ON ZARISKI-VAN KAMPEN THEOREM

ICHIRO SHIMADA

ABSTRACT. Let f : E — B be a dominant morphism, where E and B are
smooth irreducible complex quasi-projective varieties, and let F';, be a general
fiber of f. We present conditions under which the homomorphism 7 1 (Fy) —
71 (E) induced by the inclusion is injective.

1. INTRODUCTION

We work over the complex number field C.
Let E and B be smooth irreducible quasi-projective varieties, and let

f:EF— B

be a dominant morphism. For a point a € B, we denote by F, the fiber f~1(a).
We choose a general point b of B, and a point b of F}. Let

i:F, - FE

denote the inclusion morphism.
In [5], Nori proved the following:

Proposition 1.1 ([5], Lemma 1.5 (C)). Suppose that there exists a Zariski closed

subset = of B with codimension > 2 such that, if a € B\ 2, then F, is irreducible

and possesses at least one point at which f is smooth. Then the sequence
m(F,b) -5 m(BD) 5 mBy) — 1

18 exact. |

We will study the kernel of i,. When f has a global section, the classical Zariski-
van Kampen theorem describes Keri, in terms of the monodromy relations in
m1(Fy). The purpose of this paper is to investigate Ker i, in a situation where only
local monodromies are available. More precisely, we will show that, in some cases,
the triviality of the local monodromies on the fundamental groups of fibers implies
the injectivity of i..

In order to define the local monodromy on the fundamental group of a fiber, let
us assume that the the condition in Proposition 1.1 is satisfied.

Definition 1.2 ([5], Lemma 1.5(A)). The topological discriminant locus X5 of f
is the minimal Zariski closed subset of B among the Zariski closed subsets ¥ of B
with the following properties;

e Y contains the locus f(Sing f) of critical values of f, and

e f islocally trivial over B\ ¥ as a continuous map in the complex topology.
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Let E;l), R E;k) be the irreducible components of ¥; with codimension 1 in
B. Let x; be a general point of E(i), and U; a sufficiently small open ball in B with

the center z;. Since = is of codimension > 2 in B, we have Ey) ¢ =, and hence
x; ¢ Z. Therefore we have a holomorphic local section

S; ° Ul — f_l(Ul)

of f defined on U;. We fix local coordinates (z1,. .., z;,) on U; with the origin x;
such that X is defined by z; = 0. We put

a; = (E,O,...,O) ceU; \ (Ul ﬂEf),
where ¢ is a sufficiently small positive real number, and consider the loop
)\1' . (I,@I) — (Ul \ (Ul ﬂEf),ai)

defined by
Ai(t) := (eexp(2mv—1t),0,...,0),
)

which we will call a simple loop around the hypersurface E&f .
section s;, we can define the monodromy

Using the local

pi = 1 (Fayysiai)) = mi(Fa,, si(aq))

along the loop A\;. We call u; a local monodromy around E?). In §2, we will show
that the condition for p; to be trivial does not depend on the choice of the local
section s; (Corollary 2.5).

Theorem 1.3. Suppose that the following conditions are satisfied:

(T1) The quasi-projective variety B is either a non-compact Riemann surface or
an affine space AN,

(T2) The morphism f is flat.

(T3) There exists a Zariski closed subset Z of B with codimension > 2 such that,
if a € B\ E, then F, is irreducible and possesses at least one point at which
f is smooth.

(T4) The local monodromy p; around ng) is trivial fori=1,... k.

Then, for a general point b of B, the sequence
(1.1) 1 — m(Fb) - m(Eb) 5 mBb) — 1
15 exact.
By Proposition 1.1, the condition (T3) implies that the sequence (1.1) is exact
except for the injectivity of i.. Hence all we have to show is that i, is injective.
The condition (T1) of Theorem 1.3 suggests the following:
Problem 1.4. Suppose that the conditions (T2)-(T4) of Theorem 1.3 are satisfied.
Can one define a homomorphism 0 : w4 (B) — 71 (F}) such that Ker 4, = Im 9 holds?
In [11], we studied the homotopy lifting property of f, and gave a partial answer
to Problem 1.4.
In view of Theorem 1.3, it is important to know whether a given local monodromy
is trivial or not. In the second half of this paper, we present some algebro-geometric
conditions under which a given local monodromy is trivial. As a corollary, we obtain

a simple proof of [6, Theorem 1], many applications of which have been given ([7],
[8], [9], [10]). As another application of the results in this paper, we will prove in
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[12] a hyperplane section theorem of Zariski type for the fundamental groups of
Zariski open subsets of Grassmannian varieties.

This paper is organized as follows. In §2, we review the classical Zariski-van
Kampen theorem; that is, we study Keri, in a situation where a global section
exists ([13], [14], see also [2] and [4]). In §3, we prove Theorem 1.3. In §4, we study,
in various settings, the problem when a local monodromy is trivial. In §5, we apply
Situation (C) in §4 to a morphism from a smooth irreducible quasi-projective surface
to a variety on which an algebraic group acts.

Notation and terminologies.

(1) Let a: I — X and 8 : I — X be paths on a topological space X. We define
the order of the conjunction of paths in such a way that the path a3 is defined only
when a(1) = (0). By this notation, the monodromy action of the fundamental
group of the base space on the fundamental group of a fiber is from right.

(2) For a morphism ¢ : X — Y with X and Y smooth, we denote by Sing¢p C X
the Zariski closed subset of critical points of ¢.

(3) We say that a morphism ¢ : X — Y is locally trivial if it is locally trivial as
a continuous map in the complex topology.

