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1. Introduction

This note is an explanation of the computational data obtained in the paper [1]. The

data are available from the author’s webpage:

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html

The data are written in four files:

• S0S3.txt (Section 2 of the paper [1]),

• PGU.txt (the elements of PGU4(F9)),

• Borcherds.txt (Sections 4 and 5 of the paper [1]),

• Enriques.txt (Section 6 of the paper [1]).

A zipped folder (X0X3compdata.zip) containing these files is also available from the site

above.

We use the notation of [1] in the following.

2. Conventions

(1) Every finite set is sorted in a certain way, and is expressed as a list

[elm1, . . . , elmM ].

A map f from a finite set X = [elm1, . . . , elmM ] to a finite set Y = [elm′1, . . . , elm
′
N ]

is expressed as a list of indices [i1, . . . , iM ] such that f maps elmν ∈ X to elm′iν ∈ Y

for ν = 1, . . . ,M . In particular, a permutation of X is expressed by a permutation of

1, . . . ,M .

(2) Every lattice has a fixed basis. Let L be a lattice of rank m. Then L is expressed by

the Gram matrix with respect to the fixed basis. Each element of L⊗Q is expressed by

a row vector of length m with respect to the fixed basis, and every isometry g ∈ O(L)

is expressed by an m ×m matrix with respect to the fixed basis. (Recall that O(L)
1



2 ICHIRO SHIMADA

acts on L from the right.) A map f from a finite set X = [elm1, . . . , elmM ] to L⊗Q
is given by the list of row vectors expressing f(elmν) for ν = 1, . . . ,M . Let L′ be a

lattice of rank n. A linear map from L⊗Q to L′⊗Q is expressed by an m×n matrix

with respect to the fixed bases of L and L′.

(3) The discriminant form (A, q) of an even lattice L of rank n is expressed by a list

[ discg, discf, proj, lift ].

The list discg = [a1, . . . , ak] of integers ai > 1 indicates that the discriminant group

A = L∨/L is isomorphic to

Z/a1Z× · · · × Z/akZ.

Let v̄1, . . . , v̄k be generators of A such that v̄i generates the ith factor Z/aiZ of A.

The (i, j)-component of the k × k matrix discf is a rational number that expressesq(v̄i) ∈ Q/2Z if i = j,

b(v̄i, v̄j) ∈ Q/Z if i ̸= j,

where b(x, y) = (q(x+ y)− q(x)− q(y))/2. The third item proj is the n× k integer

matrix M such that v 7→ v̄ = vM is the canonical projection L∨ → A, where v ∈ L∨ is

expressed by a row vector with respect to the fixed basis of L⊗Q (not with respect to

the canonical dual basis of L∨). Hence the (i, j)-component of M should be regarded

as an element of Z/ajZ. The item lift is the list [v1, . . . , vk] of elements of L∨ ⊂ L⊗Q
that are mapped to [v̄1, . . . , v̄k] by the canonical projection. (Again, the vector vi is

written with respect to the fixed basis of L ⊗ Q.) An automorphism ḡ of (A, q) is

expressed by a k×k integer matrix Mḡ with respect to the basis v̄1, . . . , v̄k of A. Hence

the (i, j)-component of Mḡ should be regarded as an element of Z/ajZ. Note that, by
proj and lift, we can easily calculate the image ηL(g) ∈ O(q) of g ∈ O(L) by the

natural homomorphism ηL : O(L) → O(q).

(4) Let Γ = (V, η) be a finite graph. The set V = {v1, . . . , vn} of vertices is sorted in a

certain way. The graph Γ is expressed by an n× n matrix whose (i, j)-component is−2 if i = j,

η({vi, vj}) if i ̸= j.
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A map from a finite simple graph (V,E) to a finite simple graph (V ′, E ′) is expressed

by a map V → V ′ of sets of vertices (see Convention (1) above). A map from a finite

graph (V,E) to a lattice L is expressed by a map from V to L (see Convention (2)

above).

