg such that 7¢- g is a scalar matrix, where
g is the matrix obtained from ¢ by applying a — a® to each component.

e The three lists PGURperm, PGUSperm, PGUTperm are the lists of permutations on the
set L1712 induced by the elements of PGUg, PGUg, PGUr, respectively. The set
PGURperm is sorted according to PGUR, and the same for PGUSperm and PGUTperm.

e The three lists PGUR0OS3, PGUS0S3, PGUTOS3 are the lists of isometries of S5 induced
by the elements of PGUg, PGUg, PGUr, respectively. The set PGUROS3 is sorted
according to PGUR, and the same for PGUS0S3 and PGUT0S3.

5. THE FILE Borcherds

This file contains the computational data related to Borcherds’ method for X, and X3
(Sections 4.1 and 4.2 of [1]), the data related to Aut(Xy, ho) (Section 4.3 of [1]), and the
data related to the proof of Theorems 1.7 and 1.8 (Section 5 of [1]).

Let S be an even hyperbolic lattice. Let i: S < Log be a primitive embedding inducing
ip: P(S) — P(Lag), and let prg: Loyg ® Q — S ® Q be the orthogonal projection. Let
w € Lag be a Weyl vector. A wall (v)* of a V(i)-chamber D = i, (C(w)) is expressed by
a pair [v,7] of the primitive vector v of SV defining the wall (v)X N D of D and a Leech
root 7 € R(Lqg) with respect to w such that (prg(r))t = (v)*.

5.1. The lattice L.

e GramL26 is the Gram matrix of Log.
e w0 is the Weyl vector wy € Log.
e wOprime is a Weyl vector wj, € Log such that (wp,w;) = 1. We can confirm that

wp is a Weyl vector by showing that the orthogonal complement in Log of the
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lattice (wp,wy) of rank 2 is an even negative-definite unimodular lattice with no

roots.

5.2. Borcherds’ method for Xj.

The

i3 is the primitive embedding i3: S3 < Log.

pr3 is the orthogonal projection pry: Log ® Q — S5 @ Q.

0gS3 is the group O(g(S;)). Each element is expressed by a matrix with respect
to the generators of A(S;) fixed in discS3.

0gS3period is the group O(q(S;),w). Each element is expressed by a matrix with
respect to the generators of A(S;) fixed in discS3.

h3 is the ample class hy € S3. (This is identical to h3 given in S0S3.txt.)

Wout3 is the list of outer-walls of the initial V(i3)-chamber Dj3. The projection
[v,7] = v gives a bijection from Wout3 to L112vs.

0648 is the orbit Og,q of inner-walls of Dj.

05184 is the orbit Of,g, of inner-walls of Dj.

group Aut(X3, hs) is equal to PGU4(Fg), which is recorded in the file PGU. txt.

Hence we omit it.

The double-plane involution g(b,).

gdpp10 is the double-plane involution g(b},) € Aut(X3) expressed by a 22 x 22-
matrix acting on Ss.

innwalll0 is the primitive vector of Sy (written with respect to the fixed basis of
S3 ® Q) that defines the inner-wall of D3 in the orbit Of,s across which Dg(b/w) is
adjacent to Ds.

dpp10 is a double-plane polarization b, € S3 that induces the involution g(b},).
Singdpp10 is the singularities of the normal K3 surface that is the finite double
coverer of P? in the Stein factorization of the morphism X3 — P? induced by b.

(See Convention (5).)

The double-plane involution g(b, ).

e gdpp31 is the double-plane involution g(b5,) € Aut(X3) expressed by a 22 x 22-

matrix acting on Ss.
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innwall31 is the primitive vector of Sy (written with respect to the fixed basis of
S3 ® Q) that defines the inner-wall of D3 in the orbit Of,g, across which Dg(bgl) is
adjacent to Ds.

dpp31 is a double-plane polarization b4, € S3 that induces the involution g(b,).
Singdpp31 is the singularities of the normal K3 surface that is the finite double

coverer of P? in the Stein factorization of the morphism X3 — P? induced by b5, .

5.3. Borcherds’ method for X|.

i0 is the primitive embedding ig: So <> Log.

pro is the orthogonal projection pry: Log ® Q — Sy @ Q.