2. THE CLASSICAL ZARISKI-VAN KAMPEN THEOREM

For a subset S of a group G, we denote by NC¢(.S) the normal closure of S in
G; that is, NCg/(.5) is the smallest normal subgroup of G containing S.
Suppose that a group H acts on a group N from right. We write this action by

n s nl (ne N,heH).

The semi-direct product N x H is the set N x H equipped with a structure of the
group by

(n1,h1)(n2, ha) i= (miny" ) hihs).

We have a natural exact sequence
1— N - NxH > H —1

with a natural section 0 : H — N x H of p. Conversely, suppose that an exact
sequence
1—>N -SG5 H —1
and a section o : H — G of p are given. Then an action of H on N from right is
defined by
t(nh) == a(h)"Lu(n)o(h) (ne N,heH),
and G is isomorphic to the semi-direct product N x H constructed by this action.
For a subset T of H, we put

Rel(T):={n"'n" | neN,heT} c N.
The following is easy to prove:
Lemma 2.1. Let T be a subset of H. Then 1 '(NCyxg(o(T))) coincides with
NCx(Rel(NCy (T))). O
Let X be a path-connected topological space, and b a point of X. We denote
by [St, X] the set of homotopy classes of continuous maps from the circle S* to X.

Then there exists a natural bijection between [S*, X] and the set Conj(m1 (X, b)) of
conjugate classes of m1 (X, b).



4 ICHIRO SHIMADA

Let M be a connected complex manifold, and D a reduced hypersurface of M.
Let D; be an irreducible component of D, and let p be a point of D; not contained
in Sing D. There exist local coordinates (z1, ..., 2z, ) of M with the origin p such
that D is defined by z; = 0 locally around p. Let

u:S" — M\D

be a continuous map given by (cost,sint) — (eexp(2my/—1t),0,...,0) in terms
of the local coordinates (z1,...,2m), where € is a sufficiently small positive real
number. The homotopy class [u] € [S!, M \ D] of this continuous map does not
depend on the choice of p, the local coordinates, and e. We call [u] € [S', M \ D]
the homotopy class of simple free loops around D;.

Definition 2.2. Let b be a point of M \ D. A loop
v: (I,0I) — (M\ D,b)

with the base point b is called a simple loop around Dj if its homotopy class [v] €
71 (M \ D,b) is contained in the conjugate class that corresponds to the homotopy
class of simple free loops around D; via the natural bijection between [S*, M \ D]
and Conj(m (M \ D, b)).

We will consider the homomorphism 7, : 71 (M \ D,b) — m1(M,b) induced by
the inclusion j : M \ D — M. The following lemma is well-known:

Lemma 2.3. Suppose that D consists of a finite number of irreducible components
Dy,...,Dy. Let v; be a simple loop around D; with the base point I;, and let V be
the subset {[v1],...,[vr]} of w1 (M \ D,b). Then Ker j, coincides with the normal
closure NC_ \p\p.3) (V) of V. O

Let U be a complex manifold, and let
g: M —-U

be a surjective holomorphic map. For a point a of U, we denote by G, the fiber
g~ *(a). Suppose that there exists a hypersurface I' of U such that g is locally trivial
over U \ T as a continuous map. Suppose also that T' consists of a finite number
of irreducible components I'y, ..., I'y. We assume that there exists a continuous
global section

s:U—- M
of g. We choose a point b € U \ T, and put
b:= s(b) € Gy.

Using the section s, we can define the monodromy action of (U \T, b) on 71(Gy, b)
from right. For each irreducible component I'; of I", we choose a simple loop
w; : (I,0I) — (U\T,b)
around I';, and put
W= {[wi],...,[wy]} € m(U\L,b), and W :=NCr nru(W).

Recall that Rel(W) is the subset {n='n" | n € m1(Gs,b), h € W} of m1(Gy,b),
which is called the set of monodromy relations.
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Proposition 2.4. Suppose that s is holomorphic at each point of I'. Suppose also
that g~ 1(T;) is an irreducible hypersurface of M fori =1,...,k. Then the kernel of
the homomorphism i, : w1 (G, 5) — (M, 5) induced by the inclusion i : Gy, — M
coincides with the normal closure

NCTrl (Gb,i)) (R’el(W))

of the set of monodromy relations in 71(Gp, b).

Proof. We put U°® := U\ T and M° := M \ g }(T'). Let ¢g° : M° — U° and
s° : U° — MP° denote the restrictions of g and s, respectively. We also denote by
i° : Gp — M?° the inclusion. Because of the section s° of ¢g°, we get a short exact
sequence

1 — m(Gp,b) = m(M°,5) 2= m(U°b) — 1

with the section s; of g2 from the homotopy exact sequence of the locally trivial

fiber space g°. Note that the monodromy action of 1 (U®,b) on 71 (G, b) coincides
with the composite of s2 and the inner-automorphism of 71 (M°, b); that is, we have

ii([u][”]) =[s°00v] 7! - [u] - [s°0] in 7T1(MO,B),

where u is a loop in G} with the base point I;, and v is a loop in U° with the
base point b. Hence m1(M°,b) is canonically isomorphic to the semi-direct prod-

uct 1 (Gp,b) x m1(U°,b) constructed from the monodromy action of m1(U®,b) on
m1(Gp,b). Since s is holomorphic at each point of T, the loop s$° o w; in M° is a
simple loop around the irreducible hypersurface g=!(T;) of M. Therefore the kernel

of the homomorphism
j* : ﬂl(MoaB) - Wl(M7B)

induced by the inclusion j : M°® — M coincides with NC_ (350 5 (s2(W)) by
Lemma 2.3. Since ¢ = j 0¢°, and ] is injective, we have

Keri, = (i2)~!(Ker j.) = NC_ g, 5 (Rel(W))

by Lemma 2.1. O

When U is simply connected, the normal closure W of W in my (U \T', b) coincides
with 71 (U \ T, b). Hence we obtain the following;:

Corollary 2.5. Suppose that g~ *(T';) is irreducible for i = 1,..., k, that s is holo-
morphic at each point of ', and that U is simply connected. Then the following two
conditions are equivalent:

(i) The monodromy action of w1 (U\T',b) on 71(Gs, b) associated to the section
s is trivial. R

(ii) The inclusion Gy — M induces an injective homomorphism from w1 (G, b)
to (M, b).