(5) Let Z̄ be a normal K3 surface, that is, a normal surface whose minimal resolution

Z is a K3 surface. Then Z̄ has only rational double points as its singularities. The

singularities of Z̄ are described by a list of pairs [type, rs]. Each pair gives the ADE-

type type (expressed by a string such as "A1", "A2", . . . ) of a singular point P of Z̄

and the list rs = [r1, . . . , rm] of classes ri = [Ci] ∈ SZ of smooth rational curves Ci

on Z that are contracted to the singular point P .

3. The file S0S3.txt

In the file S0S3.txt, we have the following data, which are related to the materials in

Section 2 of the paper [1].

3.1. QP-graphs. The set of vertices of the Petersen graph P is the list

VP = [1, . . . , 10].

The set of vertices of a QP-graph Q is the list

VQ = [1, . . . , 40].

• PG is the Petersen graph P .

• GraphQP0 is the graph Q0.

• GraphQP1 is the graph Q1.

• QPgamma0 is the QP-covering map γ0 : Q0 → P .

• QPgamma1 is the QP-covering map γ1 : Q1 → P .

• GramQP0 is the Gram matrix of ⟨Q0⟩.
• GramQP1 is the Gram matrix of ⟨Q1⟩.
• embQP0 is the canonical map Q0 ↪→ ⟨Q0⟩. (See Convention (4).) From embQP0,

we can recover the basis of ⟨Q0⟩ with respect to which GramQP0 is written. We do

not have a simple description of this basis.
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• embQP1 is the canonical map Q1 ↪→ ⟨Q1⟩. From embQP1, we see that ⟨Q1⟩ has a

basis consisting of the classes of the vertices

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 21, 23, 25, 29, 33.

• discQP0 is the discriminant form of ⟨Q0⟩.
• discQP1 is the discriminant form of ⟨Q1⟩.
• AutPG is Aut(P), which is a list of permutations of VP = [1, . . . , 10].

• AutQP0 is Aut(Q0), which is a list of permutations of VQ0 = [1, . . . , 40].

• AutQP1 is Aut(Q1), which is a list of permutations of VQ1 = [1, . . . , 40].

3.2. The line configuration L112 on X3 and the lattice S3. We denote by I the

element
√
−1 ∈ F9. An element of F9 is written as a+ b I, where a, b ∈ {0, 1,−1}.

• L112eqs is the list of equations of lines on X3
∼= F3. An equation

a11x1 + a12x2 + a13x3 + a14x4 = a21x1 + a22x2 + a23x3 + a24x4 = 0

of a line with aij ∈ F9 is expressed by the matrix[
a11 a12 a13 a14

a21 a22 a23 a24

]
.

The set L112 is sorted according to the list L112eqs. We denote by ℓi the ith

element of L112.

• GraphL112 is the dual graph of L112.

• GramS3 is the Gram matrix of S3.

• discS3 is the discriminant form of S3.

• L112vs expresses the embedding L112 ↪→ S3 given by ℓ 7→ [ℓ], that is, L112vs is

the list [ [ℓ1], . . . , [ℓ112] ] of vectors representing the classes of lines. Looking at

L112vs, we see that the set of classes of lines

ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, ℓ7, ℓ9, ℓ10, ℓ11, ℓ17, ℓ18, ℓ19,

ℓ21, ℓ22, ℓ23, ℓ25, ℓ26, ℓ27, ℓ33, ℓ35, ℓ49

is the basis of S3.

• h3 is the ample class h3 ∈ S3.
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3.3. The configuration L40 on X0 and the lattice S0.

• GraphL40 is the dual graph of L40. We identify L40 with the set of vertices of Q1.

Hence GraphL40 is identical to GraphQP1.

• The matrix GramS0 is the Gram matrix of S0. We fix a basis of S0 so that GramS0

is identical with GramQP1.

• discS0 is the discriminant form of S0. Note that discS0 is identical with discQP1.

• L40vs expresses the canonical embedding L40 ↪→ S0 given by ℓ 7→ [ℓ]. Since we

have identified L40 with the set of vertices of Q1, the item L40vs is identical to

embQP1.

