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ABSTRACT. We construct explicitly moduli curves of polarized supersingular
K3 surfaces in characteristic 2 with Artin invariant 2. As an application, we
detect a “jump” phenomenon in a family of automorphism groups of supersin-
gular K3 surfaces with a constant Néron-Severi lattice.

1. INTRODUCTION

A K3 surface is called supersingular if its numerical Néron-Severi lattice is of
rank 22. Supersingular K3 surfaces exist only in positive characteristics. Artin
showed in [1] that, in characteristic p > 0, the discriminant of the numerical Néron-
Severi lattice of a supersingular K3 surface X is of the form —p?*(X) where o(X)
is a positive integer < 10. This integer o(X) is called the Artin invariant of X.

We work over an algebraically closed field k of characteristic 2.

Definition 1.1. Let X be a supersingular K3 surface, and let £ be a line bundle
on X with £2 = 2. We say that £ is a polarization of type (1) if the following
conditions are satisfied:

e the complete linear system |L£| has no fixed components, and
e the set of curves contracted by the morphism @) : X — P? defined by |L|
consists of 21 disjoint (—2)-curves.

In [10], we have shown that every supersingular K3 surface X in characteristic
2 has a polarization of type (f), and that, if £ is a polarization of type (f) on
X, then the morphism @ is purely inseparable. In [11], we have constructed a
9-dimensional moduli space 9 of polarized supersingular K3 surfaces of type (f).
In this paper, we investigate the locus My of M corresponding to supersingular K3
surfaces with Artin invariant 2. As Artin [1] showed, this locus is of dimension 1.
We will show that the curve s is a disjoint union of three affine lines punctured
at the origin. We will also construct explicitly the universal family of polarized
supersingular K3 surfaces over certain finite covers of these punctured affine lines.
The construction involves investigations of configurations of lines and conics on the
projective plane in characteristic 2. These configurations are encoded by certain
binary codes. In order to construct the moduli curve, we have to determine the
automorphism groups of these codes. The automorphism group of the polarized K3
surface is also obtained from the automorphism group of the corresponding code.
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Let us briefly review the construction of the moduli space 9 in [11]. For a
non-zero homogeneous polynomial G € H?(P?, Op:(6)) of degree 6, we denote by

e : Yo — P?
the purely inseparable double cover of P? defined by W? = G(X,Y, Z).

Definition 1.2. Let U/ denote the locus of all non-zero homogeneous polynomials
G € H°(P?,Op2(6)) such that the surface Yg has 21 ordinary nodes as its only
singularities.

The locus U is Zariski open dense in HY(P?, Op2(6)). Indeed, in characteris-
tic 2, the differential dG of G can be defined as a global section of Q4 (6) for
any homogeneous polynomial G € H°(P?, Op2(6)), because, by the isomorphism
Op2(6) = Op2(3)®2, we can assume that the transition functions of the line bundle
corresponding to Opz(6) are all squares. Since co(Qp2(6)) = 21, the subscheme
Z(d@) defined by dG = 0 is reduced of dimension 0 if and only if it consists of 21
points. The singular locus Sing(Yg) of Y5 is equal to 7' (Z(d@G)), and the singular
point of Y lying over a reduced point of Z(dG) is an ordinary node. Hence the
condition that G be a point of U is equivalent to the open condition that Z(dG) be
reduced of dimension 0.

Let (X, L) be a polarized supersingular K3 surface of type (). Then there
exists a homogeneous polynomial G € U such that the Stein factorization of @z
is written as

X 2% v, IS op2
Conversely, suppose that we are given G € U. Let pg : X¢ — Yg be the minimal
resolution of the surface Yo. Then X is a supersingular K3 surface, and the
invertible sheaf

ﬁ(; = (7TG 9] pg)*OPz(l)
on X is a polarization of type (f).

We put
V= H(P?, Op=(3)).
Because we have d(G + H?) = dG for any H € V, the additive group V acts on the
space U by
(G,H)eUxV — G+H?cl.

Proposition 1.3. Let G and G’ be homogeneous polynomials in U. Then the fol-
lowing conditions are equivalent:

(i) Yo and Ygr are isomorphic over P2,

(il) Z(dG) = Z(dG"), and

(iii) there ewist c € k* and H € V such that G' = ¢G + H>.

See §2 for the proof.

Therefore the moduli space 9 of polarized supersingular K3 surfaces of type ()
is constructed by
M = PGL(3,k)\P.(U/V).
For G € U, let [G] denote the point of 91 corresponding to G, which corresponds to
the isomorphism class of the polarized supersingular K3 surface (X¢g, Lg) of type
(#). By Proposition 1.3, the automorphism group Aut(Xq,Lg) of the polarized
supersingular K3 surface is canonically identified with

{9€ PGLB,k) | 9(2(dG)) = Z(dG) }.
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The moduli space 9 is stratified by the Artin invariant o(X¢) of X¢. We put
M, ={[GleM | 0(Xg)=0} and M, ={[GleM | 0(Xg) <o }.

As was shown in [11], the locus M<; = My consists of a single point [Gpk],
where
Gpk = XY Z(X3 +Y3 4+ Z%)
is the homogeneous polynomial discovered by Dolgachev and Kondo in [5]. The
points Z(dGpxk) coincide with the Fy-rational points of P2, and hence the group
Aut(Xepks Lapk) 1s equal to PGL(3,F4). We call [Gpxk] the Dolgachev-Kondo
point.

Now we can state our main results.

Theorem 1.4. The locus M<2 is a union of three irreducible curves ﬁA, Mz and
Me. In M, they are situated in such a way that, set-theoretically,

DMy NN =MpNMe =M NIM4 = {[Gpk]}-
For T = A, B and C, we put
My := My \ {[Gok]}-
Hence 95 is the disjoint union of M 4, Mp and Me.

Theorem 1.5. For T = A, B and C, the curve My is isomorphic to an affine line
punctured at the origin.

We will describe the curves 9t more explicitly. Let w € F4 be a primitive third

root of unity, and let @ be w + 1 = w?.

Theorem 1.6. Let I'y be the group

1 1 A A+l
AN+, =
{’ DS W L W L }

acting on the punctured \-line A\ {0,1} = Spec k[, 1/A\(A+ 1)]. We put
A2+ X+ 1)3
A2 (A+1)2
so that k[N, 1/A(\ + 1)]"* = k[J4] holds. We also put
GAN =XYZ(X+Y+2Z)(X?+Y?+ (N +\N) 2+ XY +YZ + ZX).

Ja =

Then there exists an isomorphism

M4 = Speck[Ja,1/J4]
such that the family W? = GA[\] of sextic double planes over the finite Galois cover
A\ {0,1,w,0} = Spec k[, 1/(A* +N)] of the moduli curve M 4 yields the universal
family of polarized supersingular K3 surfaces. The points Z(dGA[N]) are given in

Table 4.7. The origin J4 = 0 corresponds to the Dolgachev-Kondo point.
For a € k\{0,1,w,0}, Aut(Xgaja]; Lcafa]) 95 equal to the group

a
A e GL(2,Fy),
(1.1) A 16 | e Par. b (2, F2)
001 a,be{0,1,a,a+ 1}

of order 96.
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Theorem 1.7. We put
Qri= (@A +w) X?+0Y?+wAZ2+ A+ D) XY + (WA +w)YZ + (A +1) ZX,
and
GBN:=XYZ(X4+Y+2)Q»x.

Let T'g be the group
1 A4+0 WA+w w w
A4+17A+17 X TN A4 @]

wA+1)  wA A A+1

A+1
Aw T A+ A+ A D+ )}

acting on the punctured A-line A1\ {0,1,@} = Speck[\, 1/A(A+1)(A+©)]. We put

B (/\+w)12
TBOF 1PN+ w)?

{)\, wA+1,

Jp :

so that k [N\, 1/ AN+ 1)(A+ )] ® = k[Jg] holds. Then there exists an isomorphism
Mp = Speck[JB, l/JB]

such that the family W? = GB|)] of seatic double planes over the finite Galois cover
A\ {0,1,w,0} = Spec k[, 1/(A*+ )] of the moduli curve Mp yields the universal
family of polarized supersingular K3 surfaces. The points Z(dGB[\]) are given in
Table 5.5. The origin Jg = 0 corresponds to the Dolgachev-Kondo point.

For any a € k\ {0,1,w,0}, Aut(Xgpla), LaBla]) 5 equal to the subgroup of
PGL(3,k) generated by
0 0
1 0
0 1

(1.2) and

— & o
— = g
= o O
O = O
— = &

g€ & =

0

1

w
In particular, Aut(Xgp(a), LoBla))
of order 18.

s isomorphic to the extended Heisenberg group

Theorem 1.8. Let I'c be the group
{aA+8 | a€F;,B€F,}
of order 12 acting on the \-line A* = k[\]. We put
Jo =\ + )3
so that k[\]'¢ = k[Jc] holds. We also put
GO =XYZ (X’ +Y*+Z%) + (W' + ) X°Y?.
Then there exists an isomorphism
Me = Speck[Jo, 1/Jc]

such that the family W? = GC[)] of sextic double planes over the finite Galois cover
A\ {0,1,w,0} = Spec k[, 1/(A*+ )] of the moduli curve Mc yields the universal
family of polarized supersingular K3 surfaces. The points Z(dGC[)]) are given in
Table 6.4. The origin Jo = 0 corresponds to the Dolgachev-Kondo point.
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For a € k\{0,1,w,0}, Aut(Xccra] Laca)) is equal to

a b 0
F
(1.3) c i ol e paraw | Phodefel
2late Bdla+f 1 ad+bc=1

of order 960.

Next we consider the isomorphism classes of non-polarized supersingular K3
surfaces with Artin invariant 2.

Definition 1.9. A reduced (possibly reducible) curve D in My x My is called a
correspondence between M and Mp. For a correspondence D C My x My, let
D denote the correspondence in My x M4 obtained from D by interchanging the
first and the second factors. When D is a union of two curves D; and D, without
common irreducible components, we write D = D1 + Dy and Dy = D — Dy. Let
Dy C My x My and Dy C My x Mpr be correspondences. The composite
Dy x Dy C My x My of Dy and D5 is defined to be the image of

(Dl X mT”) n (D:RT X DQ) C My X My X Mpn
by the natural projection to My X My

Definition 1.10. A correspondence D in 97 x My is called an isomorphism
correspondence if, for every point ([G], [G']) of D, the supersingular K3 surfaces X¢
and X (without polarization) are isomorphic. An isomorphism correspondence
D C My x My is said to be trivial if T is equal to T’ and D is the diagonal Ar
of EDTT X f)ﬁT.

Using Cremona transformations by quintic curves, which played a central role
in the study of Aut(Xg,,) in [5], we have obtained examples of non-trivial isomor-
phism correspondences.

Definition 1.11. Let G be a homogeneous polynomial in &//. We say that a subset
¥ C Z(dG) of cardinality 6 is a center of Cremona transformation for (Xq,Lg) or
for G if X satisfies the following conditions:
e no three points of X are collinear, and
o for each p; € 3, there exists a conic curve N/ C P? such that N/ N Z(dG) =
S\ A{pi}-

Note that the conic curve N/ is necessarily nonsingular.

Let ¥ = {p1,...,ps} be a center of Cremona transformation for (X¢g, Lg). Con-
sider the linear system |Z%(5)| C |Op2(5)| of quintic curves that pass through all
the points of ¥ and are singular at each point of . Then |Z%(5)| is of dimension
2, and defines a birational map

CTx : P?2 ... > P2

The birational map CTy is the composite of the blowing up 8 : S — P? of the
points of ¥ and the blowing down ' : S — P2 of the strict transforms N; of the
conic curves N/. We denote by p) the image of N; by 3’. Note that, if p € P?\ %,
then the point CTx(p) € P? is well-defined.

Proposition 1.12 (Dolgachev-Kondo [5]). We put
Z' = {CTs(p) | p€ Z(dG)\Z } U {p,-..,p}-
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Then there exists a homogeneous polynomial G' € U such that Z' = Z(dG'). The
birational map CTx, of P2 lifts to an isomorphism

é\TE : XG :> XG"
of supersingular K3 surfaces.

See also §8 of this paper for the proof of Proposition 1.12. Note that the polyno-
mial G’ is not uniquely determined, but the point [G'] € 9 is uniquely determined

by G and ¥. We call CTy the Cremona transformation of Xg with center X.
Let T'be A, B or C. As Tables 4.7, 5.5 and 6.4 show, the family
{(N) | p€Z@GTN)} C P?x(A'\{0,1,w,0})

of the points Z(dGT[A]) consists of 21 connected components, each of which is étale
of degree 1 over the punctured A-line Al \ {0,1,w,©}. Therefore it makes sense to
talk about a family X[A] of subsets of Z(dGT[)\]) that depends on A continuously. Tt
can be shown that, if ¥[a] is a center of Cremona transformation for GT'[a] at one
a € k\{0,1,w,®}, then so is X[a] at every o € k\ {0,1,w,o}. In this case, we say
that X[\] is a center of Cremona transformation for GT'[A] or for (Xarx, Lary)-

Suppose that X[A] is a center of Cremona transformation for GT'[A]. Then there
exist a family G'[\] of homogeneous polynomials in &/ and a family of isomorphisms

érrgp\] : XGT[)\] :> XG’[)\]

depending on the parameter A. The points [G’[A]] are of course contained in My =
M4 UMp UMe. Suppose that [G'[A]] € M. Then the curve

{([GTN],[G'N]) € My x My | A€ AP\ {0,1,w,0} }
is an irreducible isomorphism correspondence between 9t and M.

Theorem 1.13. (1) There exist 1644 centers of Cremona transformation for the
family (Xgan, Laapn)). They yield the following isomorphism correspondences:
e 156 of them give the trivial correspondence A 4,
e 144 of them give the correspondence
Daag : 1+JaJy+ JA2J:42 + JA2J:43 + JA3J:42 =0
m gﬁA X 9)?,4,

720 of them give the correspondence

Daa2:=Daais*Daar—Aa C Max My,

576 of them give the correspondence

Dapy @ Jp+Jdadp+Jads”+Ja%Jp+Ja* =0
n My x Mp,
48 of them give the correspondence

Dacy ¢ Je+Ja+Jdado+Ja2Jc+ Ja*Jc? =0
mn My x Me.

(2) There exist 1374 centers of Cremona transformation for (Xapn, Lapiy)- They
yield the following isomorphism correspondences:

e 798 of them give the trivial correspondence Apg,
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T | T' | name | the equation

Al A | Daay | JA3TW2 + Ja2 T + JA2 T2+ Ja Ty + 1

A| A | Daag | JAST2 + Ta000 + Ja200° + 0007 + 02300 + At +
a2 TP 4 T2 T Ta T+ Ta T T T4 Ta2 T2 4 Ja T+
Ja + T2 T 4 Ja J1'42 + Jf43

B| B | Dppa | Je*Tp+Jp3 02+ I 05 +Jp It + 52 T+ 02 0+ Jp T +1

C| C | Doca | Jo I +I2 T+ Jo2T5 +Jo JLP + I+ I T+ Jo I+ J5°

A| B |Dapa JA4+JA2JB+JAJ32+JAJB+JB

A| B | Dapa | JA®Tp+Ja°Tp+Ja*Jp*+ T4 I + Ja* Jp + Ja® Jp* + Ja% Tp +
JadJp+1

B|C | Dpecy|Jglo+1

B| C | Dpca | Jg* I +I° I + IpIc? + T2 I + I+ I Jo+Jp Jo+Jp

C| A| Dcan | JPTa" +Jo Ja? +Jc Ja+ Jo+ Ja

C| A| Doz |J?Ta’+Jc2Ta° + I Ta" + Jo Ja' + I Ta* + I + I Ja+
Jo Ja? + J4*

TABLE 1.1. Non-trivial irreducible isomorphism correspondences

e 216 of them give the correspondence
Dpai1:="Dap1 C IMpx My,
e 360 of them give the correspondence
Dpp1:=Dpa1*Dap1—Ap C Mp x Mp.
(3) There eist 2224 centers of Cremona transformation for (Xacin), Laciy)- They
yield the following isomorphism correspondences:
e 1200 of them give the trivial correspondence A¢,
e 960 of them give the correspondence
Dcoai:="Daci C Mo xMa,
e 64 of them give the correspondence
Dcci:=Dcai*Daci—Ac C Mo xNMe.

Starting from the isomorphism correspondences by Cremona transformation
above, making transposes and composites, and taking irreducible components,
we obtain non-trivial irreducible isomorphism correspondences given in Table 1.1.
When T # 1", we denote by Dy 1, the correspondence tDT,T/$V for v =1 and 2.
They have the relations in Table 8.5 at the end of §8.

Question 1.14. Are there any non-trivial irreducible isomorphism correspondences
other than the ones in Table 1.1 and their transposes?

The Cremona transformations that yield the trivial isomorphism correspondence
are also interesting, because they give automorphisms of the supersingular K3
surface X that may not be contained in Aut(X, £). See Remark 7.12.
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Observation 1.15. Consider a Cremona transformation é’vfg on (Xgapny, Laapn)
that yields the non-trivial isomorphism correspondence D4 4.1. The curve Dy a1
intersects the diagonal A4 at two points (J4, J}) = (w,w) and (@, ). Let n be an
element of k such that the J4-invariant of (Xgap,), Laap) is w or w; that is, 1 is
a root of
MDD FA+DN X3 X2 +1) =0.

The Cremona transformation CT s gives rise to an automorphism of X4, which
cannot be deformed to any automorphisms of Xg4(y for a generic A. In other
words, the automorphism group Aut(Xgapy) of the non-polarized supersingular
K3 surface Xgapy) jumps at A = n, even though the numerical Néron-Severi lattice
of Xgapy is constant around A = 7. Note that the automorphism group of a super-
singular K3 surface is always embedded into the orthogonal group of its numerical
Néron-Severi lattice ([8, §8, Proposition 3]).

The plan of this paper is as follows. In §2, we recall from [11] the definition
of the binary code associated with a polarized supersingular K3 surface of type
(#). We stratify the moduli space 9 according to the isomorphism classes [C]
of the codes, and give a method to construct the stratum Mg from the code
C. In §3, we present three isomorphism classes [C4], [Cpg| and [C¢] of codes
that are associated with polarized supersingular K3 surfaces of type (f) with Artin
invariant 2. In §4, §5 and §6, we carry out the method of the construction of 9
for C = C4,Cp and C¢, and prove Theorems 1.6, 1.7 and 1.8, respectively. In
§7, we review from [5] the theory of Cremona transformations by quintic curves. In
68, we explain the algorithm to calculate the isomorphism correspondences given
by Cremona transformations, and prove Theorem 1.13.

The isomorphism classes of codes associated with polarized supersingular K3
surfaces of Artin invariant o > 3 are also given in [11]. For o = 3, there are 13
isomorphism classes, and for o = 4, there are 41 isomorphism classes. It would be
a challenging problem in computational algebraic geometry to construct explicitly
the moduli spaces of dimension ¢ — 1 corresponding to these isomorphism classes
of codes, and to investigate the relations between them.