In particular, if the monodromy action of 71 (U\T,b) on 71(Gy, b) is trivial for one
section, then it is trivial for any section. O
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F1GURE 3.1. The one-dimensional CW-complex K

3. PROOF OF THEOREM 1.3

3.1. The case of a non-compact Riemann surface. Suppose that B is a non-
compact Riemann surface. Let B be the smooth compactification of B. We put

P:=B\B.
In this case, the topological discriminant locus X consists of a finite number of
points of B. We put
Sr={q, .. qr}

For each ¢; € ¥, we put a sufficiently small closed disc A; on B with the center
q;- We have a finite one-dimensional CW-complex K on B\ (X; U P) containing
b such that K N A; consists of a single point r; € 0A; for ¢ = 1,...,k, and that
K UOA U---UdAy is a strong deformation retract of B\ (X7 U P). Figure 3.1
illustrates K by thick lines and A; by shaded discs, in a situation where B is of
genus 2, P consists of three points indicated by o, and ¥y consists of two points
indicated by e. Let L be the union of K and A; (i = 1,...,k). Then L is a strong
deformation retract of B containing X in its interior. By the condition (T3) of
Theorem 1.3, we have a local section

S; - A1 — f_l(Ai)

of f defined on A; that is holomorphic in the interior of A;. Since the restriction
FIFFUE) - fFUE) - K

of f to f~1(K) is a locally trivial fiber space with a connected fiber, and K is of
real dimension 1, there exists a continuous section

st K — fHK)
of f defined on K such that sk (r;) = s;(r;) holds for each i. Gluing sx and s;
(i=1,...k) together, we obtain a section

sp L — f7YL)
of f defined over L. There is an open subset U of B that is containing L as a strong

deformation retract, and is a strong deformation retract of B. Then we can extend
s1, to a continuous section

su U — f1(U)
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of f defined over U. Note that sy is holomorphic at each point ¢; of ;. By the
condition (T3), F,, = f~!(g:) is irreducible for each ¢; € ¥;. Hence we can apply
Proposition 2.4 to the restriction fy : Fy — U of f to

Ey = f~YU).

Using the condition (T4), we conclude that the inclusion F, — FEpy induces an
injective homomorphism

7T1(Fb, b) — 7T1(EU, b)a
where b := sy (b). On the other hand, since f is locally trivial over B\ U and U is
a strong deformation retract of B, the inclusion Ey — FE induces an isomorphism

771(EU) B) = 771(Ea B)

Hence i, is injective.

3.2. The case of an affine space. Next we treat the case where B is an affine
space AN by induction on N. The case where B = Al is proved above. Suppose
that N > 1. Let

p:B— A
be a general affine projection, where A is a one-dimensional affine line A!, and let
g: E— A
be the composite of f and p. For a point t € A, we put
By :=p t(t) 2 AN Ep=g7i (1) = (B,

and denote by
ft : Et — Bt

the restriction of f to E.

The strategy of the proof is as follows:
Step 1. We show that, when ¢ € A is general, f; satisfies the four conditions in
Theorem 1.3. Combining this with the induction hypothesis, we see that, if b € B is
general, then the inclusion Fy, < E ;) induces an isomorphism on the fundamental
groups.
Step 2. We show that g satisfies the four conditions in Theorem 1.3, and hence,
if b € B is general, the inclusion E,;) < E induces an isomorphism on the fun-
damental groups. Combining this with Step 1 above, we complete the proof of
Theorem 1.3.

Step 1. First note that FE, is irreducible for every ¢t € A. Indeed, since B
is of codimension 1 in B, the condition (T3) implies that a general fiber of f; is
irreducible. Hence, if F; were reducible, there should exist an irreducible component
of F; whose image by f; is contained in a proper Zariski closed subset of B;. Since
every irreducible component of E; is of dimension equal to dim F — 1, we get a
contradiction with the condition (T2).

Let =y denote the singular locus Sing¥¢ of X, where ¥ is regarded with the
reduced structure, and let Z; denote the union of all irreducible components of
Yt with codimension > 2 in B. Recall that ng) (i =1,...,k) are the irreducible
components of ¥ ¢ with codimension 1 in B. Since p is general, there exists a proper
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Zariski closed subset Z() of Zy) containing Sing Zy) such that the restriction p | Ey)

of p to Zy) is smooth at every point of Ey) \ 2. We put

"= EUZ U UED U...uEk),

(1]

where the first = is the Zariski closed subset that appears in the condition (T3).
Then =’ is a Zariski closed subset of B with codimension > 2. There exists a finite
set T' of points of A such that, if ¢t € A\ T, then E, is smooth, and B; N Z’ is of
codimension > 2 in B;.

Let t be a point of A\T. We show that f; : F; — By satisfies the four conditions
in Theorem 1.3. The condition (T1) is obvious. The condition (T2) for f; follows
from the condition (T2) for f. Since B; N E is of codimension > 2 in By, it follows
that f; satisfies the condition (T3).