• h0 is the ample class h0 ∈ S0.

3.4. The embeddings ρL : L40 ↪→ L112 and ρ : S0 ↪→ S3.

• rhoL is the embedding ρL : L40 ↪→ L112.

• rho is the embedding ρ : S0 ↪→ S3.

4. The file PGU.txt

The group PGU4(F9) is very large (of order 13063680). Hence this group is recorded

in the following way in the file PGU.txt. For each line ℓk ∈ L112, we choose an element

τk ∈ PGU4(F9) such that

ℓτk1 = ℓk.

Let D be the set of lines ℓj such that ⟨ℓ1, ℓj⟩ = 0. Then we have ℓ6 ∈ D and |D| = 81.

For each ℓν ∈ D, we choose an element σ(ℓν) ∈ PGU4(F9) such that

ℓ
σ(ℓν)
1 = ℓ1, ℓ

σ(ℓν)
6 = ℓν .

We define the following subsets of PGU4(F9):

PGUR := { g ∈ PGU4(F9) | ℓg1 = ℓ1, ℓg6 = ℓ6 } = {ρ1, . . . , ρ1440},

PGUS := {σ(ℓν) ∈ PGU4(F9) | ℓν ∈ D } = {σ1, . . . , σ81},

PGUT := {τ1, . . . , τ112}.

Since PGU4(F9) acts transitively on the set of ordered pairs of disjoint lines on X3, every

element of PGU4(F9) is uniquely written in the form

ρiσjτk ( 1 ≤ i ≤ 1440, 1 ≤ j ≤ 81, 1 ≤ k ≤ 112 ).
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Therefore, as a set, PGU4(F9) can be obtained as the Cartesian product

PGUR × PGUS × PGUT .

Caution. The group PGU4(F9) acts on P3 from the left, and acts on L112 and S3 from

the right by the pull-back. Therefore, if a line ℓ ∈ L112 is defined by an equation Ax = 0,

where A is a 2× 4 matrix, then, for g ∈ PGU4(F9), the line ℓg = g−1(ℓ) is defined by the

equation (Ag)x = 0.

• The three lists PGUR, PGUS, PGUT are the lists of matrices in PGU4(F9) representing

the elements of PGUR,PGUS,PGUT , respectively. An item of each of these lists

is a 4×4 matrix g with components in F9 such that Tg · ḡ is a scalar matrix, where

ḡ is the matrix obtained from g by applying a 7→ a3 to each component.

• The three lists PGURperm, PGUSperm, PGUTperm are the lists of permutations on the

set L112 induced by the elements of PGUR,PGUS,PGUT , respectively. The set

PGURperm is sorted according to PGUR, and the same for PGUSperm and PGUTperm.

• The three lists PGUROS3, PGUSOS3, PGUTOS3 are the lists of isometries of S3 induced

by the elements of PGUR,PGUS,PGUT , respectively. The set PGUROS3 is sorted

according to PGUR, and the same for PGUSOS3 and PGUTOS3.

5. The file Borcherds

This file contains the computational data related to Borcherds’ method for X0 and X3

(Sections 4.1 and 4.2 of [1]), the data related to Aut(X0, h0) (Section 4.3 of [1]), and the

data related to the proof of Theorems 1.7 and 1.8 (Section 5 of [1]).

Let S be an even hyperbolic lattice. Let i : S ↪→ L26 be a primitive embedding inducing

iP : P(S) ↪→ P(L26), and let prS : L26 ⊗ Q → S ⊗ Q be the orthogonal projection. Let

w ∈ L26 be a Weyl vector. A wall (v)⊥ of a V(i)-chamber D = i−1
P (C(w)) is expressed by

a pair [v, r] of the primitive vector v of S∨ defining the wall (v)⊥ ∩D of D and a Leech

root r ∈ R(L26) with respect to w such that (prS(r))
⊥ = (v)⊥.

5.1. The lattice L26.

• GramL26 is the Gram matrix of L26.