09SO is the group O(gq(Sp)). Each element is expressed by a matrix with respect
to the generators of A(Sy) fixed in discS0.

0gSOperiod is the group O(g(Sy),w). Each element is expressed by a matrix with
respect to the generators of A(Sp) fixed in discSO0.

hO is the ample class hy € Sy. (This is identical to hO given in S0S3.txt.)

WoutO is the list of outer-walls of the initial V(iy)-chamber Dy.

064 is the orbit Og4 of inner-walls of Dy.

040 is the orbit Oy of inner-walls of Dj.

0160 is the orbit O4¢ of inner-walls of D).

0320 is the orbit Osy of inner-walls of Dy.

AutXO0ho is the group Aut(Xo, ho). The order is 3840. Each element of this list is

a 20 x 20 matrix acting on Sp.

The double-plane involution g(bso).

gdpp80 is the double-plane involution g(bsg) € Aut(Xy) expressed by a 20 x 20-
matrix acting on Sy.

innwall80 is the primitive vector of Sy (written with respect to the fixed basis of
So ® Q) that defines the inner-wall of Dq in the orbit Ogy across which Dg(bSO) is
adjacent to Dy.

dpp80 is a double-plane polarization bgy € Sy that induces the involution g(bs).
Singdpp80 is the singularities of the normal K3 surface that is the finite double
coverer of P? in the Stein factorization of the morphism X, — P? induced by bg.

(See Convention (5).)
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The double-plane involution g(b12).

gdpp112 is the double-plane involution g(b12) € Aut(Xy) expressed by a 20 x 20-
matrix acting on .

innwalll12 is the primitive vector of Sy (written with respect to the fixed basis
of Sy ® Q) that defines the inner-wall of Dy in the orbit O4y across which Dg(blm)
is adjacent to Dy.

dpp112 is a double-plane polarization by15 € Sy that induces the involution g(b;2).
Singdpp112 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X, — P? induced by by;5.

The double-plane involution g(bags)-

gdpp296 is the double-plane involution g(bygs) € Aut(Xy) expressed by a 20 x 20-
matrix acting on .

innwall296 is the primitive vector of Sy (written with respect to the fixed basis
of Sp ® Q) that defines the inner-wall of Dy in the orbit O;49 across which Dg(bM)
is adjacent to Dy.

dpp296 is a double-plane polarization begs € Sy that induces the involution g(bagg).
Singdpp296 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X, — P? induced by bagg.

The double-plane involution g(bess)-

gdpp688 is the double-plane involution g(bgss) € Aut(Xy) expressed by a 20 x 20-
matrix acting on .

innwall688 is the primitive vector of Sy (written with respect to the fixed basis
of Sp ® Q) that defines the inner-wall of Dy in the orbit Oz across which Dg(bﬁgg)
is adjacent to Dy.

dpp688 is a double-plane polarization bgsg € Sp that induces the involution g(bgss)-
Singdpp688 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X, — P? induced by bggs.

5.4. The finite group Aut(Xo, ho) (Section 4.3 of [1]).

SixFs is the list of 6 quadrangles F. = [v1,vs,v3,v4] of singular fibers of the

Jacobian fibration o: Xy — P!, where vy, v, v3,v4 are sorted in such a way that
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they form the dual graph

U1 U2

Uy i:ivs )
and the six quadrangles F. are sorted according to the critical values ¢ sorted as
Cr(o) =10,00,1,—1,14, —1].
fsigma is the class f € Sy of a fiber of 0: Xy — PL.
zsigma is the class z € Sy of the zero section of o: Xy — PL.
AutX0f is the group Aut(Xo, f). The order is 768. Each element of this list is a
20 x 20 matrix acting on Sj.
iotasigmaz is the inversion ¢, € Aut(Xo, f) of the Jacobian fibration (o, z). This
automorphism is expressed by a 20 x 20 matrix acting on .Sy.
MWtorsigmaz is the list of 16 pairs [v, [a, b]], where v € Ly is the class of a section
of o: Xy — P! that defines [a,b] € (Z/4Z)* under a fixed isomorphism between
the Mordell-Weil group MW (o, 2) and (Z/4Z)>.
Tsigma is the list of translations by sections of o: Xy — P!. Each element of this
list is a 20 x 20 matrix acting on Sy, and the elements are sorted according to
MWtorsigmaz.