In [7], Rudakov and Shafarevich gave explicitly families of supersingular K3
surfaces in characteristic 2 for Artin invariants o = 1,...,10. The equation of the
family for o = 2 is

y? =2 4 ptbr 4+ 2+ 1)4,
where p is the “modulus”. We would like to know the relation between p and our
moduli JA, JB and Jc.

The polarized supersingular K3 surface of type (i) is an example of Zariski
surfaces. A general theory of Zariski surfaces has been developed in [2].

Notation and terminologies.

(1) Let A be a commutative ring, and S a set. We denote by A° the A-module
of all maps from S to A.

(2) Let S be a finite set. The full symmetric group of S is denoted by &(5),
which acts on S from left. We denote by Pow(S) the power set of S. A canonical
identification between Pow(S) and F§ is given by f € F5 +— f~!(1) € S. Hence
Pow(S) has a structure of the Fo-vector space by the symmetric difference

T+ To= (T UD)\(LNT)  (T1,Ts C S).
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A linear subspace of F5 = Pow(S) is called a code, and an element of a code is called
a word. A word is expressed either as a vector of dimension |S| with coefficients in
Fs, or as a subset of S. The cardinality |A| of a word A C S is called the weight of A.
The automorphism group Aut(C) of a code C C Pow(S) is the subgroup of &(S)
consisting of all permutations preserving C. Two codes C and C’ in Pow(S) are
said to be isomorphic if there exists a permutation o € &(5) such that o(C) = C'.
The isomorphism class of codes represented by a code C is denoted by [C].

(3) A lattice is a free Z-module A of finite rank equipped with a non-degenerate
symmetric bilinear form A x A — Z. A lattice is called even if v2 € 2Z holds for
every v € A. A lattice is called hyperbolic if the signature of the symmetric bilinear
form on A @ R is (1,7 — 1), where r is the rank of A. The dual lattice AV of A is
the Z-module Hom(A,Z). There exists a canonical embedding A < AV of finite
cokernel. Hence AV can be regarded as a submodule of A ®7 Q. We have a natural
Q-valued symmetric bilinear form on AV that extends the Z-valued bilinear form
on A. An owerlattice of A is a submodule A’ of AV containing A such that the
canonical Q-valued symmetric bilinear form on AV takes values in Z on A’.

2. THE CODES ASSOCIATED WITH THE SUPERSINGULAR K3 SURFACES
First we give a proof of Proposition 1.3.

Proof of Proposition 1.3. The equivalence of (i) and (iii) follows from the structure
of the graded ring @®,,>0H%(X, L®™), where X is a K3 surface and L is a line
bundle of degree 2. (See [11, §7].) By [11, Theorem 2.1], Z(dG) = Z(dG’) holds if
and only if dG = ¢ - dG’ for some ¢ € k*. Since the kernel of G — dG is equal to
{H?|H € V}, the equivalence of (ii) and (iii) follows. O

2.1. Definition of the code C(X, L,7). Let us fix a finite set
P = {Pl,...,P21}
consisting of 21 elements, on which the full symmetric group &(P) acts from left.

Definition 2.1. We denote by G the space of all injective maps v : P — P? such
that there exists a homogeneous polynomial G € U satistying v(P) = Z(dG).

The space G are constructed as follows. For G € U, let (G) € P.(U/V) denote
the point corresponding to G. We denote by

Z:={(p(G) PP xP.(U/V) | p€ Z(dG)} — P.(U/V)
the family of Z(dG), which is finite and étale of degree 21 over P, (U/V). We
prepare 21 copies of Z and make the fiber-product ZY of them over P, (U/V).

Then G is the union of irreducible components of 2Z(21) that do not intersect the
big diagonal.

Remark 2.2. We fix a base point (Go) € P.(U/V), and consider the monodromy
action
p: m(PaU/V), (Go)) — &(Z(dGo))

of the algebraic fundamental group of P, (/V) on Z(dGy). Then the number of
irreducible components of G is equal to the index of the image of p in &(Z(dGy)).
It was shown in [2, Chapter 4, Appendix 2] that the monodromy group on the
singular points of a generic Zariski surface in characteristic > 5 is equal to the
full-symmetric group.
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The group &(P) acts on G from right, and PGL(3, k) acts on G from left. By
Proposition 1.3, we have

M = PGL(3,k)\G/S(P).

Let
21
No =27 & Zh = P Ze; & Zh
i=1
be a free Z-module of rank 22 generated by vectors eq,...,es; corresponding to

Py, ..., Py; € Pandavector h. We equip Ny with a structure of the even hyperbolic
lattice by
e2=-2 h®=2, eie; =0 (i#37), he;=0.
The dual lattice
Ny = Hom(Ny,Z) C No®zQ

is generated by e;/2 (i = 1,...,21) and h/2. Thus we have a canonical isomorphism

Ny /Ny = FY @ Fy = Pow(P) @ Fy.
Hence we can write an element of N /Ny in the form (4, «a), where A is a subset
of P and a € F5. We denote by

pr : Ny — Ny /No = Pow(P) & Fo

the natural projection. We also denote by

p : Ny /No =Pow(P) & Fy — Pow(P)

the natural projection onto the first factor. The following is obvious:

Lemma 2.3. Let C be a subspace of the Fao-vector space Pow(P) @ Fy. Then the

submodule pr=1(C) of Ny is an even overlattice of No if and only if

4| = 0 mod4 ifa=0
|1 mod4 ifa=1

holds for every (A, ) € C. O

Let (X, L) be a polarized supersingular K3 surface of type (§), and let NS(X)
denote the numerical Néron-Severi lattice of X. There exists G € U such that
D X — P? factors through g : Yo — P2. We put

Z(Xvﬁ) = Z(dG) = Wg(Sing Yg).

There also exists a point v : P — P2 of G, unique up to the action of &(P), that
induces a bijection from P to Z(x ). We fix such a point v € G. Let E; be the
(—2)-curve on X such that ®,(£;) is the point v(FP;) € Z(x ). Then we obtain
an embedding

ty © Ng — NS(X)
of the lattice Ny into NS(X) by e; — [E;] and h — [L£]. By the embedding ¢, we
can regard NS(X) as a submodule of Ny. We put

C(X,L,7) := NS(X)/Ng C Pow(P)&F,, and

C(X,L,y) = p(C(X,L,7)) C Pow(P).

Since NS(X) is an even overlattice of Ny, the code C(X, L,~) is uniquely recov-
ered from C(X, L,~) by Lemma 2.3, and hence the lattice NS(X) is also uniquely
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recovered from the code C(X, £, ). In particular, the Artin invariant o(X) of X is
given by

o(X) =11 — dimy, C(X, L, 7).
Note that the isomorphism class of the code C(X, L,~) does not depend on the
choice of 7. The following is one of the main results of [11]:

Theorem 2.4. For an isomorphism class [C] of codes in Pow(P), the following
two conditions are equivalent.

(i) There exists a polarized supersingular K3 surface (X, L) of type () such that,
for a (and hence any) bijection v from P to Z(x ), the code C(X,L,v) is in the
isomorphism class [C].

(ii) A (and hence any) code C € [C] satisfies the following:

e dim C < 10,

o the word P € Pow(P) is contained in C, and

e |A| €{0,5,8,9,12,13,16,21} for every word A € C.

2.2. Geometry of Z(x ) and the code C(X,L, 7). Let (X, L) be a polarized
supersingular K3 surface of type (). We fix a bijection 7 from P to Z(x »y. Let
G € U be a homogeneous polynomial such that ®|.| factors through Yg, or equiv-
alently, such that Z(dG) = Zx ) holds. For the proofs of the facts stated in this
subsection, we refer the reader to [11, §6 and §7].

Definition 2.5. Let C' C P? be a reduced irreducible curve. We say that C splits
in (X, L) if the proper transform of C by @z : X — P? is non-reduced. We say
that a reduced (possibly reducible) curve C" splits in (X, L) if every irreducible
component of C’ splits in (X, £).

Since @ is purely inseparable of degree 2, the proper transform of a splitting
curve C by @, is written as 2F¢, where F¢ is a reduced divisor of X. We denote
by w(C) € Pow(P) the image of the numerical equivalence class [Fz] € NS(X) by

NS(X) — NS(X)/Ny — Ny/No -2 Pow(P),
where Ny — NS(X) is obtained from the fixed bijection v : P = Zx,r)- By
definition, we have

w(C) e C(X,L,7).

It is easy to see that

w(C) ={ P, € P | the multiplicity of C at v(FP;) is odd }.
If C is a nonsingular curve splitting in (X, £), then

w(C) =7"HC N Z(x,z))-

If Cy and C5 are two splitting curves without common irreducible components, then

w(Cy UCy) = w(Cq) + w(Cs) holds.

Proposition 2.6. Let Z74q) C Op:2 be the ideal sheaf defining the subscheme
Z(dG). The linear system |I zqq)(5)| of quintic curves passing through all the
points of Z(dG) is of dimension 2, and spanned by the curves defined by

9G/9X =0, 8G/dY =0 and 0G/9Z = 0.

A general member C of | T z(qc)(5)| splits in (X, L), and the word w(C) € C(X, L,7)
is equal to P € Pow(P).
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Proposition 2.7. Let C be a reduced curve splitting in (X, L), and let p be a point
of C. (1) If p is an ordinary node of C, then p € Z(x r). (2) If p is an ordinary
tacnode of C, then p ¢ Z(x ).

Proposition 2.8. Let C be a reduced curve of degree 6 splitting in (X, L), and let
G’ = 0 be a defining equation of C. If C' has only ordinary nodes as its singularities,
then the homogeneous polynomial G' is a point of U, and the point [G'] € M
corresponds to the isomorphism class of (X, L).

Proposition 2.9. Let L C P? be a line. The following conditions are equivalent:
(i) L splits in (X, L), (i) [LNZx,cyl =3, and (iii) |[L N Zx )| = 5.
Proposition 2.10. Let Q C P? be a nonsingular conic curve. The following
conditions are equivalent: (i) Q splits in (X, L), (ii) [Q N Z(x,z)| > 6, and (iii)
QN Zx )l =8.

Corollary 2.11. The word w(L) = 7*1(LDZ(X7L)) of a splitting line L is of weight

5, and the word w(Q) = vy~ 1(Q N Z(x,r)) of a splitting nonsingular conic curve Q
is of weight 8.

Definition 2.12. A pencil £ of cubic curves in P? is called a regular pencil if the
following hold:

o the base locus Bs(€) of £ consists of distinct 9 points, and
e every singular member of £ has only one ordinary node as its singularities.

We say that a regular pencil € splits in (X, L) if every member of £ splits in (X, L).

Proposition 2.13. Let £ be a reqular pencil of cubic curves spanned by Ey and
FE. Let Hy =0 and Hy = 0 be the defining equations of Ey and E,, respectively.
Then & splits in (X, L) if and only if there exist ¢ € k* and H € V such that

(2.1) G = cHyH, + H?
holds. If & splits in (X, L), then Bs(E) is contained in Z x ry, and
w(By) =77 (Bs(€))
holds for every member E; of £. In particular, the word w(Ey) is of weight 9.
Remark 2.14. The condition (2.1) is equivalent to
Z(d(HoHo)) = Z(dG) = Z(x,r)
by Proposition 1.3.

Remark 2.15. A regular pencil £ has 12 singular members EM ... E(12)  We
denote by N® the ordinary node of E. Suppose that & splits in (X, £). Then
Z(x,¢) is a disjoint union of Bs(€) and {NW, ... NU2}.
Let Ly and Ly be distinct lines splitting in (X, £). Then the intersection point
of Ly and Ly is in Z(x ) by Proposition 2.7, and hence
w(L1 @] Lg) = w(Ll) + w(Lg)
is a word of weight 8.

Let Ly, Ly and L3 be lines splitting in (X, £) such that Ly N Ly N Ly = (). Then
the three ordinary nodes of L1 ULy ULz are in Z(x ) by Proposition 2.7, and hence

’U.)(Ll @] L2 @] Lg) = U)(Ll) + ’UJ(LQ) + 'LU(Lg)
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is a word of weight 9.

Let @ be a nonsingular conic curve splitting in (X, £), and let L be a line splitting
in (X, £). Using Proposition 2.7, we see that L intersects @ transversely if and only
if w(LUQ) =w(L)+ w(Q) is of weight 9. We also see that L is tangent to @ if
and only if w(L) Nw(Q) = 0.

Definition 2.16. Let C C Pow(P) be a code satisfying the conditions in (ii) of
Theorem 2.4, and let A be a word of C with |A| € {5,8,9}.

(i) We say that A is a linear word of C if |A| = 5.

(ii) Suppose |A| = 8. If A is not a sum of two linear words of C, then we say
that A is a quadratic word of C.

(iii) Suppose |A| = 9. If A is neither a sum of three linear words of C nor a sum
of a linear and a quadratic word of C, then we say that A is a cubic word of C.
Proposition 2.17. (1) The correspondence L — w(L) yields a bijection from the
set of lines splitting in (X, L) to the set of linear words in C(X, L,).

(2) The correspondence Q — w(Q) yields a bijection from the set of nonsingular
conic curves splitting in (X, L) to the set of quadratic words in C(X, L,7).

(3) The correspondence € — v~1(Bs(&)) yields a bijection from the set of reqular
pencils of cubic curves splitting in (X, L) to the set of cubic words in C(X, L,7).

By Theorem 2.4, the code C(X, L,7) is generated by the word P and by the
linear, quadratic and cubic words in C(X, £,v). Combining this fact with Proposi-
tion 2.17, we obtain the following:

Corollary 2.18. Let g be an element of the group
Aut(X7£) = { h e PGL(3,k) ‘ h(Z(X’£)> = Z(X,ll) }

Then we have C(X,L,v) = C(X,L,g o). Hence there erists a unique element
04 € Aut(C(X, L,7)) such that goy = ooy holds. By g — o4, we can embed
Aut(X, L) into Aut(C(X, L,7)).

2.3. Construction of M) from C. Let [C] be an isomorphism class of codes
satisfying the conditions in (ii) of Theorem 2.4. We denote by

93?[0] c Mm

the locus of all isomorphism classes of polarized supersingular K3 surfaces (X, £)
of type (#) such that C(X, L,~) is contained in [C] for a (and hence any) bijection
7y from P to Zx ). We also denote by Gic) the pull-back of M| by the quotient
map

G — M =PGL3,k)\G/S(P).
We will describe the locus g[c].

Definition 2.19. For a point « of G, let C[y] denote the code in Pow(P) generated
by the following words:
e P € Pow(P),
e words A of weight 5 such that the points v(A) are collinear,
e words A of weight 8 such that there exists a nonsingular conic curve containing
~v(A), and
e words A of weight 9 such that there exists a regular pencil £ of cubic curves
spanned by Ey = {Hy = 0} and E, = {Hx = 0} such that Bs(&) = y(A)
and Z(d(HoHo)) = 7(P) hold.
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From the results above, we obtain the following;:

Corollary 2.20. Suppose that v € G, and let (X, L) be a polarized supersingular
K3 surface of type () such that ¥(P) = Z(x,z). Then the code C[y] coincides with
the code C(X, L,7).

By definition, we have
Clyoo] =0o"C]H]) for any o € &(P).
For each code C € [C], we put
Go={7¢G | Chl=C}.
Then we have
gg) = ga_l(C),
where GZ denotes the image of G¢ by the action of 0 € &(P). Therefore we obtain
Gic) = I_l Gor = |_| Gg& (disjoint union),

C’e[C] o
where o runs through the set of representatives for the right cosets in &(P) with
respect to the subgroup Aut(C) C &(P). Hence we have

Mic) = PGL(3,k)\Gc/ Aut(C).
For v € Gg, let [y] € PGL(3,k)\Gc denote the projective equivalence class of ~.
From Corollary 2.18, we obtain the following:

Corollary 2.21. Let (X, L) be a polarized supersingular K3 surface of type (£)
corresponding to the image of [y] € PGL(3,k)\Gc by the quotient map
PGL(?), k)\gc — E)JT[C] = PGL(?), k)\gC/Aut(C).

Via the natural embedding of Aut(X, L) into Aut(C(X, L,~)) = Aut(C), the auto-
morphism group Aut(X, L) is equal to the stabilizer subgroup of the point [7].

3. THE ISOMORPHISM CLASSES OF CODES WITH ARTIN INVARIANT 1 AND 2

We have classified all isomorphism classes of codes satisfying the conditions in
(ii) of Theorem 2.4. The list is given in [11, §8]. Using the classification, we have
obtained the following [11, Corollary 1.11]:

Theorem 3.1. There exists exactly one isomorphism class [Cy] of codes of dimen-
sion 10 satisfying the conditions in (i) of Theorem 2.4. The moduli space Mg,
consists of a single point corresponding to the Dolgachev-Kondo polynomial

Gpk == XYZ(X? + Y3+ Z%).
We call the point [Gpk] constituting My = M, the Dolgachev-Kondo point.
We define the Dolgachev-Kondo code
Cpk C POW(P2<F4))

to be the code generated by the words A(F,), where A are Fy-rational lines in P2.
The codes in the isomorphism class [Cg] are precisely the codes v~ !(Cpk), where
7 runs through the set of all bijections from P to P?(F,) = Z(dGpk). The weight
enumerator of any code in [Cy] is

1+ 212° +2102% + 28027 + 280212 4+ 21021 + 21216 + 221,
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TABLE 3.1. Generators of the code C4

= - O O O - OO
— O A OO OO A
— OO A OO0 OO
O O O —H O - O
— — O O O OO OO
— O~ OO0 OO
— OO OO —AO
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— O O OO —A O OO
— O OO OO —H OO
— O OO OO O A H
— OO oo oo —HO
— O OO OO OO A
— O OO OO O OO

TABLE 3.2. Generators of the code Cp

o= - O O —H OO
OO A A OO A
—“ OO 4O —~H - -
— O OO A~ O
—— O O O OO OO
— O O - OO — O
—H OO O - O
O~ OO~~~
— O - O OO O OO
—N OO O~
— OO A O — - O
—H OO O A~ O -
— O O - O OO OO
—S O OO A A A OO
OO —H OO OO
— O O OO —A O OO
— O OO OO —H OO
OO0 o0 OO0 H A
— O OO OO o HOo
— O OO OO OO A
—\ O OO OO O OO

TABLE 3.3. Generators of the code Cg

There are no quadratic nor cubic words in Cy.

From the list in [11, §8], we obtain the following:

Proposition 3.2. There are exactly three isomorphism classes [C4l], [Cg], [Cc]

of codes of dimension 9 satisfying the conditions in (ii) of Theorem 2.4.