• w0 is the Weyl vector w0 ∈ L26.

• w0prime is a Weyl vector w′
0 ∈ L26 such that ⟨w0, w

′
0⟩ = 1. We can confirm that

w0 is a Weyl vector by showing that the orthogonal complement in L26 of the
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lattice ⟨w0, w
′
0⟩ of rank 2 is an even negative-definite unimodular lattice with no

roots.

5.2. Borcherds’ method for X3.

• i3 is the primitive embedding i3 : S3 ↪→ L26.

• pr3 is the orthogonal projection pr3 : L26 ⊗Q → S3 ⊗Q.

• OqS3 is the group O(q(S3)). Each element is expressed by a matrix with respect

to the generators of A(S3) fixed in discS3.

• OqS3period is the group O(q(S3), ω). Each element is expressed by a matrix with

respect to the generators of A(S3) fixed in discS3.

• h3 is the ample class h3 ∈ S3. (This is identical to h3 given in S0S3.txt.)

• Wout3 is the list of outer-walls of the initial V(i3)-chamber D3. The projection

[v, r] 7→ v gives a bijection from Wout3 to L112vs.

• O648 is the orbit O′
648 of inner-walls of D3.

• O5184 is the orbit O′
5184 of inner-walls of D3.

The group Aut(X3, h3) is equal to PGU4(F9), which is recorded in the file PGU.txt.

Hence we omit it.

The double-plane involution g(b′10).

• gdpp10 is the double-plane involution g(b′10) ∈ Aut(X3) expressed by a 22 × 22-

matrix acting on S3.

• innwall10 is the primitive vector of S∨
3 (written with respect to the fixed basis of

S3 ⊗Q) that defines the inner-wall of D3 in the orbit O′
648 across which D

g(b′10)
3 is

adjacent to D3.

• dpp10 is a double-plane polarization b′10 ∈ S3 that induces the involution g(b′10).

• Singdpp10 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X3 → P2 induced by b′10.

(See Convention (5).)

The double-plane involution g(b′31).

• gdpp31 is the double-plane involution g(b′31) ∈ Aut(X3) expressed by a 22 × 22-

matrix acting on S3.
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• innwall31 is the primitive vector of S∨
3 (written with respect to the fixed basis of

S3 ⊗Q) that defines the inner-wall of D3 in the orbit O′
5184 across which D

g(b′31)
3 is

adjacent to D3.

• dpp31 is a double-plane polarization b′31 ∈ S3 that induces the involution g(b′31).

• Singdpp31 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X3 → P2 induced by b′31.

5.3. Borcherds’ method for X0.

• i0 is the primitive embedding i0 : S0 ↪→ L26.

• pr0 is the orthogonal projection pr0 : L26 ⊗Q → S0 ⊗Q.

• OqS0 is the group O(q(S0)). Each element is expressed by a matrix with respect

to the generators of A(S0) fixed in discS0.

• OqS0period is the group O(q(S0), ω). Each element is expressed by a matrix with

respect to the generators of A(S0) fixed in discS0.

• h0 is the ample class h0 ∈ S0. (This is identical to h0 given in S0S3.txt.)

• Wout0 is the list of outer-walls of the initial V(i0)-chamber D0.

• O64 is the orbit O64 of inner-walls of D0.

• O40 is the orbit O40 of inner-walls of D0.

• O160 is the orbit O160 of inner-walls of D0.

• O320 is the orbit O320 of inner-walls of D0.

• AutX0h0 is the group Aut(X0, h0). The order is 3840. Each element of this list is

a 20× 20 matrix acting on S0.

The double-plane involution g(b80).

• gdpp80 is the double-plane involution g(b80) ∈ Aut(X0) expressed by a 20 × 20-

matrix acting on S0.

• innwall80 is the primitive vector of S∨
0 (written with respect to the fixed basis of

S0 ⊗ Q) that defines the inner-wall of D0 in the orbit O64 across which D
g(b80)
0 is

adjacent to D0.