Since p is a general affine projection, the intersection

Ef(t) = By ﬂEf

of By and X is a proper Zariski closed subset of B;. Note that, if f is smooth at a
point z € Ey, then so is fi. Therefore X;(t) contains the set f;(Sing f;) of critical
values of f;, and hence X (t) contains the topological discriminant locus Xy, C B,
of fi. Let X¢(t)¥) be an irreducible component of X5 (t) with codimension 1 in By,
and let y be a general point of X ;(£)U). Since B; NZ' is of codimension > 2 in By,
there exists a unique ng) among 2;1), cee E;k) such that

e X;(t)) is an irreducible component of the intersection of B; with Ey),

. Ey) is smooth at y, and intersects B; transversely at y.

Let Uy, be a small open neighborhood of y in By, and let a be a point of Uy, \
(Ut,y N X¢(t)). Then a simple loop

A (1,01) — (Upy \ (Ury NS4(1)),a)

in B;\X(t) around X 4(¢)¥) can be regarded as a simple loop in B\ X around Ey).
A holomorphic local section s;, of f; can be defined on Uy, by restricting a holo-
morphic local section of f around y. Hence the local monodromy on 71 (Fg, s¢.y(a))
along the loop ) associated to the holomorphic local section s;, is trivial by the
condition (T4) for f. Thus the condition (T4) for f; is satisfied.

Step 2. The conditions (T1) and (T2) are obvious. Since E; is irreducible, as
was shown in Step 1, and B;\ (B;NZ) is non-empty for any ¢ € A, the condition (T3)
is satisfied by g. Let ¢ be a point of the topological discriminant locus ¥, C A of
g. We choose a sufficiently small open disc D C A with the center ¢, and a point
to € D\ {q}. Let 1o be a general point of By,. Since p is a general affine projection,
we have a holomorphic local section

s1: D — p YD)

of p such that s; (D)NX s = 0, and that s1(tg) = 9. Then there exists a holomorphic
local section

s2 1 51(D) — f~1(s1(D))
of f|f~1(s1(D)). We can define a holomorphic local section s of g by
s:=sy0s : D — g (D).
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We will show that the local monodromy on 71 (Ey,, s(to)) along the simple loop
N (1,0I) — (D \{q},to)

around ¢ associated with the section s is trivial. The intersection D NI is either
empty or consisting of the single point ¢. In particular, we have tg ¢ T'. Since r¢ is
general in By, we obtain from Step 1 an isomorphism

(31) 7-‘-1(1;17’(”5@0)) = ﬂl(EtoaS(tO))

induced by the inclusion F,, < E},. Since s1(D) NX; = 0, f is locally trivial over
s1(D), and hence the local monodromy on 71 (F,,, s(to)) along a simple loop

sioX : (1,0I) — (s1(D)\ {s1(q)},70)

around s1(q) associated with the section sy is trivial. From the isomorphism (3.1)
induced by the inclusion, we see that the local monodromy on 71 (Ey,, s(to)) along
the loop A’ is also trivial. Thus the condition (T4) for g is also satisfied. O

4. LOCAL MONODROMIES

In this section, we present, in the following three situations, sufficient conditions
for the local monodromy p; around E&f) to be trivial.

Recall that x; is a general point of the irreducible hypersurface ng) in B, and

A; is a simple loop around ng) in a sufficiently small open ball U; in B with the
center x;. If a holomorphic local section s; of f is defined on U;, then the local
monodromy on 71 (Fy,, s;(a;)) along \; is defined, where a; is the base point of the
loop A;.

Remark 4.1. Since the local monodromy p; to be trivial is a local property on B, we
can replace B by a small Zariski open neighborhood of z; when we use the following
propositions. For example, removing all irreducible components of ¥ except for

Ey), we can assume that ¥y is an irreducible hypersurface in B.

Situation (A). Let Y be a smooth irreducible quasi-projective variety. Suppose
that we are given a morphism

¢: E =Y.
We denote by
®: F — BxY
the morphism defined by ®(z) := (f(z), ¢(x)).
Proposition 4.2. Suppose that the following conditions hold;

(A1) Y is simply connected,

(A2) @ is dominant, and its general fiber is connected,

(A3) there exists an open neighborhood W of x; in B such that, for any (a,y) €
W x Y, the fiber ®~1(a,y) has at least one point at which ® is smooth, and

(A4) the topological discriminant locus Xg C B XY of ® does not contain {x;} x
Y.

Then the local monodromy p; is defined and trivial.

Proof. Note that ®~1({a} x Y)) = F, for every a € B. We denote by
¢ Fy — Y
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the restriction of ¢ to F,. We have a diagram of the fiber product
F, — E
$a | O lo
Y <  BxY,
where the lower inclusion is given by y — (a,y). Let 1 be a general point of Y.
Then (x;,nm) € B x Y is not contained in Y.¢ by the condition (A4). Hence there

exist sufficiently small open balls U in B with the center x; and V in Y with the
center 7 such that the following hold:

e The open subset W in the condition (A3) contains U. Hence, for any a € U,
every fiber of ¢, possesses at least one point at which ¢, is smooth.

e The product U x V is disjoint from X¢. In particular, if (a,y) € U x V,
then @~ 1(a,y) = ¢, (y) is smooth and, by the condition (A2), irreducible.

It follows that ¢, satisfies the condition in Proposition 1.1 for any a € U, and that
V is disjoint from the topological discriminant locus ¥4, C Y of ¢, for any a € U.
There exists a holomorphic local section
§:UxV = HUxV)
of @ defined on U x V. Putting
s(a) := 5(a,n),
we obtain a holomorphic local section
s: U — f7Y4U)

of f defined on U such that s(a) € ¢,1(n) for any a € U. Hence the local mon-
odromy p; is defined.