As representatives of these isomorphism classes, we can take codes C,, Cp
and C¢ generated by vectors in Tables 3.1, 3.2 and 3.3. The numbers of linear,
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quadratic and cubic words in these codes are given in the following table:

linear quadratic cubic

Ca 13 28 0
Cp 9 66 0
Cc 5 120 0

The weight enumerators of these codes are as follows:

Ca : 141325410628 +1362° + 136212 + 1062 4 13216 4 221,

Cp : 1+492°+10228 +1442° + 14422 4102213 4+ 9216 4 221,

Cc @ 1452° 413028 +1202° + 120212 + 130213 + 5216 + 221,
Remark 3.3. The Dolgachev-Kondo code Cpy is related to the binary Golay code
Cy4 in the following way. Let M := {u1,..., 24} be the set of positions of the
Miracle Octad Generator (MOG) as is indicated in [9, Table 6.1]. The definition

of Cyy as a subcode of Pow(M) is described in [3, Chapter 11]. We put N :=
{122, pi23, oa} C M, and consider the 10-dimensional subcode

Cop:={weCy | wDN or wNN =0}
of Cy4. We then define a map
P2(Fy) — M

by [9, Table 6.2]. The pull-back of Caq by this map is just the Dolgachev-Kondo
code Cpk.

Remark 3.4. The codes C 4, Cp and C¢ are isomorphic to linear subcodes of Cpi
defined as follows. Let F = {Q1, Q2, @3, Q4} be a set of four points of P?(FF,), and
let Cp be the 9-dimensional linear subcode of Cpk defined by

Cr:={weCpk | lwnNF|iseven }.

If no three points of F are collinear, then Cp is isomorphic to C4; if exactly one
triplet of the points of F' are collinear, then Cp is isomorphic to Cp; while if F is
on a line, then Cp is isomorphic to Cg.

For T'= A, B and C, we will write My instead of M|c,}, and Gr instead of Gc,..
In the next three sections, we will construct explicitly the space
EIRT = PGL(3, k)\gT/Aut(CT)

for T = A, B,C, and prove Theorems 1.6, 1.7 and 1.8 stated in Introduction. For
this purpose, we have to determine the group Aut(Cr) and the space Gr. Since
Cr is generated by P and the set of linear and quadratic words, we obtain the
following:

Proposition 3.5. Let W1(Cr) and Wo(Cr) be the sets of linear and quadratic
words in Cr, respectively. An element o of &(P) is contained in Aut(Cr) if and
only if the following hold:

O'(Wl(CT)) = Wl(CT) and O'(WQ(CT)) = WQ(CT)
Proposition 3.6. Suppose that a map v : P — P? is given. Then v is contained
in Gr ={v € G |Cly] = Cr} if and only if the following hold:

(i) ~ is injective,
(ii) there exists a homogeneous polynomial G of degree 6 such that v(P) = Z(dG),
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(iii) for every linear word | of Cr, there exists a line L C P? containing ¥(1), and
(iv) for every quadratic word q of Cr, there exists a nonsingular conic curve
Q C P? containing v(q).

Proof. The “only if ” part is obvious from the definition of Gp. Suppose that ~
satisfies (i)-(iv). By (i) and (ii), we have v € G. Since Cr is generated by the
word P and linear and quadratic words, the properties (iii) and (iv) implies that
Cr C C[y]. If Cp # C[y], then, by Theorem 3.1, the code C[y] C Pow(P) is
isomorphic to the Dolgachev-Kondo code Cpx C Pow(P?(F,)) by some bijection
from P to P?(F4). Hence there exists g € PGL(3, k) such that

g(v(P)) = Z(dGpk) = P*(Fy).

However, there are no eight points in P?(F4) that are contained in a nonsingular
conic curve. O

It will turn out that, for T'= A, B and C, the following hold.

(1) The space PGL(3,k)\Gr has exactly two connected components, both of
which are isomorphic to Al \ {0,1,w,@}. Let Ny C Aut(Cr) be the subgroup
consisting of the elements that do not interchange the two connected components,
and let 'z be the image of N in Aut(A®\ {0,1,w,&}). Then N7 is of index 2 in
Aut(Cr). The moduli curve M7 is the quotient of A\ {0,1,w, @} by I'z.

(2) The action of 'z on the punctured affine line A'\{0, 1,w, @} is free. Hence the
order of the stabilizer subgroup Stab([y]) C Aut(Cr) of a point [y] € PGL(3, k)\Gr
is constant on PGL(3,k)\Gr. By Corollary 2.21, Stab([y]) is equal to Aut(X, L),
where (X, L) corresponds to the image of [y] in Mp. Hence we have an exact
sequence

1 - Aw(X,£) - Nr - I'r — 1
for any polarized supersingular K3 surface (X, £) corresponding to a point of M.

The orders of the groups above are given as follows.

T|Aw(Cr)| = 2 x |Tr| x |Aut(X,Z)]
Al 1152 = 2 x 6 «x 96
B 432 = 2 X 12 x 18
Cc| 23040 2 x 12 «x 960

Remark 3.7. The following algorithm will be used frequently. Suppose that we are
given eight points

pi:[gianhCi] (121778)
on P2, In order for them to be on a (possibly singular) conic curve, it is necessary
and sufficient that the 8 x 6 matrix

g%? 7’%7 C127 517’13 771(17 Clgl

&, n3, (3, &ms, msCs, (sés

is of rank < 6. When the rank of M is < 6, a non-zero solution

T[A,B,C,D,E,F]
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of the linear equation Mx = 0 gives us a defining equation
(3.1) AX?> 4+ BY?*+CZ?* +DXY + EYZ +FZX =0
of a conic curve containing p1, ..., ps-

The following are phenomena peculiar to projective geometry in characteristic
2.

Remark 3.8. The conic curve defined by the equation (3.1) is singular if and only
if the following holds:

AE? + BF? + CD? + DEF = 0.

Definition 3.9. Let L C P? be a line, and let Q@ C P? be a (possibly singular)
conic curve. We say that L and @ are tangent if they fail to intersect at distinct
two points.

Remark 3.10. Let L be a line. Then the conic curves tangent to L form a linear
system in |Op2(2)]. If three distinct lines Ly, Lo and L3 are concurrent, then every
conic curve that is tangent to L; and Lo is tangent to Ls.

Remark 3.11. Let A, B,C,D € P? be distinct points. Suppose that no three of
them are collinear. Let O (resp. P) (resp. @) be the intersection point of the lines
AB and CD (resp. AC and BD) (resp. AD and BC). Then O, P and Q are
collinear.

4. THE MODULI CURVE CORRESPONDING TO THE CODE C 4

In this section, we prove Theorem 1.6.

The linear words of C4 are listed in Table 4.1. From now on, we sometimes
abbreviate, for example, the set {Ps, Py, P12, P15, Pio} to {8,9,12,15,19}. The
linear word m stands out from the rest in that there are two points P; and P, in
m through which no other linear words pass. We call m the special linear word.
The other linear words are divided into three groups according to the intersection
point with m. For v = 12,13,18 and ¢ = 1,2, 3,4, the non-special linear word [, ;

m {1, 2 12, 13, 18 ),
Lo { 10, 11, 12, 16, 20 },
l12,2 { 8 9, 12, 15, 19 },
l12,3 { 5 6, 12, 14, 17 },
l12,4 { 3, 4, 7, 12, 21 },
a1 : { 13, 14, 15, 16, 21 },
lis,2 { 7, 8 10, 13, 17 1},
li3,3 { 4, 6, 11, 13, 19 },
li34 { 3, 5 9, 13, 20 },
hsi : { 17, 18, 19, 20, 21 },
lig,2 { 7, 9, 11, 14, 18 1},
lig,3 { 4, 5, 10, 15, 18 },
lig,a { 3 6 8 16, 18 }.

TABLE 4.1. Linear words in C4
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B\all 2 3 4
1[4 3 2 1
2 |3 4 1 2
3 |21 4 3
4 |12 3 4

TABLE 4.2. Concurrent triples (o, 8, v(«, 3))

afy | 114 123 132 141 213 224 231 242
Togy | Pi6 Pio Pu P Ps B Py P
afy | 312 321 334 343 411 422 433 444
Togy | Pu Piv Ps B Pn P Py P

TABLE 4.3. Points Tz~

intersects m at the point P,. For each of P; and P, there exists only one linear
word m containing it. For each of Pjs, Pi3 and Pig, there exist exactly five linear
words containing it. For each of the other 16 points, there exist exactly three linear
words containing it. For each «, 8 = 1,...,4, there exists a unique v = v(«, )
such that the three linear words l12.«, l13,38 and l1g., have a point in common. We
call such a triple (o, 3,7) a concurrent triple. The list of concurrent triples is given
in Table 4.2. For a concurrent triple («, 3,7), we denote by T3, the intersection
point of l127a, l13,5 and llg,,y.

The 28 quadratic words in C4 are divided into two groups. The quadratic
words ¢, ...,q], listed in Table 4.4 are disjoint from the special linear word m,
and intersect each of the non-special linear words [, ; at distinct two points. On
the other hand, for each concurrent triple («, 3,7), there exists a unique quadratic
word g g~ that is disjoint from the three linear words l12 o, l13,3, l18,~, and intersects
other ten linear words at distinct two points. The list of these quadratic words ga g
is given in Table 4.5.

In order to study Aut(C.), we embed C,4 into the Dolgachev-Kondo code
Cpk C Pow(P%(F,)) by the bijection ¢ : P = P%(F,) given in Table 4.6. The
following can be checked easily.

(1) If I is a linear word of C4, then the points in ¢(I) are collinear. The linear
words of C4 coincide with ¢~ *(A(F4)), where A are Fy-rational lines contain-
ing at least one of ¢(Pi2), ¢(Pr3), ¢(Pig).

(2) The words ¢i, ..., ¢}, coincide with the words written as

¢71(A1(F4) + Ao (Fy)),

where A; and Ay are distinet Fy-rational lines such that both of A (Fy) and
Ao (Fy) are disjoint from {¢(P12), #(P13), #(Pis)}, and such that the intersec-
tion point of A;(F4) and Ao(Fy) is either ¢(Py) or ¢(Ps).

(3) For a concurrent triple («, 3,7), let A; be the Fy-rational line passing through
®(Twp) and ¢(P;) for i = 1,2. Then we have gagy = ¢~ (A1(Fs) + Ao (Fy)).
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¢ : { 5 6 7, 9 10, 16, 19, 21 },
¢ : { 5 6, 7, 8 11, 15 20, 21 },
¢ = { 4, 6, 8 9 10, 14, 20, 21 },
¢ + { 4, 6, 7, 9 15 16, 17, 20 },
¢ = { 4, 5 8 9 11, 16, 17, 21 },
@ = { 4, 5 7, 8 14, 16, 19, 20 },
¢ = { 3, 6, 9, 10, 11, 15, 17, 21 },
¢ = { 3, 6, 7, 10, 14, 15, 19, 20 },
¢ = { 3, 5 8 10, 11, 14, 19, 21 },
¢o : { 3, 5, 7, 11, 15, 16, 17, 19 },
¢, { 3, 4, 9, 10, 14, 16, 17, 19 },
¢ : { 3, 4, 8 11, 14, 15 17, 20 }.
TABLE 4.4. Quadratic words ¢}, in C4
q114 {1, 2, 4 5 7, 9 17, 19 },
q123 {1, 2, 3 6, 9 14, 19, 21 },
q132 {1, 2, 3 5 8 15 17, 21 },
q141 {1, 2, 4, 6, 7, 8 14, 15 },
4213 {1, 2, 3 6 7, 11, 17, 20 },
4224 {1, 2, 4, 5 11, 14, 20, 21 },
q231 {1, 2, 3 5 7, 10, 14, 16 },
G242 {1, 2, 4, 6, 10, 16, 17, 21 },
312 {1, 2, 3, 4, 8 10, 19, 20 },
321 { 1, 2, 3 4, 9, 11, 15 16 },
4334 {1, 2, 7 9 10, 15 20, 21 },
q343 {1, 2, 7, 8 11, 16, 19, 21 },
qa11 {1, 2, 5 6, 8 9, 10, 11 },
G422 {1, 2, 5 6, 15 16, 19, 20 },
G433 {1, 2, 8 9, 14, 16, 17, 20 },
Q44 { 1, 2, 10, 11, 14, 15 17, 19 }.

TABLE 4.5. Quadratic words g, in Ca

Let PG’ be the subgroup of PGL(3,F,) consisting of g € PGL(3,F,) satisfying

{9(6(Pr12)), 9(6(P13)), g(¢(P1s)) } = {#(Pr2), #(P13), d(Pis)},

and let PG be the subgroup ¢! o PG’ o ¢ of G(P). The order of PG is 288. Let
F’ € &(P?(F,)) be the element of order 2 obtained by the conjugation w +— & of
F4 over Fy. We then put

F = ¢_1 O FI [e] ¢ = (Plpg)(P3P5)(P4P6)(P7P14)(P3P15)(P10P16)<P17P21) S 6(7))

We also put
T:= (P1P2)
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o) = [Lw,0] ¢(Pr2) = [0,1,0],
o(2) = [1,0,0], o(Pz) = [1,1,0],
o(P3) = [1,1,w], o(Pra) = [Lw,0],
¢(P4) = [1,@,&1], ¢(P15) = [Lwa 1]7
o(P5) = [1,1,0], o(Pis) = [0,1,w],
o(Fs) = [Lw,o], o(Pr7) = [1,0,0],
o(Pr) = [Lw,wl o(Ps) = [1,0,0],
o(Ps) = [1L,w,1], ¢(Pro) = [1,0,1],
o(P) = [1,1,1], ¢(P) = [0,0,1],
o(Po) = [0,1,&], P(Pa1) [1,0,w]

#(Pr1) [0,1,1],

TABLE 4.6. Bijection ¢ from P to P?(F,)

Proposition 4.1. The group Aut(Cy) is of order 1152, and is generated by PG,
FandT.

Proof. Since the actions of PG’ and F’ on P?(FF,) leave the set
{[07 17 0]7 [17 170]7 [17 Oa 0]} = {¢(P12)7 ¢(P13)7 ¢(P18)}

invariant, and preserve the line-point incidence configuration, we see that PG C
Aut(Cy4) and F' € Aut(C,). It is obvious that T' € Aut(C4). By direct calculation,
we see that the subgroup of G(P) generated by PG, F and T is of order 1152.

Every automorphism of Cy4 leaves each of the sets {P;, P} and { P12, P13, Pis}
invariant. Hence we have a homomorphism

(41) Aut(CA) — 6({P1,P2}) X 6({P12,P13,P18}).

Since PG acts on {Py2, P13, Pig} as the full-symmetric group, and since T is con-
tained in Aut(C,), the homomorphism (4.1) is surjective. Let K denote the kernel
of (4.1). We have a homomorphism

(4.2) K — 64 x 8y, g — (0,0,
where o and ¢’ are given by

9(lh2,0) = li2,oa),  9(l13,8) = li3,07(3)-

We also have a homomorphism

(4.3) Gy x 6y — 6(P), (0,0") — Goor,
where g, is given by
oo (Pi) = P if P, €m,
9o.o'(Tapy) = To@o(a)y

where (a, 8,7) and (o(a),0’(8),v’) are concurrent triples.
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() = [1Lw0] W (P2) = [0,1,0],
) = [1,e,0] (Ps) = [1,1,0],
YW(P3) = [1+A14A1], w(Pa) = [N1,1]
(P = [1+AA1] Ww(Pis) = [L,A1],
W) = [ m(Pie) = [0,14A1],
W) = [AN1+A1] (Pi7) = [A0,1],
’y)\(P7) = [1 +)\,1,1], ’y)\(Plg) = [1,0,0],
k) = [L1+A1] Mm(Po) = [1,0,1],
() = [1,1,1] M (P20) = [0,0,1],

W (Pro) = [0, 1], W(P1) = [14X,0,1]
Ya(Pr1) [0,1,1],

TABLE 4.7. Definition of vy for C4

Since the composite of (4.2) and (4.3) is the identity of K, the homomorphism (4.2)
is injective. For each pair (o, 0’) of &4 x &4, we check whether g, ,+ is in Aut(Ca);
that is, whether g, . satisfies the following (see Proposition 3.5):

(4.4) 9o.0r(W1(Ca)) = Wi(Ca) and go o (W2(Ca)) = Wa(Ca).

Among (4!)2 = 576 pairs, exactly 96 pairs satisfy (4.4). Hence Aut(C,) is of order
|K||S2||G3] =96 - 12 = 1152, and is generated by PG, F and T. O

For a parameter A of the affine line A!, we define a map
2 P — P?

by Table 4.7. Note that v, coincides with ¢ defined above. We denote by T the
subgroup {1,T} of Aut(C,).

Proposition 4.2. The map \ — v, induces an isomorphism from A\ {0,1,w, &}
to PGL(3,k)\Ga/T.

Proof. First note that ~, is injective if and only if
(4.5) A#0 and A #1L.

From now on, we assume (4.5).
We will show the following:

Claim 4.3. Let 7/ be an arbitrary element of G4. Then there exists a unique triple
(g,t,\) € PGL(3,k) x T x (k\ {0,1,w,®})
such that
goy ot =y.

Because the points v'(Pis), v (Pig), 7' (Pa0) of 7/ (I151) are on a line and the
points ' (P12), v/ (P13), 7/ (P1s) of 7/(m) are on another line, there exists a unique
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element g € PGL(3, k) such that v := g o 4/ satisfies the following;:
’Y(P18) = [17030]7

(4.6) v(Pr2) = [0,1,0], v(Pi3) = [1,1,0],
'Y(P20) = [Oa Oa 1]7 ’Y(Plg) = [1707 1]

Let Li2,a, L13s and Lig, be the lines containing v(l12,4), 7(l13,3) and v(lis,),
respectively. We put « := X/Z, y := Y/Z. Then the defining equations of these
lines can be written as follows:

Lisg : T+4an,=0,
(4.7) Lizg : x4+y+bsg=0,
Ligsy @ y+cy=0.
From (4.6), we have
(4.8) ap =0, ay=1, b3=1 by=0, ¢ =0.
The condition that («, 3,7) is a concurrent triple is equivalent to
(o +bg +cy =0.