• dpp80 is a double-plane polarization b80 ∈ S0 that induces the involution g(b80).

• Singdpp80 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X0 → P2 induced by b80.

(See Convention (5).)
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The double-plane involution g(b112).

• gdpp112 is the double-plane involution g(b112) ∈ Aut(X0) expressed by a 20× 20-

matrix acting on S0.

• innwall112 is the primitive vector of S∨
0 (written with respect to the fixed basis

of S0 ⊗Q) that defines the inner-wall of D0 in the orbit O40 across which D
g(b112)
0

is adjacent to D0.

• dpp112 is a double-plane polarization b112 ∈ S0 that induces the involution g(b112).

• Singdpp112 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X0 → P2 induced by b112.

The double-plane involution g(b296).

• gdpp296 is the double-plane involution g(b296) ∈ Aut(X0) expressed by a 20× 20-

matrix acting on S0.

• innwall296 is the primitive vector of S∨
0 (written with respect to the fixed basis

of S0 ⊗Q) that defines the inner-wall of D0 in the orbit O160 across which D
g(b296)
0

is adjacent to D0.

• dpp296 is a double-plane polarization b296 ∈ S0 that induces the involution g(b296).

• Singdpp296 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X0 → P2 induced by b296.

The double-plane involution g(b688).

• gdpp688 is the double-plane involution g(b688) ∈ Aut(X0) expressed by a 20× 20-

matrix acting on S0.

• innwall688 is the primitive vector of S∨
0 (written with respect to the fixed basis

of S0 ⊗Q) that defines the inner-wall of D0 in the orbit O320 across which D
g(b688)
0

is adjacent to D0.

• dpp688 is a double-plane polarization b688 ∈ S0 that induces the involution g(b688).

• Singdpp688 is the singularities of the normal K3 surface that is the finite double

coverer of P2 in the Stein factorization of the morphism X0 → P2 induced by b688.

5.4. The finite group Aut(X0, h0) (Section 4.3 of [1]).

• SixFs is the list of 6 quadrangles Fc = [v1, v2, v3, v4] of singular fibers of the

Jacobian fibration σ : X0 → P1, where v1, v2, v3, v4 are sorted in such a way that
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they form the dual graph

dd ddv4

v1 v2

v3 ,

and the six quadrangles Fc are sorted according to the critical values c sorted as

Cr(σ) = [0,∞, 1,−1, i,−i].

• fsigma is the class f ∈ S0 of a fiber of σ : X0 → P1.

• zsigma is the class z ∈ S0 of the zero section of σ : X0 → P1.

• AutX0f is the group Aut(X0, f). The order is 768. Each element of this list is a

20× 20 matrix acting on S0.

• iotasigmaz is the inversion ισ ∈ Aut(X0, f) of the Jacobian fibration (σ, z). This

automorphism is expressed by a 20× 20 matrix acting on S0.

• MWtorsigmaz is the list of 16 pairs [v, [a, b]], where v ∈ L40 is the class of a section

of σ : X0 → P1 that defines [a, b] ∈ (Z/4Z)2 under a fixed isomorphism between

the Mordell-Weil group MW(σ, z) and (Z/4Z)2.
• Tsigma is the list of translations by sections of σ : X0 → P1. Each element of this

list is a 20 × 20 matrix acting on S0, and the elements are sorted according to

MWtorsigmaz.

• Galmu is the Galois group Gal(µ). The order is 32. Each element of this list is a

20× 20 matrix acting on S0.

5.5. Proof of Theorems 1.7 and 1.8 of [1].

• pr30 is the orthogonal projection pr30 : S3 ⊗Q → S0 ⊗Q.

• GramQ is the Gram matrix of Q.

• embQS3 is the embedding Q ↪→ S3.

• prQ is the orthogonal projection prQ : S3 ⊗Q → Q⊗Q.

• v1v2 is the pair [v1, v2] of primitive vectors of S∨
3 that define the hyperplanes

(v1)
⊥, (v2)

⊥ in Lemma 5.4 of [1].