Applying Proposition 1.1 to ¢, (¢ € U) and using the condition (Al), we see
that the inclusion ¢, () — F, induces a surjective homomorphism

m1(¢g (1), 5(a)) — 71 (Fa,s(a))
for any a € U. We draw the simple loop A; around Ey) inU\(UNZXZy). Let
Xt (1,01) — (U x V, (ai,n))
be the loop defined by
Ai(t) = (1), m)-

Since @ is locally trivial over U x V', which is simply connected, the monodromy
action

fii © w1 (2 (ai,m), 5(ain)) = m (@ as,n), 5(ai,n))
along the loop 5\¢ associated with the section § is trivial. The diagram

m(6a ), s(a)) T m(ent(n), s(ai))
! |
Trl(FlliaS(ai)) £ Wl(FaiaS(ai))
is commutative, where the vertical arrows are induced by the inclusion of ¢, '(n) =

®~1(a;,n) into F,,. Since fi; is trivial and the vertical homomorphisms are surjec-
tive, we see that u; is also trivial. O
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Situation (B). Suppose that there exists a smooth projective morphism
f:E— B

from a quasi-projective variety E such that E is the complement E'\ Z to a reduced
divisor (possibly empty) Z of E, and that f is the restriction of f to E. For a
point a € B, let us denote by Iy the ﬁbeif_l(a)7 and by Z, the scheme-theoretic
intersection of Z and F,. We have F, = F,\ Z,. Note that f is locally trivial over
B, because it is smooth and projective.
Proposition 4.3. Suppose that the following conditions hold:

(B1) The fiber F, of f is connected.

(B2) There exists a Zariski closed subset = of B with codimension > 2 such that

Z, is a reduced divisor of Fy for any a € B\ Z.

Then the local monodromy w; is defined and trivial.

Proof. The morphism f is smooth and dominant, and its general fiber is connected
by the conditions (B1). By the condition (B2), the locus {a € B | F, = 0} is
contained in a Zariski closed subset of codimension > 2 in B. Since z; is a general
point of the hypersurface E?) of B, a holomorphic local section of f is defined in a
small open neighborhood of x;. Therefore the local monodromy p; is defined.
We embed E into a projective space PM. Let L be a general linear subspace of

PM with

dimL = M — (dimE — dim B) + 1.
We put

EL::FQL, Erp =ENL

and denote by

fL:EL—>B and fr : Ep — B

the restrictions of f and f, respectively. Let U be a sufficiently small open ball in
B with the center z;. Since L is general, the scheme-theoretic intersection F, N L
is a connected smooth curve, and hence fL is smooth and locally trivial over U
with fibers being compact Riemann surfaces. Moreover, by the condition (B2), the
scheme-theoretic intersection Z,, N L is a reduced divisor of the compact Riemann
surface f; (i) = Fy, N L. Then fy is locally trivial over U with fibers being
punctured Riemann surfaces, because the number of the punctured points Z, N L
does not vary when a moves on U.

There exists a Zariski closed subset ¥¢ ¢,y of B with codimension > 1 such that
the pair

(f,fo) « (E,EL) — B

is locally trivial over B \ X(s ) as a pair of continuous maps in the complex
topology. Let 22 £.f1) be the union of all irreducible components of ¥y ¢, ) that are
not contained in X;. Then Eéf,m N Xy is of codimension > 2 in B. Since z; is a

general point of the hypersurface Zy), and U is sufficiently small, we have
U\NUNXZy) € B\ X5
Since fr is smooth over U, we have a holomorphic local section

s:U — f;HU)
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of fr,. We draw the simple loop A; around Ey) in U\(UNXy). The local monodromy

pi s mi(fp (@), s(ai)) = m(fr ), s(ai))
along \; associated with the section s is trivial, because fr is locally trivial over
U and U is simply connected. Since (f, fr) is locally trivial over U \ (U N Xy),
Deligne’s theorem [1] [3, Theorem 1.1 (B)] implies that the inclusion of f; *(a;)
into F,, induces a surjective homomorphism
m (7 (i), 8(ai)) — m1(Fays 5(a0)).
Therefore the triviality of the local monodromy p; on 1 (Fy,,s(a;)) follows from
the triviality of p!. O

Combining Theorem 1.3 and Proposition 4.3, we obtain the following. Let F be
a smooth irreducible projective variety, and Z a reduced hypersurface of AN x F.
For a point a € AN, we denote by Z, the scheme-theoretic intersection of Z and
{a} x F, and regard it as a Zariski closed subset of F.

Corollary 4.4 ([6], Theorem 1). Suppose that there exists a Zariski closed subset
Z of AN with codimension > 2 such that Z, is a reduced divisor of F for any
a € AN\ZE. Then the inclusion of F\ Z, into (AN x F)\ Z induces an isomorphism
of the fundamental groups for a general a € AN, |

Situation (C). Let X be a smooth irreducible projective variety, and W a
reduced divisor (possibly empty) of X. We put

X :=X\W.