Solving the linear equations corresponding to the 16 concurrent triples and com-
bining the result with (4.8), we obtain the following solutions:

(a1,az,a3,a4) = (0,1, X, 14 X),
(4.9) (b1,b2,bs,bs) = (1+ A A, 1,0),
(c1,ca,c3,c0) = (0,1,0, 1+ N\),

where A is a parameter. The coordinates of the points T, are given by [aq, ¢, 1].
Using Table 4.3, we see that v(P;) = v (FP;) holds for every i except for ¢ = 1 and
i = 2. The line M containing y(m) is defined by Z = 0. Hence we can put

’Y(Pl) = [177—170}7 V(PZ) = [17T270]'

By the algorithm in Remark 3.7, we see that a conic curve containing v(q114) exists
if and only if the following hold:

(1+m+m2)A+1)°A2 =0,
(4.10) (11 +72) (1 + 7+ 7'22) A+ 1) A=0,

(m4+m)(mn+n+1)A+1)A=0.
Here we have used the Buchberger algorithm to calculate the Grobner basis of the
ideal in k[X, 71, 72| generated by 6 x 6-minors of the 8 x 6-matrix corresponding to
the eight points in v(g114). Replacing v by v o T' if necessary, we have

m=w and T =0
by (4.5), (4.10) and 71 # 75. Then the conic curve containing v(gi114) is defined by
X244 Y24 A2+ XY + (A +1)ZX =0,

which is nonsingular if and only if A> + A + 1 # 0. (See Remark 3.8.) Thus
we have proved the existence and the uniqueness of the triple (g,¢, A\) satisfying
goy ot =y. In particular, for each double coset in PGL(3,k)\G4 /T, there exists
a unique A € k\ {0,1,w,®} such that v, is contained in the coset.
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QF + AX+Y 4+ (N +N)ZP+YZ+NZX =0,

Q ¢ MHDXPHYPHYZ+ (N +1)2X =0,

Qs : OD+FDXTHFAY?HNYZ+ (N +1)ZX =0,

Qy + AXP+(MN+1D)Y? + (N +1)YZ+NZX =0,

Qs ¢ XPHAY?P+ (NP HN)Z2+NYZ +ZX =0,

Qs : X°+A+1)Y?+ (N +1)YZ+2ZX =0,

Qr ¢ X+ OA+DY +(N+N) 22+ (N +1)YZ 42X =0,
Qs : XPHANYP4NYZ4+ZX =0,

Qo AXP+A+DY P+ (NN 2+ (W +1)YZ+NZX =0,
Qo : OFDXPHAYP+ (N H+NZ2+NYZ+ NV +1)ZX =0,
Qu : A+DX*4+Y*+ (N +NZ2+YZ+ (N +1)ZX =0,
Qs+ AX*+Y? +YZ+NZX =0

TABLE 4.8. Defining equations of the conic curves Q)

Conversely, let A be an element of k\ {0,1,w,@}. We will show that 7, isin G4.
The points 5 (P) coincides with Z(dGA[N]), where GA[}] is given in Theorem 1.6.
Indeed, we can check that

8%;4([>‘] (W (P)) = 8(;;1/[)\] (v (B)) = %le[)\]('y)\(-ﬂ)) =0

holds for ¢ = 1,...,21. For each linear word [ of C4, there exists a line containing
(). The defining equations of them are given by (4.7) and (4.9). (The line
M containing «yx(m) is defined by Z = 0.) For each quadratic word ¢} of Cyu
(resp. gapy), there exists a nonsingular conic curve Q) (resp. Qapy) containing
Y2(¢}) (resp. ¥a(gapy)). The defining equations of them are given in Tables 4.8
and 4.9. Hence v, € G4 by Proposition 3.6. O

Remark 4.4. The polynomial GA[)\] defines the nodal splitting curve
MU Liz1ULig1 ULizsUQ240.
See Proposition 2.8.

Remark 4.5. When X € {w,®}, the set v,(P) coincides with P?(Fy), and the point
[GA[)N]] € 9 is the Dolgachev-Kondo point.

Let k(\) be the rational function field with variable A. For each o € Aut(Cy), we
calculate the unique triple

(gorter A7) € PGL(3,k(N) x T x k()
such that
go 0 (yx00) 0ty = Yao
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Qua : X°4Y? 4+ XY +AZ°+(A+1)ZX =0,

Quzzs : X°4+Y’ 4+ XY +(A+1)Z°4+A1ZX =0,

Quzz + X’ +Y? 4+ XY+ (N +X)Z°+2ZX =0,

Qui  X°+Y + XY+ (N +A+1)Z2° =0,

Qus : X4V 4+ XY+YZ4+AZX =0,

Qazs : X’ H+Y? 4+ XY HYZ+(A+1)ZX =0,

Q1 @ XP+YP4H XY+ (N +AN)ZP+YZ=0,

Q2 : X°+Y + XY+ (N +N)Z+YZ+2ZX =0,
Qa2 @ X°4+Y’+XYH+AYZ+2ZX =0,

Qaz1 : X H+Y’ 4+ XY +(AN+1)Z°+AYZ=0,

Qsza @ X HY? XY HAYZ+(A+1)ZX =0,

Qaazs : X 4+Y? 4+ XY+ (A+1)Z°+AYZ4+AZX =0,
Qui : X H+Y? 4+ XY H+AZ2+(A+1)YZ=0,

Quo : X°4+Y? 4+ XY+(A+1)YZ+ZX =0,

Quzz : X 4+Y? 4+ XY +(A+1DYZ+AZX =0,

Qui : X +Y’+ XY HAZ2+ 0+ 1)YZ+(A+1)ZX =0.

TABLE 4.9. Defining equations of the conic curves Qqg~

holds (see Claim 4.3.) The calculation is done as follows: g, is the unique linear
automorphism of P? characterized by

9o (M (o(P1s))) = [1,0,0],
9o(m(0(P12))) = [0,1,0], go(ya(o(P13))) =[1,1,0]  and
9o (M (0(P20))) = [0,0,1],  go(ya(0(Pr9))) = [1,0,1];
to € T is given by
. {id if g0 (1 (0(P1))) = (1w, 0],
T if go(yalo(Fr))) = [1,0,0];
and \? is the rational function of the parameter A satisfying
9o (1 (0 (Pro))) = [0, A7, 1].
The map o +— t, is a homomorphism from Aut(C4) to T. We put
N4 := Ker(Aut(C4) — 7).
From the proof of Proposition 4.2, we obtain the following:

Corollary 4.6. The space PGL(3,k)\Ga has ezxactly two connected components,
each of which is isomorphic to A*\ {0,1,w,0}. Set-theoretically, they are given by

(PGL(3,k)\GA)T = {[7a] | a€k\{0,1l,w,@}}, and
(PGL(3,k)\Ga)” == {[yaoT] | a€k\{0,1,w,0} }.

The group Na acts on (PGL(3,k)\Ga)™, and the moduli curve M4 is equal to the
quotient space (PGL(3,k)\Ga)"/Na.
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Let
pa : AM\{0,1,w,0} = (PGL(3,k)\Ga)" — M4 = (PGL(3,k)\Ga)T/Na

denote the natural projection. For o € k\ {0,1,w, @}, let P[a] be the point of Al\
{0,1,w,@} given by A = a. Then p4(P[a]) € M4 corresponds to the isomorphism
class of the polarized supersingular K3 surface (Xgafa], Laa[a])-

Proposition 4.7. The set p;' (pa(Pla])) is equal to

(4.11)  { Pla), P[1/a], Pla+1], P[1/(a+1)], Plo/(a+1)], Pl(a+1)/a] },
and Aut(Xgafa], Laaa]) 5 equal to the group (1.1).

Proof. The set {\? | 0 € Na} C k() coincides with the group I'4 given in Theo-
rem 1.6. The fiber p,*(pa(P[a])) is therefore equal to (4.11). Note that the fiber
pa* (pa(Pla])) consists of six distinct points for any a € k\ {0, 1,w,®}; that is, the

action of 'y on (PGL(3,k)\Ga)" is free. Hence, for any a € k\ {0,1,w,w} and
any o € Aut(Cy,), the projective equivalence classes [y,] and

o 00] = [rar ots] € PGL(3,k)\Gc

coincide if and only if ¢, = id and A = X hold. Therefore, using Corollary 2.21,
we can obtain Aut(Xgafa], Lga[e]) from the subgroup

{9o | te =1d and N =X} C PGL(3,k(}\))
by substituting « for A. O

Corollary 4.8. We have M4 = Speck[Ja,1/J4], where Ja = (A2 +A+1)/A2(A+
1)2. The morphism pa is an étale Galois covering with Galois group T a, which is
isomorphic to Gs.

5. THE MODULI CURVE CORRESPONDING TO THE CODE Cg

In this section, we prove Theorem 1.7.

Let AF be the affine plane over F5, P(AF) the set of rational points of AF, and
L(AF) the set of rational affine lines of AF. Each element of P(AF') is expressed
by a pair aa’ of elements of F3, and each element of L(AF) is expressed as a subset
{ad’, bV, cc’'} of P(AF) with cardinality 3. We have

|P(AF)|=9 and |L(AF)|=12.
The incidence relation

{ (p.0) € P(AF) x L(AF) | pel}
is called the Hesse configuration ([4]). The automorphism group

GHesse :={ 0 € 6(P(AF)) | o(f) € L(AF) for all ¢ € L(AF) }
of this configuration is isomorphic to the group of affine transformations of AF
defined over F3. In particular, the order of Gyegge is 432.
We define injective maps
C:PAF)—P and T:L(AF)—7P

by Table 5.1. Then P is a disjoint union of C'(P(AF)) and T(L(AF)). A point
P € P is called a C-point or a T-point according to whether P € C(P(AF)) or
P € T(L(AF)). The code Cp is described as follows.
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aa’ 00 01 02 10 11 12 20 21 22
C(aa’) P17 P13 P5 P10 Pg P6 P2 P3 P1

aa’ bV ec | T(0) aa’ b ec | T(0)
00 01 02| Py 01 12 20| Py
00 10 20| Py 02 10 21| Py
00 11 22| Py 02 11 20| Py
00 12 21| Pig 02 12 22| P;
01 10 22| P 10 11 12| Pis
01 11 21| Pis 20 21 22| Py

TABLE 5.1. C-points C(aa’) and T-points T'(¢) for £ = {aa’,bV’, cc'}

The linear words of Cp are precisely the words
loa = {C(aa"), T(l1),T({2), T(¢3), T(4)} (aa' € P(AF)),

where £1,...,0, € L(AF) are the four affine lines passing through the point aa’ €
P(AF).

There are two types of quadratic words.

(I) Let £ = {aa’,bV’, cc’} be an element of L(AF). There exists a unique pair of
distinct affine lines

l = {aray,biby,cic)} # 4, Uy = {agab, bably, cach} # £
that are parallel to £. Then the word
e = {C(a1ay), C(bib}), C(erch), Clazay), C(boby), Cleacy), T(tr), T(42) }

is a quadratic word of Cg.

(IT) Let ¢; and 45 be two distinct elements of L(AF) that are not parallel, and
let aa’ € P(AF) be the intersection point of ¢; and f2. Then there exists a pair
{m,n} of elements of L(AF) with the following properties:

(i) m and n are parallel,
(ii) aa’ ¢ m, aa’ ¢ n, and
(iii) none of the pairs (¢1,m), (¢2,m), (¢1,n), (f2,n) are parallel.
For such a pair {m,n}, there exists a unique line ¢’ € L(AF') such that
(a) ad’ €V,
(b) is distinct from ¢; and o, and
(c) intersects both of m and n.

We denote the intersection points of these affine lines as in Figure 5.1. Then the
word

o, 0, = {C(My),C(My),C(N1),C(No), T(MN'), T(MyN'), T(N\M'), T(No M) }

is a quadratic word of Cp, where MN € L(AF) denotes the affine line containing
the points M and N. For each (¢1,£2), there exist exactly two pairs satisfying (i),
(ii) and (iii). However, the word gy, ,, is independent of the choice of the pair.
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aaq

M1/ Mo\ \M'

m
Nl/ N2\\N/ n
2 0 4

FIcURE 5.1. Intersection points
loo { 17, 18, 19, 20, 21 1},
lo1 { 13, 14, 15, 16, 21 },
lo2 { 5 7, 9, 11, 21 },
l10 { 10, 11, 12, 16, 20 },
l11 { 8 9, 12, 15, 19 },
l12 { 6, 7, 12, 14, 18 1},
l29 { 2, 4, 9, 14, 20 },
21 { 3, 4, 11, 15, 18 1},
loo { 1, 4, 7, 16, 19 }.

TABLE 5.2. Linear words of Cp

There exist 12 quadratic words of type I, and 54 quadratic words of type IL
The quadratic words of Cpg are precisely these 66 words. The linear and quadratic
words of Cp are explicitly presented in Tables 5.2, 5.3 and 5.4.

The following proposition can be checked easily:

Proposition 5.1. Let £ = {aad’,bb’,cc’} be an element of L(AF). Then the qua-
dratic word qp of type 1 is disjoint from the three linear words l,q, lpy , leer containing
T) eP.

We define a homomorphism
VU GHesse — 6(P)
by
U(g)(C(aa’)) := C(g(aa))  T(g)(T(¢)) :=T(g())-
It is obvious that ¥ is injective.

Proposition 5.2. The automorphism group Aut(Cp) of the code Cp coincides
with the image of .

Proof. The above description of the linear and quadratic words in Cpg shows that
every element in the image of U preserves the sets of these words. Since Cp is
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400,01,02 { 17 27 3, 4, 6, 87 107 12 },
q00710’20 { 1, 37 5, 67 7, 87 137 15 },
q00,11,22 { 2, 3, 5 6, 10, 11, 13, 14 },
400,12,21 {1 2, 5 8 9, 10, 13, 16 1},
q01,10,22 { 2 3 5 6, 8 9 17, 18 },
qo1,11,21 { 17 2, 5, 6, 7, 10, 177 20 },
q01,12,20 { 1, 3, 5, & 10, 11, 17, 19 },
q02,10,21 { 1, 2, 6, 8, 13, 14, 17, 19 },
q02,11,20 { 1, 3, 6, 10, 13, 16, 17, 18 1},
q02,12,22 { 2, 3, 8 10, 13, 15, 17, 20 },
q10,11,12 { 1, 2, 3, 4, 5, 13, 17, 21 },
420,21,22 { 5, 6, 8 10, 12, 13, 17, 21 }.

TABLE 5.3. Quadratic words of type I in Cp

generated by the word P € Pow(P) and these words, the image of ¥ is contained
in Aut(Cp).

Suppose that o € Aut(Cp) is given. A point P € P is a C-point if and only if
there exists exactly one linear word in Cp that contains P. Hence o preserves the
set of C-points. Via the bijection C' : P(AF) = Im C, we obtain a unique element
& € S(P(AF)) such that 0o C' = Coé holds. When P = C(aa’), the unique linear
word in Cpg containing P is just l,,. The Hesse configuration on AF is recovered
from Cp as follows; a set {aa’,bl’,cc’} of cardinality 3 is an element of L(AF) if
and only if the three linear words l,q/, lpy, lcer have a point in common. In this
case, the common point of lyqr, lppr, leer 1s just T'({aa’,bb, cc’}). Therefore we see
that & € GHesse, and that 0 o T =T o & holds. Thus o = ¥(5). O

Let A be a parameter of the affine line A'. We define 7y : P — P? by Table 5.5.
We also denote by T' = (T") the subgroup of Aut(Cpg) of order 2 generated by

T := (PoP5)(P3Ps)(PyPr)(ProP13) (P11 Pra)(Pr2Pis) (Pao Po1),
which corresponds to the automorphism of the Hesse configuration given by aa’ —
aa.

Proposition 5.3. The map \ — v, induces an isomorphism from A\ {0,1,w, &}
to PGL(3,k)\Gp/T.

Proof. First note that v, is injective if and only if
A#0, A#1 and A#w
hold.

Suppose that A # 0,1,w and @. Then ~, is injective, and the image ~y(P)
coincides with Z(dGB[)]), where GB[)] is given in Theorem 1.7. Moreover, for
each linear word I,/ (resp. each quadratic word g, of type I) (resp. each quadratic
word qzw of type II) of the code Cp, there exists a line Ly, containing vy (£gq)
(resp. a conic curve @, containing yx(qe)) (resp. a conic curve @, containing
Y2(qp ) given in Tables 5.6, 5.7, 5.8. The conic curves in Tables 5.7 and 5.8 are
nonsingular because A ¢ {0,1,w,®}. Hence 7, is in Gg by Proposition 3.6.
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T(€) T ay g
18 19 { 1, 3, 6, 8 9, 11, 14, 16 7}
18 20 { 2, 3 6 7, 9, 10, 15, 16 }
18 21 { 3 4, 5 6 9, 12, 13, 16 }
19 20 { 1, =2 7, 8 10, 11, 14, 15 }
19 21 { 1, 4, 5, 8 11, 12, 13, 14 }
20 21 { 2, 4, 5, 7, 10, 12, 13, 15 }
11 12 { 3 4, 5 6 8 14, 19, 21 }
11 16 { 1, 3, 5 9, 13, 14, 18, 19 }
11 20 { 2, 3 5 7, 14, 15, 17, 19 }
12 16 { 1, 4, 6 8 9, 13, 18, 21 }
12 20 { 2, 4, 6, 7, 8 15 17, 21 }
16 20 { 1, =2 7, 9 13, 15, 17, 18 }
4 9 { 1, 3 5 8 12, 16, 18, 21 }
4 14 { 1, 3 6 11, 12, 13, 19, 21 }
4 20 { 1, 3 7, 10, 12, 15, 17, 21 }
9 14 { 5 6 8 11, 13, 16, 18, 19 }
9 20 { 5 7, 8 10, 15, 16, 17, 18 }
14 20 { 6 7, 10, 11, 13, 15, 17, 19 }
14 15 { 2, 3 6 7, 8 11, 19, 20 }
14 16 { 1, 2, &6, , 10, 11, 18, 19 }
14 21 { 2, 4, 5, 6 11, 12, 17, 19 }
15 16 { 1, 3 7, 8 9, 10, 18, 20 }
15 21 { 3 4, 5, 7, 8 12, 17, 20 }
16 21 { 1, 4, 5, 9, 10, 12, 17, 18 }
9 12 { 2, 4, 5, 6 10, 16, 18, 21 }
9 15 { 2, 3 5 7, 13, 16, 18, 20 }
9 19 { 1, 2, 5 11, 14, 16, 17, 18 }
12 15 { 3 4, 6, 7, 10, 13, 20, 21 }
12 19 { 1, 4, 6, 10, 11, 14, 17, 21 }
15 19 { 1, 3, 7, 11, 13, 14, 17, 20 }
4 11 { 1, 2 5 10, 12, 14, 19, 21 }
4 15 { 1, =2, 7, 8 12, 13, 20, 21 }
4 18 { 1, 2, 6 9 12, 16, 17, 21 }
11 15 { 5 7, 8 10, 13, 14, 19, 20 }
11 18 { 5 6 9, 10, 14, 16, 17, 19 }
15 18 { 6 7, 8 9 13, 16, 17, 20 }
7 9 { 1, =2, 6 8 15 16, 18, 20 }
7 11 { 1, 3, 6 10, 14, 15, 19, 20 }
7 21 { 1, 4, 6, 12, 13, 15, 17, 20 }
9 11 { 2, 3, 8 10, 14, 16, 18, 19 }
9 21 { 2, 4, 8, 12, 13, 16, 17, 18 }
11 21 { 3, 4, 10, 12, 13, 14, 17, 19 }
7 12 { 1, 4, 5, 8 10, 15 20, 21 }
7 14 { 1, 2, 5 11, 13, 15, 19, 20 }
7 18 { 1, 3 5 9 15 16, 17, 20 }
12 14 { 2, 4, 8 10, 11, 13, 19, 21 }
12 18 { 3 4, 8 9, 10, 16, 17, 21 }
14 18 { 2, 3 9, 11, 13, 16, 17, 19 }
4 7 { 2, 3 5 6 12, 15 20, 21 }
4 16 { 2, 3 9, 10, 12, 13, 18, 21 }
4 19 { 2, 3 8 11, 12, 14, 17, 21 }
7 16 { 5 6 9, 10, 13, 15, 18, 20 }
7 19 { 5 6 8 11, 14, 15, 17, 20 }
16 19 { 8 9, 10, 11, 13, 14, 17, 18 }