Galmu is the Galois group Gal(u). The order is 32. Each element of this list is a

20 x 20 matrix acting on Sy.

5.5. Proof of Theorems 1.7 and 1.8 of [1].

pr30 is the orthogonal projection prg,: Sz ® Q — Sy ® Q.

GramQ is the Gram matrix of Q).

embQS3 is the embedding @) — Ss.

prQ is the orthogonal projection prg: S3 @ Q — Q ® Q.

v1v2 is the pair [v1,vs] of primitive vectors of Sy that define the hyperplanes
(v1)4, (v2)* in Lemma 5.4 of [1].

FourD3s is the list [id,y1,72,¢€] such that D3 = D DJ* D3? D5 are the V(i3)-
chambers containing the face Dy of Dj.

CCC4 is the list Cy.

CCC7 is the list of the two orbits of the action of PGU4(Fg) on Cs.
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T i
O O
€2 €3 €4 €5 €6 er €8 €9 €10

FIGURE 6.1. Basis of Ly

e 1iftAutXOho is the list of 4 lists of 960 pairs [g, g] such that g is an element of
PGU4(Fy) - v C Aut(X3) preserving Sy C S3, where v € [id, 71,72, €], and ¢ is the
restriction of g to Sp.

e 1liftgdppl12 is the element of O (S35, So)NAut(X3) that is mapped to the double-
plane involution g(by12) of Xo by p|au. This is a double-plane involution of X3
given by the double-plane polarization p(bj12) € Ss, and the classes of smooth

bi12

rational curves contracted by ®,@,,,): X3 — P? are the image by p of those con-
tracted by @, ,,: Xo — P2

e 1iftgdpp688 is the element of O (S5, So)NAut(X3) that is mapped to the double-
plane involution g(bgss) of Xo by plaut.- This is a double-plane involution of X3
given by the double-plane polarization p(bgsg) € S3, and the classes of smooth
rational curves contracted by @, : X3 — P? are the image by p of those con-

tracted by @y, : Xo — P2

bess)

6. THE FILE Enriques.txt

e ConfiglIV is the dual graph of the smooth rational curves on Y7y, (Figure 1.2
of [1]). The set of vertices is [1,. .., 20].

e GramL10 is the Gram matrix of the even unimodular hyperbolic lattice L,y with
the basis given by the 10 roots ey, ..., e;o forming the dual graph in Figure 6.1
above.

6) ;

e SixEnriques is the list of the data of the six Enriques involutions e, ..., ¢®) in

Aut(Xo, ho). Each data is the list

€0, emb, proj, e3, Zen
proj

6)

of the following items. Let gy be one of ¢, ... &  The item e0 is the ma-

trix representation of the action of gy on Sy. Let m: Xo — Yy := Xy/(g0) be
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the quotient morphism, and let Sy be the Néron-Severi lattice of Y;. We fix an
identification Ljy = Sy (see Remark below). The item emb is the embedding
L1(2) = Sy(2) — Sp induced by 7*: Sy < Sp, and the item proj is the orthog-
onal projection Sy ® Q — Sy ® Q to the image of 7* ® Q. Let €3 be the Enriques
involution in O (S5, Sg) N Aut(X3) that is mapped to g9 by p|aw. The item e3 is
the matrix representation of the action of €3 on S3. The item Zen is the list of 4
lists of 160 triples [g, g, g|Sy], where

e g€ O%(S;,5)NAut(X3) is an element of Zxyg(x,)(e3) NPGU4(Fg) - v, where

~v is an element of FourD3s = [id, 1, e, €],
e g € Aut(Xy) is the restriction §|g,, which is an element of Za,(x,)(€0), and
e g|Sy is the restriction of g to Sy C Sp, which is an element of Aut(Yy), and

is expressed by a 10 x 10 matrix acting on Sy.

Remark 6.1. The identification Lig = Sy is chosen so that the image of hg by the
orthogonal projection Sp ® Q — Sy ® Q = L1y ® Q generates the 1-dimensional
subspace
()t N---N(es) N(er)t NN (e)t
of P(Lyyp).
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