Let M be a smooth irreducible projective variety, and D a very ample divisor of
M. Suppose that we are given a morphism

g:BxX = M
such that g(B x X) ¢ D. We put
Z:=(BxW)+g (D),
which is a divisor of B x X. We consider the situation where
E=(BxX)\Z,

and f: E — B is the projection.
We denote by

g:BxX - M and gg: F — M\D

the restrictions of g to the Zariski open subsets B x X and E of B x X, respectively.
For a € B, we denote by

ga:Y—>M and g, : X - M
the restrictions of g and g to {a} x X and {a} x X, respectively. Then we have
Fo = fHa) = X\ g, (D) = X\ (WUg; (D))

Let P denote the projective space P, H°(M, Oy (D)), which parameterizes all ef-
fective divisors in the complete linear system |D|. For a point p € P, let D,, denote
the corresponding divisor of M. We put

H:={(a,z,p) e BxX x P | (a,z) € E, go(x) € D, },
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and let
p:H— BxP

be the natural projection. We have a natural identification

p~Ha,p) = g (Dp) NFa = g3 (Dp) \ (g 1(Dp) N (W U g (D))
for any (a,p) € B x P.
Proposition 4.5. Suppose that the following conditions hold:

(C1) The Zariski closed subset {a € B | go(X) C D} of B is of codimension > 2.

(C2) For any a € B, the dimension of g.(X) is > 2.
(C3) The topological discriminant locus X, C B x P of p does not contain {x;} x
P.

Then the local monodromy p; is defined and trivial.
Proof. By the condition (C1), the locus {a € B | F, = 0} is contained in a Zariski
closed subset of codimension > 2 in B. Since f is smooth, we have a local holomor-

phic section of f defined in a small open neighborhood of z;. Therefore the local
monodromy p; is defined.

We denote by oo the point of P corresponding to the divisor D € |D| given at
the outset, and write D, instead of D. We put

P* := P\ {co}.
Let @ be the projective space that parameterizes the projective lines of P passing
through oo, and let
a: P* — Q
be the natural projection, which is locally trivial in the Zariski topology with fibers
isomorphic to the affine line A'. For a point ¢ € Q, let A, C P* denote the fiber

a !(q). If y € M\ Dy and ¢ € Q, then there exists a unique point v,(y) of 4,
such that y € D,_(,). Hence, for each q € @, we have a natural morphism

Vg : M\ Do — A,

whose fibers over p € A, is D, \ (Dp N Do). Let
$q E — Ay
be the composite of gg : E — M \ Do, and 74 : M \ Doo — Ay. Let
o, : E — Bx A,

be the morphism defined by ®,(a, z) := (a, ¢4(a,z)). We put

H* = p }(B x PX).
Note that the restriction

p* : H* — Bx P~
of p to H* is the universal family of ®, (¢ € Q); that is, we have a diagram of the

fiber product
E — H*

2| U L e
BxA, — BxP~*
for any ¢ € @, where the upper horizontal arrow is the inclusion given by

(a,z) — (a,z, pq(a, z)).
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We will prove the triviality of u; by showing that, when ¢ € @ is chosen generally,
the morphisms ¢4 and @, satisfy the four conditions in Proposition 4.2 with Y = A,.

The condition (A1) is obvious. Since p is dominant by the condition (C1),
®, is dominant for a general ¢ € ). For any a € B and a general p € P, the
condition (C2) implies that g, ' (D,) is smooth and connected by Bertini’s theorem
([3, Theorem 1.1]). Hence p~'(a,p) is connected for a general (a,p) € B x P,
because p~!(a,p) is a Zariski open dense subset of g, '(D,). Therefore, if ¢ € Q
is general, @, satisfies the condition (A2). Since the topological discriminant locus
Yp, C B x Ay of ®, is contained in the intersection of B x A, C B x P and
¥, C B x P, the condition (C3) implies that ®, satisfies the condition (A4), when
q € Q is general.

In order to check the condition (A3), we put

I':={(a,p)€BxP | pa,p)\ (p~"(a,p) N Singp) =0 }.

Since T is the the complement in B x P to p(H \ Sing p), it is a constructible set.
Hence it is a finite disjoint union of locally Zariski closed subsets. Let

prg : BxP — B
be the natural projection. We define T to be the Zariski closure in B x P of T, and
=p to be the Zariski closed subset
{aeB | dim(prz'(a)NT) > dimP —1}

of B. In order to show that ®, satisfies the condition (A3) for a general ¢ € @, it
is enough to prove that =p is of codimension > 2 in B. Indeed, let

G PP
be the blowing up of P at co € P, and let

a: P — Q
be the natural projection, which coincides with o on P*. We denote by

I’ c BxP
the strict transform of T by idp x 3. We put

Tg:=(idpxa) (T ) ¢ BxQ.

Since idp x& is a smooth projective morphism of relative dimension 1,_fQ is a
Zariski closed subset of B x @, and if a € B \ Ep, then ({a} x Q) NTg is of
codimension> 1 in {a} x Q. Because z; is a general point of the hypersurface Zy)
of B, this point z; is not contained in ZEp. Therefore {x;} x @ is not contained in

Tg. Let g be a general point of Q. Then we have (x;,q) ¢ I'g. Hence there exist
open neighborhoods W of x; in B and W' of ¢ in Q such that

(W x W) n fQZ(D.
This implies

WxatWw) nT =40

In particular, we have

(W xA,) NnT=0.
Since @, is the pull-back of p by the inclusion B x A, — B x P, the fiber of ¢,
over any point of W x A, possesses at least one smooth point. Hence ®, satisfies
the condition (A3).
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Now we assume that =p is of codimension < 1 in B, and derive a contradiction.

By the assumption, there exists an irreducible locally Zariski closed subset I" of
—=/

B x P contained in I" such that its Zariski closure I' has the following property;

prg(I") is of codimension < 1 in B, and a general fiber of
= = —/
prg |[I' : T — prg(l),
which is regarded as a Zariski closed subset of P, is of codimension < 1.