TABLE 5.4. Quadratic words of type Il in Cp

Conversely, let 4" be an arbitrary element of Gg. We will show the following;:

Claim 5.4. There exists a unique triple
(9,t,)) € PGL(3,k) x T x (k\ {0,1,w,@})
such that g o' ot = v, holds.
The points v/ (Pi5), 7' (Pis), 7' (P21) of 4'(€o1) are on a line, and the points

v (P12), v (Pi6), 7' (P20) of v'(£10) are on another line. Hence there exists a unique
element g € PGL(3, k) such that v := g o9’ satisfies the following:

'Y(Plﬁ) = [1,0,0],
(5‘1) 7(P12) = [17 170]7 7(P20) = [07 170]7
7(P15) = [LOa 1]7 7(P21) = [0,0, 1
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P; YA (P;)
P, =C(22) A+ 10N+ w, 0\ + W]
P, = (C(20) [1, wA + w,w]
Py =(C(21) A+ o, 1, A+ 1]
P, = T(20,21,22) [1,w,w]
P; =(C(02) A, @\, @) + @]
P6 = C(12) A+ @, 0N+ @, 0]
T(02,12,22) [1,o,&]
Pg :0(11) A+1,1,7]
Py = T(02,11,20) [1,o,w]
Py = C(10) [1,wA+1,0]
Py =1T(02,10,21) [1,@,0]
Py = T(10,11,12) [1,1,0]
Py = C(01) A, 0, A + @]
Py = T(01,12,20) [1,0,w]
Py5 = T(01,11,21) [1,0,1]
Pig =T(01,10,22) [1,0,0]
Pz = ( ) [O’)‘vl]
Pig = T(00,12,21) 0,1,w]
Py = T(00,11,22) [0,1,1]
Pyy = T(00, 10, 20) 0,1,0]
Py = T(00,01,02) [0,0,1]

TABLE 5.5. Definition of v, for Cp

/

aa’ | The defining equation of L4
00 | X=0

01 [Y=0

02 | X +wY =0

10 | Z=0

11 | X+Y+Z2=0

12 | wX +wY +Z2=0

20 |l wX+2=0

21 | X4+wY+2=0

22 | Y+Z2=0

TABLE 5.6. Defining equations of the lines L,

For aa’ € P(AF), let Lo C P2 be the line containing 7(lua), and let

gaa’X + naa/Y + Caa’Z =0
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aa’ b e The defining equation of Qaq bb/,ce’

00 01 02 AN+ @) X?+0Y?+ (A +w) 2?2+ AXY

00 10 20 (WA+1D) X2+ (@A + 1) Y2+ whZ?2+ ZX

00 11 22| (@A+w) X2 +0Y2+wdZ2+ A+ )XY +(A+1)ZX
00 12 21 Y24 AZ2 4+ (WA + D) XY + (A +0) ZX

01 10 22 WA+ 1) X2+ Y24+ 0M22+ (N +0)YZ

01 11 21 (WA+ 1) X2+ AZ22+ XY +YZ

01 12 20| A4+o)X?+Y?+AZ2°+ (WA +w) XY +(A+1)YZ
02 11 20 |wY?+AZ2+ (@A +w) XY +(wA+1)YZ+ (AN +w) ZX

02 12 22 (WA+ 1) X2+ wAZ2 + XY +wYZ+ ZX
10 11 12 A+@0)X2+Y2+A\YZ+AZX
20 21 22 A+ @) X2+ 0Y2+AXY +0AYZ + A\ZX

TABLE 5.7. Defining equations of the conic curves of type I

be the defining equation of Ly, . By (5.1), we can put

§oo=1, noo =0, Coo=0,
§o1=0, no1=1, Co1=0,
§o2 = 1, Co2 =0,
§10=0, no=0, Co=1,
Enu=1, nu=1 Cu1=1,
§12=1, n2=1,
§20=1, m20 =0,
§a1 =1, Co1 =1,
§22=10, m2=1

The three lines Laqr, Lyp, Leer are concurrent if {aa’, bb’,cc’} € L(AF). Hence we
obtain a system of equations

gaa’ Naa’ Caa’
(5.2) det | &y My Gy | =0 for every {aa’,bb’,cc’} € L(AF).
gcc’ Nee! Ccc’

A Grobner basis of the ideal generated by the left hand side of (5.2) in the poly-
nomial ring k[no2, 721, €12, (20, (22] is calculated as follows:

(14Co, 1+ Co+m21, 1+ C2+m1, Moz +7m21, L4021 +13 ).
Hence there are two solutions of this system of equations,

M1 =Nz =w, C2=Co=w, C2=1 or
M1 =N =0, C2=C0=w, (=1,
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T€) T The defining equation of Q} o

18 19 DAY 2 + @22 + wAXY + ZX

18 20 Y24 A4+ 1)Z2 + (WA + DXY + (A4 1)ZX

18 21 A+DY2 4222+ A+ DXY + A+ @)ZX

19 20 @A+ X2+ Y2+ (WA+1)Z2 4+ A+ DXY + (A +0)ZX
19 21 @A+ D)X2+ A+ )Y2+urZ?2 + WA+ DXY + (A 4+ 1)ZX
20 21 (WA +1)X2 + Y2 +wAZ? + wAXY + ZX

11 12 WX?2 4+ (@A F+W)Y2 + (@A +w)YZ+2ZX

11 16 (@A 4+ W X2 +@AY2 + wAZZ 4+ AYZ + (A + 1)ZX

11 20 OAX? +wY? +wAZ? + w( A+ 1)YZ + AZX

12 16 A+)X2+oA+1DY2+w(A+1)YZ +2AZX

12 20 A+DX24+Y24AYZ+ (M +1)2X

16 20 (WA+1)X2 +0Y2 +wAZ% + (@A +w)YZ + ZX

4 9 oA+ DY2 4+ oA+ 1D)XY +w(A+1)YZ + ZX

4 14 A+ @)X2+ (WA +DY2 + (@A 4+ W) XY 4+ (wA+1)YZ +AZX
4 20 A+@)X2+ Y2+ AXY + @AY Z+ (A +@)ZX

9 14 WAY2 4+ AZ2 4 AXY +0AYZ + (A +@)ZX

9 20 WY2 4222 4 (@A 4+ )XY + (WA + 1Y Z 4+ AZX

14 20 (WA+1)X2 +wY?2 +wrZ2 + oA+ DXY + oA+ 1Y Z + ZX
14 15 AX2 + A+ 0)Z2 +wAXY + (A + @)Y Z

14 16 @A+ X2 +0Y2 4+ wZ2 + A+ )XY +YZ

14 21 X2+ Y2+ 222+ wXY + (A +1)YZ

15 16 @A+ X2+ oA+ 1)Z%2 +wXY +(A+1)YZ

15 21 A+DX2 42224+ A+ 1)XY +YZ

16 21 (WAF+DX2 4+ Y2 402022 + 0AXY + (A +0)YZ

9 12 Y2+ A+ )XY +wYZ+ A+ 1)ZX

9 15 AZ2 + (@A +@)XY + wAYZ + (A + @) ZX

9 19 Y2 +oAZ2 +0XY + A4+ @)Y Z 4+ AZX

12 15 A+)X2+0XY + A+ @) YZ +AZX

12 19 WA+ DX2 4+ 0Y?2 + oA+ DXY +0AYZ + (A4 &)ZX
15 19 @A+ W X2 +wAZ2+ A+ D)XY +wYZ+ A+ 1)ZX

4 11 WA+ DXZ2 4+ Y2+ uAXY +YZ+ (A +@)ZX

4 15 A+@)X2+ A +)XY + oA+ 1)YZ 4+ AZX

4 18 WY?2 4+ wXY FwAYZ + (A +1)ZX

11 15 @A+ X2+ wAZ2 + wXY +wAYZ + (A 4+ 1)ZX

11 18 Y24+ 0222+ A+ )XY + oA+ 1)YZ 4+ AZX

15 18 AZ2 +WAXY +YZ + (A +@)ZX

7 9 A+1DZ2 +0AXY +w(A+1)YZ+ (A +1)ZX

7 11 @A+ X2+ (WA +1D)Z2 +wXY + (WA +1D)YZ+ A +@)ZX
7 21 (WA +1)X2 +wAZ2 + (WA + DXY 4+ wYZ + ZX

9 11 Y2 4+ 022 4+ (wA+1)XY +wYZ 4+ ZX

9 21 WYZ +AZ2 4 wXY + (wA+ DY Z + (A +©)ZX

11 21 @A+ )X2 +0Y2 +wuAZ2 +@AXY 4w A+ 1)YZ 4+ A+ 1)ZX

12 A4+)X?2+aXY +A+1D)YZ+(A+@)ZX
14 (WA 4+ 1)X2 + wAZ? + (OX + W) XY 4+ wAY Z + ZX

7 18 AZ2 +w A+ )XY +YZ 4+ AZX

12 14 A+)X?2+ Y2+ w(A+1DXY +YZ +AZX

12 18 WY?2 + (@A + W) XY 4+ wAY Z 4 ZX

14 18 Y2 42022 +0XY + A+ 1)YZ+ A4+ @)ZX

4 7 A+DXZ 4+ A+ DXY + (@A +w)YZ+(A+1)ZX

4 16 A+ @)X2 +@Y?2 +AXY +wY Z + AZX

4 19 wX?2 4+ 0Y?2 + XY + @AY Z + ZX

7 16 (WA +1)X2 +wAZ2 + XY + @AY Z + ZX

7 19 GAXZ 4+ WAZZ L AXY 4+ wY Z +AZX

16 19 @A+ X2+ Y2+ wAZ2+ A+ 1D)XY + (@A +0)YZ+ (A +1)ZX

TABLE 5.8. Defining equations of the conic curves of type 1T
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which are conjugate over Fo. If the latter holds, then we replace v with ggoyo T,
where
100
go ‘= 0 0 1
010
so that we can assume the former always holds. The image of the T-points by ~
is therefore equal to the ones given in Table 5.5, and the lines L., are given by
equations in Table 5.6.
We next determine the coordinates of the image of C-points by . The point
~v(C(00)) = v(Py7) is on the line Loy = {X = 0} and is different from v(Pao) =
[0,1,0] and y(Pe1) = [0,0,1]. Hence we can put

(5.3) v(Pri7) = [0, A, 1],

where A is a parameter # 0. Let ¢, {1, ¢> be three distinct elements of L(AF) that
are parallel to each other. The conic curves @ satisfying the following conditions
form a pencil PQy:

(i) Q contains v(T'(¢1)) and v(T'(¢2)), and
(ii) @ is tangent to the lines Lo, Lpp, Leer, where £ = {aa’,bb’,cc’}. (Recall
Definition 3.9 and Remark 3.10.)

Using the coordinates of the points y(7'(¢)) and the defining equations of the nine
lines L,, determined so far, we can calculate this pencil explicitly. By Proposi-
tion 5.1, the conic curve Q) containing y(ge) is a nonsingular member of the pencil
PQy. Starting from (5.3), we can determine the coordinates of v(C(aa’)), and see
that they coincide with Table 5.5. For example, consider ¢ = {01, 10,22} € L(AF).
We have

)

0, ={02,11,20}, £y = {00,12,21}.
The pencil of conic curves passing through the points
YT(6)) =~v(Py) = [Lw,w], 7(T(l2)) =~(Prs) = [0,1,w],

and tangent to the lines

Loyn={Y =0}, Lig={Z2=0}, Ln={Y+Z=0}
is spanned by the two conic curves defined by

wX?+wY?+2*=0 and wX’4wY?+YZ=0.

Because the conic curve @, passes through v(P7) = [0, A, 1], it is defined by

MwX?+0Y2 + 7% + (WA + D (wX?+wY?+YZ) =0.

The intersection points of Q, with the line L1 = {wX+wY+Z = 0} arey (T (¢2)) =
v(Pig) = [0,1,w] and v(C(12)) = v(Ps). Hence we obtain

AC(12)) = 7(Ps) = [wA + 1, A+ 1, Al.

See Table 5.9 for the detail of the calculation. Thus we have proved that ~ is equal
to vx. Because 7, is injective, A is not among {0, 1,&}.

There exists a unique conic curve containing +(q) for each quadratic word ¢
of Cp, and the defining equations of those conic curves are given in Tables 5.7
and 5.8. The smoothness of these curves implies that A\ # w. Thus we have proved
Claim 5.4. O
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14 I, By Be
00, 01,02 wX?+wY?+ 272 oX?+wY?2+XY (A2 +w)/\2
00, 10,20 X2 4wY?4+ 272, X?24Y?247X (WA? 4+ 1)/\2
00,11,22 | @ X% +wY?2 4+ 7%, wX?+0Y?2+ XY +ZX | (0N +w)/)\?
00,12, 21 wY? + 7% wY?4+wXY +2ZX (A2 +©)/2
01, 10,22 wX?+aY?2+ 22, wX?4wY?2+YZ (WA +1)/\
01,11,21 wX?+ 2722, X2+ XY+YZ /A

01,12,20 | wX?2+Y2+ 22 oX?’+Y24+wXY+YZ A+1)/A
02,10,21 | @ X2 +Y? 4+ 22, wX?4+wY?+wYZ+ZX | (@A +®)/A

02,11, 20 OY2+ 72, oY’ +o0XY +wYZ+ZX A+@)/A
02,12, 22 X2+ 7% X2+ XYHwYZ+2ZX @/
10,11,12 0X?2+Y?% X?2+YZ+ZX A
20,21, 22 X24+Y2 X2+ XY+wYZ+ZX wA

TABLE 5.9. Basis {F} = 0,F, = 0} of the pencil PQ, and the
member Q; = {Fy + B¢ F> = 0}

Remark 5.5. The polynomial GB[}] is the defining equation of the nodal splitting
curve

Loo U Loy U Lig U L1y UQp 4,
where T'(¢) = Pyg and T(¢') = P1g. See Proposition 2.8.

Remark 5.6. Consider the projective plane (P?)¥ of lines on P2. Let [U, V, W] be the
homogeneous coordinates of (P2)V dual to the homogeneous coordinates [X,Y, Z]
of P2. Let E\ be the cubic curve in (P?)V defined by

QUW + UW? + wAUVZ + (wA+ 1) VW +
F WA+ D) VW2 +0AU?V + (w+ N UVW = 0.

Then the points v, (C'(P(AF))) correspond to the nine flex tangents to Ey, and the
points yx(T(L(AF))) correspond to the twelve lines containing three flex points of
E,.

Remark 5.7. When A = w, the set v,(P) coincides with P?(F4), and the point
[GBI[M]] € M is equal to the Dolgachev-Kondo point.

For each o € Aut(Cp), we calculate the unique triple

(gorto, A7) € PGL(3,k(N) x T x k())
such that g, o (yx 00)ot, = xs holds. The map o — ¢, is a homomorphism from
Aut(Cp) to T. We put Np := Ker(Aut(Cp) — T)).

Corollary 5.8. The space PGL(3,k)\Gp has exactly two connected components,
each of which is isomorphic to A1\{0,1,w,@}. One of them is given, set-theoretically,
by

(PGL(3,k)\GB)" = { [7a] | a €k\{0,1,w,0} },
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{ 17, 18, 19, 20, 21

{ 13, 14, 15, 16, 21

Is = { 9, 10, 11, 12, 21
= {
{
E

5, 6, 7, 8, 21
1, 2, 3, 4, 21

6.1. Linear words of Cg

and the other one is equal to ((PGL(3,k)\Gp)") - T. The group Np acts on
(PGL(3,k)\GgB)™, and the moduli curve Mp is equal to the quotient space (PGL(3,k)\Gg)"/Nz.

Consider the natural projection
B AM\{0,1,w,0} = (PGL(3,k)\Gp)"™ — Mp = (PGL(3,k)\Gs) T /N5.

For a € k\ {0,1,w,©}, let Pla] denote the point of A!\ {0,1,w,w} given by
A = a. Then pp(Pla]) € Mp corresponds to the isomorphism class of the polarized
supersingular K3 surface (X¢p[a), LaB[a))- The following is proved in the same way
as Proposition 4.7.

Proposition 5.9. The fiber p5' (pp(Pla])) is equal { P[]}, where ¢ runs through
the set I'p in Theorem 1.7 with X replaced by . The group Aut(Xgp(a), LaBla))
is equal to the subgroup of PGL(3,k) generated by the elements in (1.2).

Corollary 5.10. We have Mp = Speck[Jp,1/Jg], where
Jg =+ XA\ +1)3\+2)%

The morphism pp is an étale Galois covering with Galois group I'p, which is iso-
morphic to the alternating group 4.

Indeed the group I'p acts on the set {0,1,©, 00} as y.

6. THE MODULI CURVE CORRESPONDING TO THE CODE CC
In this section, we prove Theorem 1.8.

The linear words of C¢ are listed in Table 6.1. The list of quadratic words in
Cc¢ is omitted. The point Py is special because every linear word contains it. The
following can be checked directly by computer:

Proposition 6.1. Let ¢ : P = P2(FFy) be the bijection given in Table 6.2.
(1) The linear words of Cc are precisely the words ¢~*(A(Fy)), where A are
Fy-rational lines passing through

0 :=[0,0,1] = ¢(Pay).

(2) The quadratic words of Cc are precisely the words ¢~ (A(Fy) + A'(Fy)),
where A and A’ are distinct Fyq-rational lines that do not pass through O.

Note that ¢ embeds C¢ into the Dolgachev-Kondo code Cpk.

Corollary 6.2. For each quadratic word q in C¢, there exists a unique linear word
1 in Cc such that gNl = 0.

From Remark 3.11, we obtain the following:
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o(P) = [1,1,0], o(P3) = [1,0,1],
o(P2) = [1,1,1], #(Pa) = [1,0,0],
o(P5) = [1,Lu], o(Pi5) = [1,0,u],
o(Py) = [1L,L0] ¢(Pig) = [1,0,w],
o(F5) = [Lo,wl o(Pi7) = [0,1,1],
o(Ps) = [1,0,0], o(Pis) = [0,1,0],
o(Pr) = [Lwl], o(Prg) = [0,1,a],
o(Ps) = [l,0,0], ¢(P0) = [0,1,w],
o(Py) = [Lw,al ¢(P21) = [0,0,1]
o(Pwo) = [1,w,0],

o(P11) = [Lw,w],

o(P2) = [Lw,1],

TABLE 6.2. Bijection ¢ from P to P?(F,)

Corollary 6.3. Let | and I’ be distinct linear words of Co, and let A1, Ay € 1
(resp. By, By € l') be distinct points not equal to Pyy. Then there are exactly two
quadratic words q and q' in Co containing the points { Ay, As, By, Ba}. Moreover,
if a linear word l"” € Cg¢ is disjoint from q, then 1" is also disjoint from ¢'.