• FourD3s is the list [id, γ1, γ2, ε] such that D3 = Did
3 , D

γ1
3 , Dγ2

3 , Dε
3 are the V(i3)-

chambers containing the face D0 of D3.

• CCC4 is the list C4.
• CCC7 is the list of the two orbits of the action of PGU4(F9) on C7.



ELLIPTIC MODULAR SURFACE: COMPUTATIONAL DATA 11

c e1
e2 e3 e4 e5 e6 e7 e8 e9 e10

c c c c c c c c c
Figure 6.1. Basis of L10

• liftAutX0h0 is the list of 4 lists of 960 pairs [g̃, g] such that g̃ is an element of

PGU4(F9) · γ ⊂ Aut(X3) preserving S0 ⊂ S3, where γ ∈ [id, γ1, γ2, ε], and g is the

restriction of g̃ to S0.

• liftgdpp112 is the element of O+(S3, S0)∩Aut(X3) that is mapped to the double-

plane involution g(b112) of X0 by ρ̃|Aut. This is a double-plane involution of X3

given by the double-plane polarization ρ(b112) ∈ S3, and the classes of smooth

rational curves contracted by Φρ(b112) : X3 → P2 are the image by ρ of those con-

tracted by Φb112 : X0 → P2.

• liftgdpp688 is the element of O+(S3, S0)∩Aut(X3) that is mapped to the double-

plane involution g(b688) of X0 by ρ̃|Aut. This is a double-plane involution of X3

given by the double-plane polarization ρ(b688) ∈ S3, and the classes of smooth

rational curves contracted by Φρ(b688) : X3 → P2 are the image by ρ of those con-

tracted by Φb688 : X0 → P2.

6. The file Enriques.txt

• ConfigIV is the dual graph of the smooth rational curves on YIV,p (Figure 1.2

of [1]). The set of vertices is [1, . . . , 20].

• GramL10 is the Gram matrix of the even unimodular hyperbolic lattice L10 with

the basis given by the 10 roots e1, . . . , e10 forming the dual graph in Figure 6.1

above.

• SixEnriques is the list of the data of the six Enriques involutions ε(1), . . . , ε(6) in

Aut(X0, h0). Each data is the list

[e0, emb, proj, e3, Zen]

of the following items. Let ε0 be one of ε(1), . . . , ε(6). The item e0 is the ma-

trix representation of the action of ε0 on S0. Let π : X0 → Y0 := X0/⟨ε0⟩ be
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the quotient morphism, and let SY be the Néron-Severi lattice of Y0. We fix an

identification L10
∼= SY (see Remark below). The item emb is the embedding

L10(2) ∼= SY (2) ↪→ S0 induced by π∗ : SY ↪→ S0, and the item proj is the orthog-

onal projection S0 ⊗Q → SY ⊗Q to the image of π∗ ⊗Q. Let ε3 be the Enriques

involution in O+(S3, S0) ∩Aut(X3) that is mapped to ε0 by ρ̃|Aut. The item e3 is

the matrix representation of the action of ε3 on S3. The item Zen is the list of 4

lists of 160 triples [g̃, g, g|SY ], where

• g̃ ∈ O+(S3, S0)∩Aut(X3) is an element of ZAut(X3)(ε3)∩PGU4(F9) · γ, where
γ is an element of FourD3s = [id, γ1, γ2, ε],

• g ∈ Aut(X0) is the restriction g̃|S0 , which is an element of ZAut(X0)(ε0), and

• g|SY is the restriction of g to SY ⊂ S0, which is an element of Aut(Y0), and

is expressed by a 10× 10 matrix acting on SY .

Remark 6.1. The identification L10
∼= SY is chosen so that the image of h0 by the

orthogonal projection S0 ⊗ Q → SY ⊗ Q = L10 ⊗ Q generates the 1-dimensional

subspace

(e1)
⊥ ∩ · · · ∩ (e5)

⊥ ∩ (e7)
⊥ ∩ · · · ∩ (e10)

⊥

of P(L10).
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