We fix a general point ag of prz(T' ), and let T, be an irreducible component of
(prg |T')~(ag). Then T, is of codimension < 1 in P. We write

go:X - M and go: X — M

instead of gq, and go, for simplicity. Since I'V is locally Zariski closed, it is Zariski
open dense in T'. Let py be a general point of Ty. Then (ag,po) be a point of
IV C T, and hence p~*(ag, po) is either empty or contained in Sing p. Suppose that
p~ " (ao, po) = 0. We put
Yo := go(X).
We denote by C' the Zariski closure in Y of
Yo\ 95(Fo,) = (YoN Deo) U (Yo \ go(X))-

Since prg (T') is of codimension < 1 in B, the condition (C1) implies Yo ¢ De.-
Hence C' is a proper Zariski closed subset_ of Yg. Let Cq,...,C} be the irreducible
components of C' with codimension 1 in Y o. We put

Aj:={peP | C;CD,}.
By the condition (C2), we have dimC; > 1. Hence A; is a linear subspace of
codimension > 2 in P. For p € P, p~!(ag,p) is empty only if Yo N D, C C, which
is equivalent to
(4.1) YonD, C Ui, C;.

Note that, if (4.1) holds, then there exists at least one C; among C1, ..., C}) such
that C; C Yo N D,. Therefore we have fg C U;Aj, which contradicts to the fact
that fg is of codimension < 1 in P. Therefore p~!(ag, po) is non-empty and hence
is contained in Sing p for a general py € fg.
We put
Ho:={ (z,p) € X x P | go(x) € Dy },
and let
po: Ho — P and &¢:Hy — X
be the projections. Note that ¢ is a smooth projective morphism with fibers being
hyperplanes of P. We put
So := Sing jo.
By the consideration above, py*(po) = p~'(ao,po) has at least one irreducible
component that is contained in 8y for a general py € T. Since T, is of codimension
< 1in P, there exists an irreducible component Eg of Sy with codimension 1 in H,
such that 3{) is contained in So N gy 1(?8), and that go (38) coincides with fg.
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Let (z,p) be a point of Ho. Then the Zariski tangent space to g, ( )y pt *(ao, p)
at (z,p) is canonically identified with the subspace (dgo); (Ty(x)Dp) of T, X with
codimension < 1. Hence (z,p) is contained in Sy if and only if

Im(dgo)a S Ty (@) Dp-
For non-negative integers v, we put
(X), :={zec X | rank(dgo). < v }.
If € (X)o, then &, ' (2) NSy coincides with &, *(2), which is isomorphic to the
hyperplane
H(z) ={peP | go(z) € Dy}

of P. We also have

re X\ (X)

reX\ (X))
By the condition (C2), (X
codimension 1 in Hy, 5o(S

55 H(z) NSy is of codimension > 1 in &, ' (),

I

a5 () NSp is of codimension > 2 in &5 * ().

| is a proper Zariski closed subset of X. Since S, is of

~—

) must be contained in (X )g, and the fiber of

o~

_ = — =
UO|SO : SO — 7(S,)

over an arbitrary point x € 5’0(38) coincides with &, (z) = H(x).

Let (x1,p1) be a general point of 36. Then p; is a general point of the linear

system H(x1). Since dim H(z1) > 0, Bertini’s theorem implies that the divisor
p~" (a0, m1) = g5 (D)

of X has at least one smooth point. On the other hand, because p; is a general

—/ —/
point of po(S,) =Ty, the divisor p~!(ag, p1) must be contained in Sing p. Thus we
get a contradiction. O

5. ACTION OF AN ALGEBRAIC GROUP
Let X be a smooth irreducible projective surface, and W a reduced divisor of X
(possibly empty). We put
X :=X\W.
Let M be a smooth irreducible projective variety on which a connected algebraic
group G acts from left, and let D be a very ample divisor of M. Suppose that a
morphism
X = M
is given. We denote by ¢ : X — M the restriction of ¢ to X. For v € G, let
"p: X - M and "¢: X — M
be the composites of ¢ and ¢ with the action v : M — M of v, respectively. We
assume that there exists at least one v € G such that 7¢(X) ¢ D. Putting
B =G,
we obtain a morphism
g:BxX - M
defined by g(v, z) := 7¢(x). We put
Z:=(BxW)+g D), E:=(BxX)\Z,
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and let f : E — B be the projection. By the assumption above, g~ (D) is a divisor
of B x X, and hence f is a dominant morphism. By definition, we have a natural
identification

Fy:=f"'(y) ="¢"(M\ D)
for any v € G = B. We put o
and equip Y with the reduced structure. For v € G, let (y(Y) N D)° denote the
Zariski open subset of v(Y') N D consisting of all points y € v(Y')N D at which (Y)
and D are smooth and intersecting transversely. We then put

Sing(y(Y) N D) := (vy(Y)N D)\ (+(Y) N D)°.
As before, let 3y C B = G be the topological discriminant locus of f, and Ey) an
irreducible component of ¥ ¢ with codimension 1 in B. Let ~; be a general point of
Ey), and A; a simple loop around in Ey) in a sufficiently small open ball U; around
~; with the base point a;, € U; \ (U; N Xy).
Proposition 5.1. Suppose that the following conditions hold;
(G1) dimY = 2, so that ¢ is quasi-finite onto its image,
(G2) for any irreducible Zariski closed subset C of Y with dim C > 0, the Zariski
closed subset {y € G | v(C) C D} of G is of codimension > 2, and
(G3) the locus {y € G | dim Sing(y(Y') N D) > 0} is contained in a Zariski closed
subset of codimension > 2 in G.
Then the local monodromy p; on 71 (“¢~t(M \ D)) along the loop \; is defined and
trivial.