For a1, ag, a3 € Fy, we denote by Alagasas] the Fy-rational line defined by
a1 X +aY +a3Z =0,
and by g[ayasas, £1520;] € Ce the quadratic word
¢~ (Alaraaas](Fy) + A[B1 8285 (F4)).
We put
G':={ge€ PGL(3,F,) | 9g(O)=0 }.
The automorphism group Aut(C¢) of the code C¢ contains a subgroup
LG :=¢ Lo LG 0 ¢.
The order of LG is 2880. The group Aut(C¢) also contains the permutation
T := (P3Py)(P5Py)(FPs Pro)(Pr Pr2)(Ps Pr1) (P15 Prs ) (ProPao)

of P that corresponds, via the bijection ¢, to the action of the conjugation w —
@ over Fy on P?(FFy). It can be checked easily by computer that the following
permutation is also contained in Aut(Cc):

S 1= (P P3)(P2Py)(PsPr)(PsPs)(PyPr1)(ProPr2).

The automorphisms 7" and S of C¢ generate a subgroup isomorphic to the dihedral
group of order 8 in Aut(C¢). An ordered quartet

(Rl,RQv I17 R/Q)
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f 4, 4] L,
{13,14,17,18} | ¢[101,011] = {7,8,11,12,13,14,17,18} | I
¢[111,001] = {5,6,9,10,13,14,17, 18}
{13,14,17,19} | ¢[1w1,011] = {2,3,10,11,13,14,17,19} | I,
q[111,001] = {1,4,9,12,13,14,17,19}
{13,14,17,20} | ¢[lw1,011] = {2,4,6,8,13,14,17,20} | I3
q[111,0w1] = {1,3,5,7,13, 14, 17, 20}

]
]

{13,14,18,19} | ¢[101,0w1] = {2,4,5,7,13,14,18,19} | I3
g[1w1,001] = {1,3,6,8,13, 14, 18,19}
{13,14,18,20} | ¢[101,0w1] = {2,3,9,12,13,14,18,20} | Iy
q[lwl,001] = {1,4,10,11,13, 14, 18, 20}
{13,14,19,20} | ¢[l1,0w1] = {7,8,9,10,13,14,19,20} | I
g[lwl,001] = {5,6,11,12,13,14, 19, 20}

TABLE 6.3. List of the triples (f,{q,q¢'},1.)

of points in P\ {P1} is called a marking quartet if Py1, Ry, Ro are in a linear word,
and Py, R}, R} are in another linear word. There are 2880 marking quartets, and
the action of LG on the set of marking quartets is simply transitive.

Proposition 6.4. The group Aut(Cc) is generated by LG, T and S, and the order
of Aut(Cc) is 23040.

Proof. Let o be an arbitrary element of Aut(C¢). Because (Pi7, Pis, P13, P14)
and (o(Py7),0(Pig),0(P13),0(P14)) are marking quartets, there exists an element
7 € LG such that 7o(P;) = P; for ¢ = 13,14,17,18,21. Because To(l1) = l; and
7o (ly) = la, we have

{TO'(Plg),TO'(PQ())} = {P197P20} and {TO'(P15),TO'(P16)} = {P157P16}.
If 70(P19) = Pao, then we replace 7 by T'7. Therefore, modulo the subgroup
generated by LG and T, we can assume that o has the following properties:
(O'-i) o fixes each of the seven points P13, P14,P17, P187 Plg,PQ(), Pgl,
(0-ii) {o(P15),0(Pi6)} = { P15, Pro}
Consider, for example, a set of four points {Py3, P14, P17, P1s}, each of which is
fixed by o. The two quadratic words containing them are

q[101,011] = {2,7,12,13,18} + {2,8,11,14,17} = {7,8,11,12,13,14,17, 18},

g[111,001] = {1,5,9,13,17} + {1,6,10,14, 18} = {5,6,9,10, 13,14, 17, 18}.
Both of ¢[101,011] and ¢[111,001] are disjoint from l5. By Corollary 6.2, we have
o(ls) = l5. Considering other sets of four points fixed by o, we can show that
o(ly) = Iy and o(l3) = l3. In Table 6.3, we list the triples (f,{q,q’},1,), where f
is a set of four points pointwise fixed by o, {q,¢'} is the pair of quadratic words
containing f, and [, is the linear word disjoint from both of ¢ and ¢’. Therefore we
have the following;:
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(0-iii) o leaves each of the sets
{P1, P2, P3, Py}, {Ps, Ps, Pr, P}, {Po, Pro, Pi1, Pra}
invariant.
Let us consider the quadratic words ¢q; := ¢[101,011] and g5 := ¢[111,001] again.
Since
{o(@Nly),o(q2Nls)} = {q1 Nla,q2 N 1a},
the action of o on {Ps, Ps, P;, Ps} preserves the decomposition
{Ps, P, Pr, Ps} = {P5, P} U{Pr, s };

that is, {o(Ps),0(Ps)} is either {Ps, Ps} or { P7, Ps}. By the same argument applied

to the pairs {q, ¢’} of quadratic words in Table 6.3, we see the following:
(0-iv) o preserves the decompositions

{P1,P2,P5,P,} = {P,P}U{P2,Ps} ={P1,P3s}U{Ps, Py},
{Ps,Ps,P7,P3} = {Ps5,Ps}U{P;,Ps} ={P5,P;}U{Ps, Ps}, and
{Py, Pro, P11, Pia} = {Po, Pro} U{P11, Pra} = {Py, Pra} U{Pio, P11}
The two quadratic words containing {Py3, Py, P17, Pig} are
glwll,101] = {2,4,10,12,13,16,17,18} and
g[111,w01] = {1,3,9,11,13,16,17,18},

both of which are disjoint from l4. On the other hand, the two quadratic words
containing { P13, P15, P17, P1g} are
q[w11,101] {2,3,6,7,13,15,17,18} and
q[111,001] = {1,4,5,8,13,15,17,18},
both of which are disjoint from l3. Since o fixes each of I4 and I3, we see that the
property (o-ii) of o can be strengthened to the following;:
(O'-ii)/ O'(P15) = P15, U(P]_ﬁ) = Plﬁ.
Using computer, we can easily list all 4> = 64 permutations o satisfying (o-i),
(0-ii)’, (o-iii) and (o-iv). We can check that exactly four of them id, S,
(ST)2 (P1P2)(P3P4)(P5P6)(P7P8)(nglo)(PuPlg) and
(ST)?S = (PLPy)(PyPs3)(PsPs)(PsPr)(PoPr2)(ProPr1)
preserve the set of quadratic words in C¢. Hence, by Proposition 3.5, Aut(Cc)

is generated by LG, S and T. It can be checked by computer that the order of
Aut(Ce) is 23040. O

Let A be a parameter of the affine line A'. We define 7y : P — P? by Table 6.4.
When A = 0, the map ~, is equal to ¢. Let T denote the subgroup of Aut(Cc)
generated by the involution T

Proposition 6.5. The map A — 7y induces an isomorphism from AN{0,1,w, @}
to PGL(3,k)\Ge/T.

Proof. First note that ~, is injective for every .

Claim 6.6. Let 7’ be an arbitrary element of Go. Then there exists a unique triple
(9,t,A) € PGL(3,k) x T x (k\ {0,1,w,})

such that go~' ot = ~,.
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W) = [LLA]L Ww(Ps) = [1,0,1],
™) = [L1L,A+1] W(Pa) = [1,0,0],
w(Ps) = [LLA+w] (Pis) = [1,0,0],
WPy = [LLA+0], (Ps) = [1,0,u],
’YA(P5) = [L(Daw)‘er}? 7A(P17) = [0717”’
™) = [Lw,wA, w(Pig) = [0,1,0],
nwPr) = [Lo,wAr+1], ™ (Po) = [0,1,0],
NWR) = [Lo,wA+ o], Y (Pao) = [0,1,0],
™) = [Lw,oA+a], W(P21) = [0,0,1]

Ww(Po) = [lyw, @),

Ww(Pi1) = [lyw, oA+ w],

Y (Pi2) = [lL,w,oX+1],

TABLE 6.4. Definition of «y) for C¢

Since ' (Pa1), v (P13), 7' (P14) are on a line, and v'(Ps1), 7' (P17), 7' (P1g) are on
another line, there exists a unique g € PGL(3, k) such that v := g o 7’ satisfies
,Y(P21) = [Oa 07 1] = 07
’Y(Pl'?) = [07 17 1]7 7(P18) = [07 170]a
v(Pi3) = [1,0,1],  ~y(Pua) = [1,0,0].
The X-coordinate of v(P;) is not 0 for ¢ = 1,...,16, because otherwise y(F;),
~v(P17) and v(Ps;) would be collinear, and hence there would exist a linear word of
C¢ containing {P;, P17, P21} by Proposition 2.9. Therefore there exist parameters
aq, a0, B, B, t, sij (0= 3,4,5, j = 1,...,4) such that v is given by Table 6.5.
The lines L, containing the points «y(l,) are defined by
L1:{X:0}, LQZ{YZO},
Ly={Y =t3X}, Ly={Y =t,X}, Ls=1{Y =t;X}.
Claim 6.7. t5; = 1.

Consider the quadratic word
q :={7,8,11,12,13,14,17,18} = {2,7,12,13,18} + {2,8,11, 14,17},

which passes through the four points Pi3, P14, P17, Pig, and is disjoint from the
linear word [5. The conic curves containing the points v(Py3) = [1,0, 1], v(P14) =
[1,0,0], v(Py7) = [0,1,1] and y(Pis) = [0, 1, 0] form a pencil

cZ(X+Y+2)+XY =0 (cePh).

The conic curve @ C P? containing v(q1) is a member of this pencil. Since @,
is nonsingular, the value of the parameter o corresponding to ()1 is not 0 nor oco.
Since @) is tangent to the line Ly = {Y = ¢5X}, we have o(1 +¢5) = 0. Hence
ts = 1.

From the quadratic words that
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Y(Pr) = [1t5,85.], v(Pi3) = [1,0,1],
Y(P2) = [1,t5,852], v(Ps) = [1,0,0],
v(Ps) = [1,t5,853] v(Pi5) = [a2,0,1],
7(P4) = [17 is, 85,4}’ ’Y(Plﬁ) = [ﬁ% 0, 1];
Y(Ps) = [1,ta,841], y(Pi7) = [0,1,1],
Y(Fs) = [1,ta,542] v(Pis) = [0,1,0],
Y(Pr) = [Lta, s3], Y(Pro) = [0,04,1],
Y(Ps) = [L,ta,s44], Y(Py) = [0,51,1],
Y(Py) = [1,t3,831], v(Py) = [0,0,1]
Y(Pwo) = [L,t3,832],

y(Pi1) = [1,t3,s33],

Y(Pr2) = [1,t3,834],

TABLE 6.5. Parametric presentation of ~y

e contain exactly one of {Py7, Pis},
e contain exactly one of {Pi3, P4}, and
e are disjoint from s,

we obtain the following relations:
Claim 6.8. a1 = as(=: ), /1 = f2(=: B), a+ 5 = af.
Consider, for example, the quadratic word
g2 = {6,8,9,11,14,16,17,19} = {2,6,9,16,19} + {2,8,11, 14, 17}.

Since the conic curve Q9 containing v(g2) passes through the points v(Py4) = [1,0, 0]
and y(P17) = [0,1,1] and is tangent to Ls = {X = Y}, it is a member of the web
o1 (Y2+Z) 4+ 0o XY +03(Y2+YZ+ZX)=0  (Jo1,02,03] € P?)
of conic curves. Since y(Pyig) = [02,0,1] € Q2, we have B3 = 01/03. Since y(Pig) =

[0,a1,1] € Q2 and a; # 1, we have a; = 01/(01 + 03). Therefore we obtain a
relation oy + B + a1 82 = 0.

From the quadratic words that contain exactly three of Pi7, Pig, P13, P14, We
obtain the following relations:

Claim 6.9. o1 + t3 = O7 ﬁl + t4 = 0.

1+ asty =0, 14 Got3=0.

1+as+asty3 =0, 14 0z+ Gotqy =0.

oty +onty =0, Br+ts+ Pits =0.

Consider, for example, the quadratic word

g3 = {2,4,10,12,13,16,17,18} = {4,7,10,16,17} + {2,7,12,13, 18}.
Since the conic curve @3 containing y(g3) passes through the points y(Pi3) =
[1,0,1], v(Pi7) = [0,1,1] and y(P1s) = [0, 1, 0], it is a member of the web
(X2 + 224+ YZ) + 02X+ ZX)+03XY =0 ([o1,02,03) € P?)



42 ICHIRO SHIMADA

of conic curves. Since y(Pig) = [B2,0,1] is contained in @3, we obtain ﬁgQ(Ul +
032) + B202 + 01 = 0. Since Q3 is tangent to the line Ly = {Y = ¢4 X}, we have
tyo1 + 02 = 0. Combining these two relations and (G2 # 1, we obtain a relation
1+ Bo + Baty = 0.

Combining Claims 6.7-6.9, we obtain the following two possibilities for the pa-
rameters;
a1 = Qg = W, ﬁ1:52:w7 t3 =w, ty =w, t5:17 or
ar=a=w, h=h=w t3=0, 4=w, t5=1
If the latter holds, then we replace v by v o T so that we assume that the former
always holds.
Next we put
Pl - [1; ]-, )‘]7
where A = s5 1 is a parameter. Using quadratic words that

e contain exactly four points among I; U ls, and
e are not disjoint from I5,

we obtain the following:
Claim 6.10.
S5.1 = A, S50 = A+1, 85,3 = A+ w, S5,4 = A+ o,
841 =wWA+w, S42=wA, Ssz3=wA+1, Sia=wA+w,

§3,1 = WA+ @, §3,9 = WA, 83,3 = WA+ w, 8§34 = WA+ 1.

Consider, for example, the quadratic word
qq :={1,2,11,12,14,16,17,20} = {1,8,12,16,20} + {2,8,11, 14,17},

which is disjoint from ;. Because there exists a conic curve @4 that contains y(q4)
and is tangent to the line Ly = {Y = © X}, the following matrix M is of rank < 6.

T11 A% 1 A AT
1 1 85)22 1 S5,2 85,2
1 o 83’32 W ws33 833
1 @ 8342 w wszs S34
M:=1|10 0 0 0 0
w 0 1 0 0 w
0 1 1 0 1 0
0 w 1 0 w 0
L0 0 0 O @ 1

Indeed, if the equation
X%+ aY? +a3Z? + au XY +asYZ + agZX =0

defines a conic curve containing v(q4) and tangent to L4, then a = [ay, as, . . ., ag]
is a non-zero solution of Mx = 0. (The condition was + ag = 0 is equivalent to
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the condition that the conic curve is tangent to L4.) Let M[il, ...,1g] denote the
submatrix of M consisting of i;-th rows of M. Because

det M[1,2,5,7,8,9] = (s5.2 + A) (550 + A+ 1)
and s5 2 # 551 = A, we obtain s5 2 = A + 1. Because
det M][1,3,5,7,8,9] = (s3.3 + @A + 1) (s3.3 + @A + w) ,
we obtain
s33=wWA+1 or WA+w.
Continuing the same calculations, we get the relations in Claim 6.10.

Thus we have proved Claim 6.6.

Conversely, suppose that A € k\ {0,1,w,@} is given. Then 7,(P) is equal to
Z(dGC[A]), where GC[)] is given in Theorem 1.8. Moreover, for every linear word
l of C¢, there exists a line containing v, (), and for every quadratic word ¢ of
Ce, there exists a unique conic curve containing vx(¢q). The defining equations
of the 120 conic curves are omitted. These conic curves are nonsingular because
A ¢ {0,1,w,w}. Hence v, is in Gg by Proposition 3.6. O

Remark 6.11. When X\ € {0,1,w, &}, the set v5(P) coincides with P?(FF;), and the
point [GC[\]] € 9 is equal to the Dolgachev-Kondo point.

For each o € Aut(Cc), we calculate the unique triple
(Jortes A7) € PGL(3,k(N) x T x k()

such that g, o (yx» 0 0) oty = vas holds. The map o +— t, is a homomorphism from

Aut(C¢) to T. We put N := Ker(Aut(C¢) — T).
Corollary 6.12. The space PGL(3,k)\Gc has exactly two connected components
(PGL(3,k)\Gc)* ={[va] | a €k\{0,1,w,@} }

and ((PGL(3,k)\Gc)™) - T, each of which is isomorphic to A*\ {0,1,w,@}. The
group N¢ acts on (PGL(3,k)\Gc)T, and the moduli curve M is equal to the
quotient space (PGL(3,k)\Gc)" /Ne.

Consider the natural projection
pc + AP\ {0,L,w,&} = (PGL(3,k)\Ge)* — M = (PGL(3,k)\Ge) ™ /Ne.

For a € k\ {0,1,w,}, let Pla] denote the point of A\ {0,1,w,&} given by
A = a. Then pe(Pla]) € Me corresponds to the isomorphism class of the polarized
supersingular K3 surface (Xgcia), Lacla])-

Proposition 6.13. We have
pc' (pe(Pla])) = { Plua +v] | ueF},veFy}.
The group Aut(Xgcra]: Lacla)) is equal to the subgroup (1.3) of PGL(3,k).

Corollary 6.14. We have Mc = Speck[Jc,1/Jc], where Jo := (\* + \)3. The
morphism pc is an étale Galois covering with Galois group T'c.
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7. CREMONA TRANSFORMATIONS BY QUINTIC CURVES

7.1. Preliminaries. Let ¥; and X, be disjoint sets of reduced points of P? with
|¥1] = n1 and |3a] = ng, and let Ty, C Op2 and Tx, C Opz be the ideal sheaves
defining ¥; and ¥5. We define 3 to be the O-dimensional subscheme of P? defined
by the ideal sheaf
Is:=1Iy 1%,

The length of O is n143ny. Let d be a positive integer. The linear system |Z(d)|
consists of plane curves of degree d that pass through the points of 31 UX5 and are
singular at each point of Xs.

Proposition 7.1. Suppose that the linear system |Z(d)| is of dimension > 1 and

has no fixred components. If

(d+2)(d+1)
2

then there exists a projective plane curve of degree d — 3 that passes through all the
points of 3.

(71) dim |Ii(d)| > — (n1 + 3712) -1,

Corollary 7.2. Suppose that the linear system |Z(d)| is of dimension > 1 and
has no fixred components. If d < 3 and ny > 0, then the dimension of the linear
system |Is(d)| is equal to (d 4 2)(d +1)/2 — (n1 + 3ng) — 1.

Proof. We follow the argument in [6, pp.712-714]. From the exact sequence
0 = Ig(d) — Op2(d) — Og(d) — 0,
we obtain
(72)  RO(P*,Ig(d) = (d+2)(d+1)/2 = (n1 + 3nz) + h' (P, I (d)).
Let 3: S — P? denote the blowing up of P? at the points of ¥; U X,. We put
A= 071E0),  Agi= 071 (D),

both of which are considered to be reduced divisors. Let H C S be the pull-back
of a general line on P2. We put

L= IB*OPz(d) (39 OS(_Al - 2A2) = OS(dH - Al - 2A2)
Because Kg = —3H + A1 + As, we have
L? = d? — ny — 4no, LKg = —3d + nq + 2ns.

The complete linear system |H| = [3*Op2(1)| on S is fixed component free. Since
H(Kg—L)=—-d—3<0, we have

h%(S,L) = h°(S,Ks — L) = 0.

By the Riemann-Roch theorem, we obtain

(7.3) h(S,L) = (d +2)(d 4+ 1)/2 — (ny + 3ng) + h*(S, L).
There exists a canonical isomorphism
(7.4) Zs(d)| = [L]

that maps a member C of |Zg(d)| to the member 3*C'—A; —2A; of |L|. From (7.2),
(7.3) and (7.4), we obtain

(7.5) h'(P?, T¢(d)) = h'(S, L).
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Using the assumption (7.1) and the equalities (7.2) and (7.5), we obtain
(7.6) h(S,L) > 0.

Since |Z(d)| is of dimension > 1 and has no fixed components, we obtain by the
isomorphism (7.4) global sections s and s’ of L such that the subscheme R = {s =
s’ =0} of S is of dimension 0. Let Zr C Og be the ideal sheaf defining R. From
the Koszul complex

S,S/ T
0 — Og(Ks—1L) ©2) Os(Ks) ® Os(Ks) (

and h9(S,05(Ks)) = h'(S,Os(Ks)) = 0, we obtain
h'(S,L) = h'(S,05(Ks — L)) = h°(Zr(Ks + L)).

’
—5',5)
—

Tr(Ks+L) — 0

From (7.6), we see that the linear system |Z p(Ks+L)| is non-empty. Since Kg+L =
B*Op2(d—3)®0O0s(—A3), a member of |Z rp(Ks+ L)| is mapped by § to a projective
plane curve of degree d — 3 that passes through the points of 3. (I

Definition 7.3. Let F be an effective divisor of P2. We put
Y= (E\ (SN F)U(Zen FY), Y5 =3\ (X2 N F),

where F° is the locus of all p € Supp(F) at which F is reduced and nonsingular.

We then define 3 \ F to be the O-dimensional subscheme of P? defined by the ideal
sheaf

o 2
Ii\F = 12/112/2
If F'is a fixed component of [Zg(d)|, then C' + C — F gives an isomorphism

IZs(d)| = [Ig\p(d —deg F)|

of linear systems. By the definition, we have
(7.7) S\ (Fi+F) = (S\F)\ R
for any effective (not necessarily distinct) divisors Fy and Fy of P2.

7.2. A homaloidal system of quintic curves. Let ¥ = {p1,...,ps} be a set of
distinct six points of P? satisfying the following:

(31) no three points of ¥ are collinear, and
(X2) there are no conic curves containing ¥..
These conditions are equivalent to the following:

(£3) for each p; € %, there exists a nonsingular conic curve N/ C P? that contains
¥\ {pi} and does not contain p;.

Proposition 7.4. The linear system |I%(5)| of quintic curves that pass through
the points of ¥ and are singular at each point of ¥ is of dimension 2, and has no
fixed components.

Proof. Because each point of ¥ imposes three linear conditions on |Opz(5)], we have
dim | (5)] > 2.

Suppose that |Z%(5)| has a fixed component. Let F be the fixed component,
and let

F=F+--+Fn
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be the decomposition into the reduced irreducible components of F, where non-
reduced components are expressed by repetition of summation. We have

degF'=degFy +---+degFn > 0.

As in the previous subsection, we denote by 3 the 0-dimensional subscheme of P2
defined by the ideal sheaf Z%. We will consider the linear system |Z s\ p(b—deg F)],
which has no fixed components and is of dimension equal to dim|Zx(5)| > 2. For

v=0,...,N, we define reduced 0-dimensional subschemes 25”) and Zéy) of P? by

T\ (py+otr) = Ly T
Then
DI gl R A S Y
where

i= 2N, j=12"NnFul, k=[S NSing F4l.

The integers i, 7 and k are subject to the following conditions:

e i+j<2and k=0 if deg F,,11 = 1, because of (X1),

i+j<5and k=0 if deg F,,41 = 2, because of (32),

k < 1if deg F,,;1 = 3, because an irreducible cubic curve has at most one

singular point, and

o k < 4if degF,+1 = 4, because if k > 5, there would exist a conic curve C'
with CF,,+1 Z 10.

Since |Z%(5)| = |IZ§N)I;gN) (5 — deg F)| is of dimension > 2 and fixed component

free, we have
degF=4 = 2™ <1 and |2V =0,
degF=3 = 9™V <4 and |2V =0.
We put
§:=(6— deg F)(7 — deg F)/2 — (151 + 3|25V)) — 1.

From Corollary 7.2, we also have
degF>2 and 2>6 = [2M|=0.

Using these considerations, we see that the triple (|E§N)|, |EgN)|, deg F) is one of
the following:

(0,6,1), (1,5,1), (2,4,1).

For these triples, however, we have |Zg, (5 — degF)| = (), because otherwise,
there would exist an irreducible quartic curve C4 and a conic curve Cs such that
C4Co > 8. Thus we have proved that |Z(5)| is fixed component free.

If dim |Z(5)] > 2, then, by Proposition 7.1, there would exists a conic curve

that contains 3, which contradicts (X2). O

Remark 7.5. Recall from (X3) that N/ C P? is the conic curve such that N/ N3 =
Y\ {pi}. Let Q be a general member of |Z%(5)|. Since N/Q = 10 for each 4, the
multiplicity of @ at each point of ¥ is 2.
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Let 3 : S — P? be the blowing up of P? at the points of ¥, and let M; be the
exceptional (reduced) divisor 371(p;). We put

L:= 6*0]}»2 (5) ® OS(—QMl — 2M6)
Let N; be the strict transform of N/ by 3. We have L? = 1, N;L = 0 and N? = —1.

Proposition 7.6. The complete linear system |L| on S has no base points, and the
morphism @1 : S — P2 defined by |L| is the contraction of the curves Ny, ..., Ng.
Let p; be the image of N; by ®r. Then X' = {p),...,ps} satisfies the condition
(X3).

Proof. By Proposition 7.4, the complete linear system |L| on S is of dimension 2 and
has no fixed components. Suppose that |L| has a base point p € S. Let G- S— S
be the blowing up of S at p, and let M’ be the exceptional divisor 3~1(p) of 3. Since
L? = 1, the complete linear system |E\ of the line bundle L := B*L ® Og(—M')
is of dimension 2 and has no fixed components. We have K §Z = —2, and hence
h2(S,L) = hO(S, O5(Kz — L)) = 0 follows. By Riemann-Roch theorem, we have
hY(S,L) = h'(S, Kz — L) = 1. Using the argument of Koszul complex as in the
proof of Proposition 7.1, we see that h%(S, Oz(Kz + L)) > 0. Hence there exists
a conic curve in P? that passes through the points of ¥, which contradicts (32).
Thus |L| has no base points.

Since L? = 1, the morphism ® 1) is of degree 1. Because N;L = 0, the curves N;
are contracted by ®|z|. Let C' be a reduced irreducible curve on S that is contracted
by ®|. Because M;L = 2, we have C # M; and hence C' := 3(C) C P? is a
reduced irreducible curve. We will show that C” is equal to one of the conic curves
N!. Let d be the degree of C’. We have

B*(C") = C+mi M + -+ mgMs,
where mj; is the multiplicity of C” at p;. The condition C'L = 0 implies
5d = 2(mqy + - - - + mg).
If C' is not equal to N/ for any i, then
C'N{ =2d > (mq+---+mg) —m; =5d/2—m,
holds for each i¢. Hence 2m; > d for ¢ = 1,...,6. Therefore 5d = 2) m; > 6d,

which is absurd. Thus we have proved that ®|z, is the contraction of the (—1)-curves
Ni,..., Ng.
Since M;L = 2, the image of M; by ®|7| is a nonsingular conic curve. Because
M;N; = 0 if and only if i = j, the conic curve @z (M;) satisfies
O (M;) NE = 3"\ {pi}.
Hence Y’ satisfies (X3). O

Corollary 7.7. The rational map
CTy:P?... - P?

defined by the linear system |I%(5)| is birational, and the inverse map is given by

CTEI.
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We will write
G 8 — P?
instead of ®|. Let H and H' be the pull-backs of a general line of P? by 3 and
3, respectively. We put
Mz/ = ﬁ/(M7,>7
which is a nonsingular conic curve containing ¥’ \ {p;} and not passing through p..

We also put
6 6
U:=8S\ (UNiUUMi>.
i=1 i=1
The morphisms 3 and 3’ induce isomorphisms
(7.8) P2\UN; = U = P?\uMj,.

The Picard group PicS of S is a free Z-module of rank 7, and is generated by the
linear equivalence classes [H], [Mi], ..., [Ms], or by the linear equivalence classes
[H'],[N1],...,[Ng]. They are related by

(1) = 5H] 23 (M), (V] = 20H] = Y )+ (M (=16,

Jj=1

In particular, we have

6 6
(7.9) 3[H] - ) [M;] = 3[H'] = > _[N]]
j=1 j=1
in Pic S.
7.3. Cremona transformations of supersingular K3 surfaces. Let G be a
homogeneous polynomial in ¢/, and let ¥ = {p1,...,ps} be a subset of Z(dG) with
|X| = 6. We assume that ¥ satisfies the condition (¥1) and

(32)" for each p; € ¥, the nonsingular conic curve N/ containing ¥ \ {p;} satisfies
NN Z(dG) = £\ {p:}-
Then the subset
Z':=CTg(Z(dG)\ %) U ¥
of P? is well-defined and consists of 21 points.

Proposition 7.8. There exists G' € U such that Z' = Z(dG").
For the proof of Proposition 7.8, we first show the following:

Lemma 7.9. There exists Gy € U that satisfies Z(dG) = Z(dG1) and G1(p;) =0
for each p; € .

Proof. By (X1) and (X2)’, the points of ¥ impose independent linear conditions
on the linear system |Opz(3)]. (See [6, p. 715].) Hence there exists a homogeneous
cubic polynomial H such that (G + H?)(p;) = 0 holds for each p; € X. Then
G = G + H? satisfies Z(dG) = Z(dGh). O

We replace G by (1 in Lemma 7.9. Then the sextic curve D defined by G = 0 is
reduced and has an ordinary node at each point of ¥. Hence

6
D:=p3"D-2> " M,
j=1
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is a reduced effective divisor of S, and it does not contain any of M;.

Proof of Proposition 7.8. Let D' be the image of D by . Since DH' = 6, D' is
a reduced curve of degree 6. Let G’ = 0 be the defining equation of D’. We will
show that Z' = Z(dG"). It is enough to show that Z(dG’) is of dimension 0 and
that 2/ C Z(dG").

Since ﬁNj = 2 for each N;, we have

6
D:=p"D'-2> N

j=1

Because D is effective, we have Sing D' D ¥'. Hence ¥’ C Z(dG"). We put

6
VL(H) := Os(3H =Y~ M;) = Os(3H" = Y " N;).
j=1 j=1
Let G be a global section of
LH) = L(H) = Os(6H —2 3" M;) = Os(6H' =23 N;)

such that G = 0 defines D. Let m and n be global sections of Og(3" M;) and
Os(>_ N;) such that Y~ M; = {m =0} and > N; = {n = 0}. We can choose them
so that

(7.10) BG=G-m? and B°G =G -n?
hold. We define isomorphisms
(7.11) B*Op(3)|U = VLH)|U = 370p3)|U

of line bundles on U by multiplications by m and n. We can define dé, d(*@G) and
d(B'"G’) as global sections of the vector bundles O} ® \/L(H)®2, QL @ B*Op2(3)®2
and Qf @ /" Op2(3)®?, respectively. By (7.10) and (7.11), we get
B7H(Z(dG) \ %) = B7(Z(dG) N (P* \ UN})) = 37 (Z(dG)) NU

= Z(d(B"G|U) = Z(d(G|V)) = Z(d(8" G'|U))

= 71 (2dG))NU =37 (Z(dG") N (P \ UM))).
Hence we get Z(dG') N (P? \ UM}) = CTx(Z(dG) \ ¥). In particular, we have
CTx(Z(dG)\ X) C Z(dG").

If dim Z(dG") > 0, then one of the conic curves M; is contained in Z(dG').
Suppose that M} C Z(dG"). Then M}, C Z(dG) holds. We choose affine coordinates
(z,y) of P2 such that p, = 3(My) is the origin. Let

g(@,y) = Y ayz'y
i+j<6
be the inhomogeneous polynomial corresponding to G. Since pr, = (0,0) € X is
contained in Sing D, we have
aij:() fOI‘ ’L+_]S1
Let the blowing up § be given by

(u,v) = (2,y) = (w,v)
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around a point of Mj,. Then G is written in terms of the coordinates (u,v) as

glu,v) = Bg/v* = Y aguettITE,

2<i+5<6

Since dG is zero along the curve My, = {v = 0} by the assumption, we have

Py
a—Z(u,O) = a1 = 0.
This contradicts the fact that py is a reduced point of Z(dG). O

Proposition 7.10. Let G and G’ be as above. Then the Cremona transformation
CTs of P? lifts to an isomorphism

C\Tg : XG :> XG'
of supersingular K3 surfaces.

Proof. Let Y be the subvariety of the total space of the line bundle v/ L(H) defined
by W2 = @, where G is the global section of \/L(H)®2 = L(H) introduced in the
proof of Proposition 7.8, and W is the fiber coordinate of \/L(H). From (7.10)
and (7.11), we obtain isomorphisms

XG|(PP\UN)) = YU = Xeg|(P*\UM))

that are compatible with the isomorphisms (7.8). Since K3 surfaces are minimal,
the isomorphism between Zariski open subsets of X and X extends to an iso-
morphism between X and X¢v. ([

Remark 7.11. We describe the action of (/ﬁ‘g on the numerical Néron-Severi lattices
of the supersingular K3 surfaces. We number the points of Z(dG) and Z(dG') in
such a way that

Z:{p17-"7p6}5 Z(dG):EU{p7aap21}a

¥ ={pl,...,ps}, Z(dG") =X " U{py,...,Ph1}s
where p; = CTx(p;) for i = 7,...,21. Let E; C Xg be the (—2)-curve that is
contracted to p; € P2, and E! C X¢ the (—2)-curve that is contracted to p/ € P2.
Then NS(X¢g) ®z Q is generated by [E1],...,[E2],[Lc], and NS(X¢g) ®z Q is
generated by [E}],...,[F%], [Le]. Since CTx(p;) = p} for i > 6, we have

CTw([E)) = [Ei] for i> 6.

The exceptional curve N; on S contracted to p; by 3’ : S — P? is mapped by
B :S — P? to the nonsingular conic curve N/ such that N/ N Z(dG) = ¥\ {p;}.
Hence

6
GT;([E;]):2[LG]—Z[Ej]+[Ei] for i=1,....6.

The pull-back of a general line of P? by CTyx : P?-.. — P? is a quintic curve Q
such that @ N Z(dG) = ¥ and that the multiplicity of @ at each point of ¥ is 2
(Remark 7.5). Thus
6
CTy([Le)) = 5lLe] -2 1]

Jj=1
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These formula describe the homomorphism CT ; ®z Q from NS(X¢g) ®z Q to
NS(Xg) ®z Q.

Remark 7.12. Suppose that the point [G'] € 9 corresponding to G’ € U in Proposi-
tion 7.8 coincides with the point [G] € 9. Then the Cremona transformation CTy
defines a right coset in Aut(Xq) with respect to the subgroup Aut(Xeq,Lg) C
Aut(Xg). Indeed, the assumption [G] = [G’] implies the existence of a linear
isomorphism g : P? = P? such that g(Z(dG")) = Z(dG). Let § € GL(3,k) be a
lift of g € PGL(3,k). Then there exists ¢ € kX and H € H°(P?, Op2(3)) such
that §*G = ¢G’ + H?. Let Xg and Xg be defined by W? = G(X,Y,Z) and
W' = G'(X,Y, Z), respectively. We have a lift §: Xg© = X¢ of g given by

GW =W +H.

The composite g o (/ﬁ’g is an automorphism of Xg. Since the linear isomorphism
¢ is unique up to the group

{he PGL(3,k) | h(Z(dG)) = Z(dG) } = Aut(Xe, Lc),

the automorphism § o CTy, € Aut(X¢) is also unique up to Aut(X¢, Lg).

8. THE ISOMORPHISM CORRESPONDENCES BY CREMONA TRANSFORMATIONS

8.1. The action of Cremona transformations on the moduli space. Let C
be a code satisfying the conditions in (ii) of Theorem 2.4. For v € Gc, we denote
by G € U a homogeneous polynomial such that v(P) = Z(dG). Let ¢ € Pow(P)
be a word of weight 6. Recall from Definition 1.11 that v(c) is a center of Cremona
transformation for G, if no three points of y(c) are collinear and there are no
nonsingular conic curves C' C P? such that |C' N ~y(c)| > 5 and [C N~ (P)| > 6.
By Propositions 2.9, 2.10 and 2.17, we see that the following conditions on a word
¢ € Pow(P) of weight 6 is equivalent to each other:

e the word c satisfies the following:
(i) |enl| <2 for any linear word [ of C, and
(ii) |engq| <4 for any quadratic word ¢ of C,

o there exists v € G¢ such that y(c) is a center of Cremona transformation for
G, and

e for arbitrary v € G¢, ¥(c) is a center of Cremona transformation for G..

Definition 8.1. A word ¢ € Pow(P) of weight 6 is called a center of Cremona
transformation with respect to C if the above conditions are satisfied.

Let ¢ be a center of Cremona transformation with respect to C. For v € G¢, we
put
X :=1(0),

and consider the Cremona transformation CTy. We put
Z, . ={CTs(v(P)) | PEP\c}U{pi,....p6},

where p} is the image of the strict transform N; C S of the conic curve N/ that
contains y(c) \ {p;}. By Proposition 7.8, there exists a polynomial G . € U such
that Z! . = Z(dG’, .). Even though the polynomial G/, . is not uniquely determined,
the corresponding point [Giy,c} € 9 is uniquely determined by ¢ and . The map
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v — [G’, ] gives a morphism from Gc to M. It is obvious that this morphism
descends to the morphism

cte : PGL(3,k)\Gc — M.
8.2. The case where Artin invariant is 2. Let T be A, B or C, and let ¢ €

Pow(P) be a center of Cremona transformation with respect to Cp. The image by
ct. of the connected component
(PGL(37k)\gT)+ = [’YA] | Ae Al \ {O) 1,&),@} }
of PGL(3,k)\Gr is a connected component of My = M4 LU Mp L M, and hence
there exists 77 € {A, B, C'} such that ct. yields a morphism
ctf o o (PGL(3,k)\Gr)" — M.
Using Ct;C and the quotient morphism
pr (PGL(3, ]'C)\QT)Jr — DﬁT

by Nr = Ker(Aut(Cr) — T), we obtain an irreducible isomorphism correspon-
dence

Drie] = { (pr(W]), ctz..(V]) | [] € (PGL(3,k\Gr)" } C Mz x My,

For o € Ny, we have

cte([ 0 0]) = ctogo ().
Hence the type T” and the correspondence D 1/[c|] depends only on the orbit of
c under the action of Np. We present in Table 8.1 the decomposition of the set
of centers of Cremona transformation with respect to Cr into the orbits under
the action of Np. For each orbit, the type 7" and the defining equation of the
isomorphism correspondence Dy 7[c] are also given.