Remark 5.2. Suppose that D has a non-reduced irreducible component I'. By the

definition of Sing(v(Y) N D), if the conditions (G1) and (G3) are satisfied, then we

have v(Y) N D’ = ) for a general v € G. In particular, D’ is not ample.

Proof. As in Situation (C) in the previous section, we denote by P the the projective
space P,HO(M, O (D)), and by D, the divisor corresponding to a point p € P.
We put

H:={(y,z,p) e BXxX xP | "¢(xr) € Dy}, H:=HN(ExP),

and let

p:H—BxP, p:H—BxP
be the natural projections. We will check that, in this situation, the three conditions
in Proposition 4.5 are satisfied. The condition (C1) follows from the conditions (G1)
and (G2). The condition (C2) follows from the condition (G1). Therefore all we
have to show is that the topological discriminant locus ¥, C B x P of p does not
contain {v;} x P.

Let X5 C B x P be the topological discriminant locus of p. By Bertini’s theorem
and the condition (G1), the general fiber of p is a connected compact Riemann
surface, and, for any v € B, there exists a point p € P such that 7¢~1(D,) is
a smooth irreducible curve on X. Hence the intersection of ¥; with {y} x P is
of codimension > 1 in {7} x P for any v € B. On the other hand, the general
fiber of p is a punctured Riemann surface. Hence, if (y0,po) € (B x P)\ X5,
then (70, po)is not contained in ¥, if and only if the number of the punctured
points p~(y,p) \ p~1(7,p) on the compact Riemann surface p~!(,p) does not
vary locally around (9, po)-
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As before, we write Do, instead of D. We choose a general point py € P, and
write Dy instead of D,,. We have (v;,po) ¢ X5. Let U(v;) and U(po) be sufficiently
small open neighborhoods of ; in B and of pg in P, respectively. We put

U:=U(v) xUl(po)-
For (v,p) € U, we put
Tw (v,p) =W N7 (D,) and Tuo(v,p) :="¢""(Dos N Dp).
Then we have

P )\ P (v,p) = Tiw (7,p) U Too(7, ).
Therefore, in order to show that the condition (C3) is satisfied, it suffices to prove
that the cardinality |Tw (v, p) U Too (7, p)| is constant when (v, p) moves on U.
First remark that the condition (G2) implies the following. If R is a Zariski
closed subset of X with dim R < 1, then we have

Yi(P(R)NDo =0 or dim(vy;(¢(R)) N Ds) = 0.
Indeed, if ¢(R) has an irreducible component ¢(R)" with dim¢(R)" = 1, then
vi(6(R)") ¢ Do by the condition (G2), because 7; is a general point of the irre-
ducible hypersurface ng) of G.

By definition, Ty (v, p) and Two (7, p) are disjoint if and only if

(5.1) AG(W)) N Do N D, = 0.

By the remark above, we have

Yi(@(W)) N Do =0 or  dim(v;(¢(W)) N D) = 0.

Since pg is general in P, we see that (5.1) holds for any (v,p) € U.
Let Wy, ..., Wy be the irreducible components of W such that

dim (W) =1 (L=1,...,k),
and let W41, ..., Wy, be the other irreducible components. Obviously we have
dim ¢(W,) =0 (v=k+1,...,m).
For p=1,...,k, let e, be the mapping degree of
QB‘W# Wy — &(Wu),
and let ¢(W,)° be the Zariski open dense subset of ¢(W),) such that ¢(W,) is
smooth at every point of ¢(W,,)°, and that ¢ | W, is étale over ¢(W,,)°. We denote

by d,, the degree of the curve ¢(W,) (with the reduced structure) with respect to
the very ample line bundle Oy (Ds). Let v € G be an arbitrary element. If p € P

is general, D, intersects y(¢(W,,)) transversely at distinct d,, points in y(¢(W,)°).
Moreover we have

D, Ny(e(W,) =0 (v=k+1,...,m).
Since pg is general, |Tw (7, p)| is constantly equal to Zﬁzl due, for any (v,p) € U.
There exists a Zariski open dense subset Y’ of Y such that
G167 (Y)Y ) = Y
is étale. Let € be the mapping degree of this étale morphism. We put
Q=Y\Y,
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which is a Zariski closed subset of Y with dim @ < 1. Then, by the remark above,
we have

(@) N Do =0 or  dim(y;(¢(Q)) N Do) = 0.

Since pg € P is general, we have
(5.2) Q)N DsND, =10 forany (y,p) €U.
By the condition (G3), we have

Sing(v;(Y)N Do) =0 or  dim(Sing(1:(Y) N D)) = 0.

Since pg € P is general, we have

Sing(7;(Y) N Dyo) N Dy = 0,
and the intersection - (7)_ﬂ Do N Dy is transverse; that is, at every point y €
i (Y)N Do N Dy, all of 7;(Y), Do and Dy are smooth, and the intersection of their

Zariski tangent spaces in T, M is of dimension 0. Hence, for any (v,p) € U,

v(Y)N Ds N D,

consists of distinct § points, where ¢ is the degree of Y with respect to the line
bundle Oy;(Ds), and over each point of this intersection, Y¢ : X — (YY) is étale
by (5.2). Hence |Too(7, p)| is constantly equal to de when (v, p) moves on U.
Combining the previous three paragraphs, we conclude that the number of the
punctured points Ty (7, p) U Two (7, p) is constant locally around (;, po), and hence
(7i, po) is not contained in X,. O

Remark 5.3. Proposition 5.1 plays a crucial role in the proof of Zariski hyperplane
section theorem for Grassmannian varieties in [12].
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