We will explain the algorithm for obtaining the defining equation of Dr 1[c].
For example, consider the case where T' = A and ¢ = {Py, Py, Ps, Py, P12, Pao }-
The six points ¥ = vy (¢) = {p1,...,ps} are as follows:

p1 = VA(Pl) = [1,w,0], Pa = ’YA(PQ) = [17 ]-a 1 )
p2 = (P) = [+ XA 1], ps = (Pr2) = [0,1,0],
p3 = 'YA(P6) = [)\71+>\, 1], Pe = ’Y/\(PZO) = [0707 1]

Solving linear equations, we see that the 3-dimensional linear space HO(P?, Z%(5))
is generated by the homogeneous quintic polynomials in Table 8.2. The Cremona
transformation CTy, : P2 ... — P2 is given by

[va,Z] i [FlaF27F3]'

The points v (P;) (P; ¢ ¢) is mapped by CTy to the points in Table 8.3. The conic
curve Nj C P? containing 3 \ {p1} is defined by
Ey =X+ N+ NYZ+ N+ A+1)ZX =0.

Let V7 be the vector space of cubic homogeneous polynomials C' such that E;C is
a member of H(P?, 7% (5)). Then we have dim V; = 2, and the image of the linear
map Vi — HO(P?,T%(5)) given by C +— E;C is spanned by F| and F3. Hence
the image 3'(N1) of the strict transform Ny C S of Nj is [0,1,0]. In the same
way, we calculate 3'(IV;) as in Table 8.3. The set LW of collinear 5-tuples of the
points in Z’ = {q1,...,¢21} and the set QW of 8-tuples of the points in Z’ that are
on a nonsingular conic curve are given in Table 8.4, where {1,3,5,11,17} means
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D2
D3
D4
D5
D6
D7
D8
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T c N -c| | T Dr /(]
A| {1,2,8,10,15,16} 12 |4 A=0
A| {1,7,8,15,18,21} | 144 | A D1=0
A| {2,4,811,14,16} | 576 | B D2=0
Al {1,4,6,9,12,20} 72 | A D3 =0
Al {2,8,10,12,14,21} | 72 | A D3 =0
A| {58,9,10,14,16} 48 | A A=

Al {4,9,12,16,17,18} | 24 | A A=

Al {1,2,9,10,16,19) 36 | A A=0
A|{7,12,13,14,19,20} | 36 | A A=0
Al {2,6,9,10,13,21} 8 | C D4 =0
Al {2,5,11,13,17,21} | 576 | A D1 =0
B| {2,7.8,9,10,17} 216 | B A=0
B| {1,2,11,12,13,18} | 72 | B D5=0
B| {4,5,6,10,13,19} 54 | B A=0
B | {4,7,12,15,20,21} 6 |B A=0
B| {1,2,6,10,14,16} 54 | B A=0
B| {3,5,14,16,19,20} | 108 | B A=0
B| {1,3,8,12,13,17} 108 | B A=0
B| {1,5,6,16,20,21} | 216 | A D6 =0
B| {2,6,9,13,16,18)} 36 | B A=0
B| {3,7,810,19,21} | 216 | B D5 =0
B| {2,5,9,16,18,19} 108 | B A=0
B| {1,3,5,15,19,21} 72 | B D5=0
B| {2.6,7,16,20,21} 108 | B A=0
C| 13,5,913,17,21} | 90 | A D7 =0
C | {3,5,10,14,17,21} | 64 | C D8 =0
Cc | {1,5,8,10,14,18} 960 C A=0
c| {1,25,8,18,19} 240 | C A=0

= Jr+ Jp,

T8 G4 Jp Jg 4 T T+ T T3+ T30 Jg 4 Jgu Jio + Jiu T + T30 T3 +
+ I Jr 4 T Jg A+ T Jp + Jau T3+ Jpi J3 4 T + JiuJr + Jp JE 4 T3,
Jt+ J2Jr + Jpi J3 + JpJr + Jr,

J3 I3+ J3n J% 4 J3 J + JprJr + 1,

Ji Jp + T J3 + Jpr Jr + Jpr + Jr

JpiJr 4 Ja J3 4+ Jan Jo + Jpi Jb+ T2 Jp + J3 Jo + Jp Jo + 1,

Jtr 4 J Jr + g J3 + Jp I + 1,

Jp0 I+ T30 Jr + JprJr + Jpo + Jr,

= Iyt + T Jr + Jin I + I J3 + T+ JpJr + o JF + T

TABLE 8.1. Isomorphism correspondences by Cremona transformations

53
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i = X'Z+X3Z2°N0+X*ZPAw+ XY Zw + XY 2P N0+ XY ZPAw +
+ XY 2P0+ X223\ w4+ X2 2N + X2 23N 4 X2 23w + X223 +
+XY2Z2 N0+ XY 2P w4+ XY 22w + XY ZPw + Y3 Z2 N0 +
+Y3Z2Aw+ Y223 N0 + Y223\ + Y2230 + Y2 2P,

F =  XYPZNw+ XPZPN 4+ XY ZPA+ XPZPAN+ XY 22N + XY 2P +
+ XY Z 4 XN YR AN L YA YR+ XY 2P0 4+
+X3ZPA+ XY2 22N+ XY + XY2Z2 + Y3220 + Y222 N%0 +
+ X222 N0+ X2 23N 0w+ Y2 2PN w + Y223 N w + Y2 ZP A w + Y2 2208w +
+ XY+ XY ZNw 4+ X2 Z3 N w+ XY ZPAw + Y322 w + XY2 220w +
+X2Z3N0 + XY Zw 4+ Y322 N w + XY ZAw + Y2 Z3 0w + XPY ZAw +
+X2YV2 2w+ XY Zw + XY 20w + X2Y 220\ w,

Fs = XY ZXNw+XYZ2Nw+ X3Y2w+ XPZ22 + XY 22N + X2 Z3 0 +
+XYZR 4 XY 2P+ XY Z+ X223\ YR 2P+ YRR 4+ Y2 2B +
+XY2ZAN 4 XN XN+ XY 2PN+ XPY 2PN + XY 2R +
+Y3ZPA+ Y223 00w+ X+ X2 230w+ X228 N0 + Y223\ w +
+ X280+ Y2 22w+ X2 2PN + Y2280 + XY Zw + XPY 20w +
+ XY ZPAw+ Y2 ZPAw + Y222 N0 + XY? 220w + XY 220w + X2 Z3 20w +
+XY3ZAw+ XY2Z* N0+ XY ZAw + X2 220w + XY Z w +
+XY2Z°XN0w + XY Z 0w,

TABLE 8.2. Generators of HO(P?, T%(5))

{@1,93, 95, @11, q17}, for example. Since |LW| = 13 and |QW| = 28, we see that the
type T' of the target moduli curve is A. Let o be the following permutation:

1 2 3 4 5 6 7 8 9 10 11
2 6 4 18 17 3 7 12

12 13 14 15 16 17 18 19 20 21
1 8 9 11 15 14 20 5 19 10 /)°

Then the map
vy P — P?

defined by 7'(P;) = qo(;) yields bijections from the set of linear words in C4 (see
Table 4.1) to LW and from the set of quadratic words in C4 (see Tables 4.4
and 4.5) to QW. Hence the map 7' is an element of G4. We make the linear change
of homogeneous coordinates of P? so that

7/(P18) = (q20 = [17 070]a

IYI(PIQ) =q1 = [07 170]7 VI(PIS) =48 = [17 170]7
7/(P20) =q19 = [0307 1]3 7/(P19) =45 = [1703 1]7
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@1 = CTg(n(P)) [0,1,w],
@ = CTs(P3) = [w,A24+oX+1, XA +@)],
@3 = CTs(n(P5) = [wAX+od+o, A +DA+w)],
g = CTx(va(Pr)) [w, A+ wh+w, ()\+w)2]
g5 = CTs(m(FR) = [w,A+1)* N +wr+1],
g = CTs(n(Pw) = [o,A+w)? A+DA+0)],
@ = CTs(n(Pi1) = [w,A+w)A+@), 2 +A+w],
gs = CTs(n(Ps) = [0,1,1],
@ = CTs((Pu) = [w, X +wr+1,(\+w)?],
g0 = CTs(m(Pi5) = [w, 222 +wr+w],
g1 = CTs(n(Pi) = [w,A+@)* XA +w)],
g2 = CTs(n(Pi7) = [w,AA+w),\?],
@3 = CTs(n(Pi)) = [0,0,1],
s = CTs((Po)) = [w, > +A+0,AA+1)],
@5 = CTs(a(Po1)) = [w,A+1D)A+@), A+1)?].
@ = B(N) = [0,1,0],
qr = B(N2) = [w,A+O)NN+or+o],
qs = B(N3) = [w,A+DA+w), N> +or+1],
qi9 = B'(Ng) = [, N+ A+w, 2+ A+0],
g0 = ['(Ns5) = [0,1,&],
@1 = B (Ng) [w, A\A+ 1), A+ w)(A+@)].

TABLE 8.3. Points ¢;

hold (see (4.6)); that is, we multiply the matrix
D N
M+A+1l o 1
wA+1 0 0

from the left to the vectors v/ (P;) = ¢,(;). Then we have
(@)
’)//(Pl) = {13 = [1 w,O].

Therefore the projective equivalence class [y/] € PGL(3,k)\Ga of 4 is contained
in the connected component (PGL(3,k)\Ga)", because otherwise we would have
' (Py) = [1,&,0]. Since

’y/(PlO) =4qr = [07 17 A+ U_)]a
the point [y] corresponds to 1/(\+ @) under the isomorphism (PGL(3,k)\Ga)T =
A\ {0,1,w,@}. Substituting 1/(\ + @) for A in
AN+ A+1)°

Ja= anre
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LW = {{1,3,5,11,17},{4,5,6,8,12},{1,2,6, 10, 18},{2,3,8, 19, 21},
{1,4,9,14,21},{8,9,10,11,15}, {6, 7,11, 20,21}, {1,7, 12, 15,19},
{3,9,12,18,20},{1,8,13,16,20}, {7,8,14,17,18}, {5, 10, 14, 19, 20},
{2,4,15,17,20}}.

QW = {{2,3,4,5,9,10,13,16},{2,3,4,7,10,11,12,14},{2,3,5,6,7,9, 14,15},
{2,4,5,7,9,11,18,19},{3,4,5,7,10,15,18,21}, {3,4,6,7,9,10,17, 19},
{2,5,6,7,13,16,17,19},{2,3,6,11,12,13,15,16}, {3,4, 6,11, 14, 15, 18, 19},
{3,5,6,13,14,16,18,21},{2,5,7,9,10,12,17,21},{4,6,7, 10, 13,14, 15, 16},
{3,4,7,12,13,16,17,21},{5,7,9,11, 12,13, 14, 16}, {2,6,9, 11,12, 14, 17,19},
{4,6,9,11,13,16,17,18},{2,7,9,13, 15,16, 18,21}, {5,6,9, 15,17, 18, 19, 21},
{3,7,10,11,13,16, 18,19}, {6,9, 10, 12,13, 16,19, 21}, {3,6, 10, 12, 14,15, 17, 21},
{2,5,11,12,14, 15, 18,21}, {4,10,11,12,17, 18,19, 21}, {2, 10, 11, 13, 14, 16, 17, 21},
{4,5,11,13,15,16, 19, 21}, {2, 4,12, 13,14, 16, 18, 19}, {5, 10,12, 13,15, 16, 17, 18},
{3,9,13,14,15,16,17,19} }.

TABLE 8.4. Sets LW and QW

we see that the J4-invariant of [y'] is equal to
, NA+1)°
Jy=—"""=.
(A2 4+A+1)2
Eliminating A from J4 and J/, we obtain the defining equation
L+ Jadly + JRJE + JAJR + J3J5 =0

of the isomorphism correspondence given by the Cremona transformation with the
center ¢ = {Pl, .P47 PG, Pg, P12, PQ()}.

Putting

Daay:={D3=0}, Dyas:={D1=0},
Dpp1:={D5=0}, Dcci:={D8=0},
Dapi1:={D2=0}="Dp a1 ="{D6=0},
Daci:={D4=0}="Dc a1 ="D7=0},

we obtain Theorem 1.13. The composite D; x Dy of correspondences

Dl = {fl(JT7 JT’) = 0} C mT X mT’ and
D2 = {fQ(JTlv JT”) = 0} (- S):RT/ X mT”

is obtained by eliminating the variable Jp/ from fi1(Jr, Jr/) = fo(Jpr, Jpr) = 0.
Starting from the eight isomorphism correspondences above and making compos-
ites, we obtain irreducible isomorphism correspondences listed in Table 1.1, which
have the relations in Table 8.5. This table also shows that the isomorphism corre-
spondences A4, Ap, Ac and the ones in Table 1.1 are closed under compositions
of correspondences.



Da,a1*Daan
Da,a1*Daaz2
Daaz2*Daan
Dp,a2%DaAz2
Da,a1*Da B
Daan*Da B2
Dy,a2+Da,B
Dy,a,2%Da B2
Da,a1*Daca
Da,an*Dac2
Da,a,2*Da,cin
Da,az2*Dac2
Dg,B,1 *DB,B,1
Dp p1*Dp,an
Dp,B,1*DB,a2
Dp,p,1*Dp,c,1
Dp,B,1*DB,c,2
Dg,c,1 * De,c,1
D¢g,c,1 *De,B 1
D¢g,c,1 *Do,B,2
Dc,c,1* De,an
Dg,c,1 * Dc,a,2
Da,B1*DB,B1
Da,B2+*DpB,B1
Dy p1*Dp a
Da,B1*DB,a2
Da,B2*Dp a1
Da,B2*Dp,a2
Dy,B,1*DB,c1
Da,B1*Dg,c,2
Da,B2*Dp,c1
Da,B2*Dg,c,2
Dp a1*Da A
Dp a1 *Da, A2
Dp,a2*Da,an
Dp,a2*Da a2
Dp a1*Da B
Dp a1 *Da B2
Dp,a2*Da,B,1
Dp aA2*Da B2
Dp,a1*Da,c1
Dp.a,1*Da,c,2
Dp,a2*Da,c1

Ap+Daa2,
Da,ag+Da,az,
Da,a1+Daa2,

Apa+Daagr+Daaz,

Da B2,
Da,B1+Da,B,2;
Da,B,1 +Da,B,2
Da,B1+Da B2,
Dy c2,
Da,ci1+Da,c,2,
Da,c,1+Da,c,2;
Da,c1+Da,c,2,
Ap+Dp,B1,
Dp,a1+DpB,a,2,
Dp,a,1 +DB,a,2,
Dp,c,2;

Dp,c1+ DB,c,2;
Ac + D¢,c,1s

D¢ B2,

D¢c,B1+ De, B2
Dc,a,1 + Dg,a,2,
Dc,a1+ Dc,a,2,
Da,B1+Da, B2,
Da,B1+Da, B2,
Ap+Da a2,
Da,an+Daae,
Da,ax+Da,az,

Aa+Daar+Daase,

Da,c,
Da,c,1+Da,c,2,
Da,c,2,
Da,c1+Da,c,2,
Dp a2,

Dp,a,1 +DB,a,2,
Dp a1+ Dp a2,
Dp, a1+ Dp a2,
Ap +Dp B,
DpB,B,1»

Dgp,B,1,

Ap + Dpg B1,
Dp,c1+ Dg,c,2,
Dp,c,2;

Dp,c,2;

Dp,az2*Da,c,2
Dp,c,1 * Dc,c
Dp,c,2 *Dc,c1
Dp.c1*Dc,B1
Dp,c,1 * Dc,B,2
Dp,c,2*Dc,B,1
Dp,c,2 * Dc,B,2
Dp.c,1*Dc,an
Dp,c,1 * Dc,a,2
Dp,c,2*Dc,a1
Dp,c,2 * Dc,a,2
D¢,B,1 *Dp,B,1
De,B2*Dp B
Do, *Dp,an
Dc,B,1 *Dp,aA,2
Dc,B,2*Dp,an
Do g2*Dp a2
De,p,1*DB,c1
D¢,B,1 *Dp,c,2
Dg,B2*Dp,c1
D¢,B,2 *Dp,c,2
Dco,a*Da A
Dc,a1*Daa2
Dc,a2*Da,an
Do ,a2*Da a2
Dc,a1*Da,B1
Dc,a1*Da, B2
Dc,a2*Da B
Do a2*Da B2
Dc,a1*Da,cn
Dc,a1*Dac2
Dc,a,2*Da,c1
Dc,a2*Da,c,2
Da,c1*Dc,cn
Da,c,2*Dc,c1
Da,c,1*Dc,B1
Da,ci1*De,B,2
Da,c,2*Dc,B1
Da,c,2*Dc,B,2
Da,ci1*xDc,an
Da,c,1*Dc,a,2
Dy,c,2*Dc,an
Da,c,2*Dc,a2

MODULI CURVES OF SUPERSINGULAR K3 SURFACES

Dp,c1+ DB,c,2:
Dp,c,2,

Dp,c1+ Dp,c,2;
Ap,

Dp,B,1,

Dp B,1,

Ap +Dpg.B,1,
Dp. a1,

Dp. a,2,

Dp. a1+ DB,a,2,
Dp,a,1 +DB,a,2,
D¢, B2,

De,p1+ Do, B2,
Dcoa,

Dc,a,2,

Dc,a1+ Dc,a,2,
Dc,a1+ Dc,a2,
Ac,

D¢,c,1,»

D¢g,c,1,

Ac + Dg,cs
Dc,a,2,

Dg,a1+ Dc, a2,
Dc,a1+ Dc,a,2,
Dc,a1 + Dc,a,2,
Dc,B,1 + Dc,B,2»
D¢, B2,

Dc¢,B,2,

Dc,p,1 + De, B2
Ac + Dg,cs
D¢g,c,1»

Dc,c,1»

Ac + Dg,c1s
Da,c1+Da,c,2,
Da,c1+Da,c,2,
Da,B,1,

DA 1+ Da,B,2,
Da,B,2,

Da 1+ Da,B,2,
Aa+Da a2,
Da,a1+Daa2,
Da,aix1+Da,az,
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Aa+Daar+Daasz-

TABLE 8.5. Relations between non-trivial isomorphism correspondences
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