Back to Top (English Top Page)

Back to Top (Japanese Top Page)


Publications


  1. (joint work with Simon Brandhorst and Sławomir Rams) On characteristic polynomials of automorphisms of Enriques surfaces. Publ. Res. Inst. Math. Sci. 59 (2023), no. 3, 633--656. DOI 10.4171/PRIMS/59-3-7
  2. A note on Quebbemann's extremal lattices of rank 64. J. Théor. Nombres Bordeaux 34 (2022), no. 3, 813--826. DOI: 10.5802/jtnb.1229
  3. (joint work with Simon Brandhorst) Automorphism groups of certain Enriques surfaces. Found. Comput. Math. 22 (2022), no. 5, 1463--1512. DOI: 10.1007/s10208-021-09530-y
  4. Zariski multiples associated with quartic curves. J. Singul. 24 (2022), 169--189. DOI: 10.5427/jsing.2022.24g
  5. (joint work with Simon Brandhorst) Borcherds' method for Enriques surfaces. Michigan Math. J. 71 (2022), no. 1, 3--18. DOI: 10.1307/mmj/20195769
  6. Rational double points on Enriques surfaces. Sci. China Math. 64 (2021), no. 4, 665--690. DOI: s10.1007/s11425-019-1796-x
  7. (joint work with Davide Cesare Veniani) Enriques involutions on singular K3 surfaces of small discriminants. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1667--1701. DOI: 10.2422/2036-2145.201902_004
  8. (joint work with Igor Dolgachev) 15-nodal quartic surfaces. Part II: the automorphism group. Rend. Circ. Mat. Palermo (2) 69 (2020), no. 3, 1165--1191. DOI: 10.1007/s12215-019-00464-7
  9. The elliptic modular surface of level 4 and its reduction modulo 3. Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1457--1489. DOI: 10.1007/s10231-019-00927-9
  10. On an Enriques surface associated with a quartic Hessian surface. Canad. J. Math. 71 (2019), no. 1, 213--246. DOI: 10.4153/CJM-2018-022-7
    Corrigendum: Canad. J. Math. 2020, pp. 1--3. DOI:10.4153/S0008414X20000838
  11. Connected components of the moduli of elliptic K3 surfaces. Michigan Math. J. 67 (2018), no. 3, 511--559. DOI: 10.1307/mmj/1528941621
  12. On Edge's correspondence associated with ⋅222. Eur. J. Math. 4 (2018), no. 1, 399--412. DOI:10.1007/s40879-017-0183-z
  13. An even extremal lattice of rank 64. J. Number Theory 185 (2018), 1--15. DOI: 10.1016/j.jnt.2017.10.028
  14. Holes of the Leech lattice and the projective models of K3 surfaces. Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 1, 125--143. DOI: 10.1017/S030500411600075X
  15. (joint work with Tetsuji Shioda) On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic. Manuscripta Math. 153 (2017), no. 1--2, 279--297. DOI: 10.1007/s00229-016-0886-3
  16. (joint work with Alex Degtyarev) On the topology of projective subspaces in complex Fermat varieties. J. Math. Soc. Japan 68 (2016), no. 3, 975--996. DOI: 10.2969/jmsj/06830975
  17. Automorphisms of supersingular K3 surfaces and Salem polynomials. Exp. Math. 25 (2016), no. 4, 389--398. DOI:10.1080/10586458.2015.1073641
  18. The automorphism groups of certain singular K3 surfaces and an Enriques surface. K3 surfaces and their moduli, 297--343, Progr. Math., 315, Birkhäuser/Springer, [Cham], 2016.
  19. An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces. Int. Math. Res. Not. IMRN 2015, no. 22, 11961--12014. DOI:10.1093/imrn/rnv006
  20. (joint work with Thanh Hoai Hoang) On Ballico-Hefez curves and associated supersingular surfaces. Kodai Math. J. 38 (2015), no. 1, 23--36. DOI: 10.2996/kmj/1426684441
  21. (joint work with De-Qi Zhang) Dynkin diagrams of rank 20 on supersingular K3 surfaces. Sci. China Math. 58 (2015), no. 3, 543--552. DOI: 10.1007/s11425-014-4902-3
  22. (joint work with T. Katsura and S. Kondo) On the supersingular K3 surface in characteristic 5 with Artin invariant 1. Michigan Math. J. 63 (2014), no. 4, 803--844. DOI: 10.1307/mmj/1417799227
  23. (joint work with S. Kondo) On a certain duality of Néron-Severi lattices of supersingular K3 surfaces. Algebr. Geom. 1 (2014), no. 3, 311--333. DOI:10.14231/AG-2014-016
  24. The graphs of Hoffman-Singleton, Higman-Sims and McLaughlin, and the Hermitian curve of degree 6 in characteristic 5. Australas. J. Combin. 59 (2014), 161--181.
  25. (joint work with S. Kondo) The automorphism group of a supersingular K3 surface with Artin invariant 1 in characteristic 3. Int. Math. Res. Not. IMRN 2014, no. 7, 1885--1924. DOI:10.1093/imrn/rns274
  26. Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5. J. Algebra 403 (2014), 273--299. DOI: 10.1016/j.jalgebra.2013.12.029
  27. A note on rational normal curves totally tangent to a Hermitian variety. Des. Codes Cryptogr. 69 (2013), no. 3, 299--303. DOI: 10.1007/s10623-012-9662-x
  28. On Frobenius incidence varieties of linear subspaces over finite fields. Finite Fields Appl. 18 (2012), no. 2, 337--361. DOI:10.1016/j.ffa.2011.09.004
  29. (joint work with N. Takahashi) Primitivity of sublattices generated by classes of curves on an algebraic surface. Comment. Math. Univ. St. Pauli, 59 (2010), no. 2, 77--95.
  30. Topology of curves on a surface and lattice-theoretic invariants of coverings of the surface. Algebraic geometry in East Asia---Seoul 2008, 361--382, Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010. DOI: 10.2969/aspm/06010361
  31. Lattice Zariski k-ples of plane sextic curves and Z-splitting curves for double plane sextics. Michigan Math. J., 59 (2010), 621--665. DOI: 10.1307/mmj/1291213959
  32. Generalized Zariski-van Kampen theorem and its application to Grassmannian dual varieties. Internat. J. Math. 21 (2010), no. 5, 591--637. DOI: 10.1142/S0129167X10006252
  33. Non-homeomorphic conjugate complex varieties. Singularities-Niigata-Toyama 2007, 285--301, Adv. Stud. Pure Math., 56, Math. Soc. Japan, Tokyo, 2009. DOI: 10.2969/aspm/05610285
  34. (joint work with K. Arima) Zariski-van Kampen method and transcendental lattices of certain singular K3 surfaces. Tokyo J. Math. 32 (2009), no. 1, 201--227. DOI: 10.3836/tjm/1249648417
  35. Transcendental lattices and supersingular reduction lattices of a singular K3 surface. Trans. Amer. Math. Soc. 361 (2009), no. 2, 909--949.
  36. Singularities of dual varieties in characteristic 2. Algebraic geometry in East Asia---Hanoi 2005, 299--331, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008. DOI: 10.2969/aspm/05010299
  37. On arithmetic Zariski pairs in degree 6. Adv. Geom. 8 (2008), no. 2, 205--225.
  38. (joint work with De-Qi Zhang) On Kummer type construction of supersingular K3 surfaces in characteristic 2. Pacific J. Math. 232 (2007), no. 2, 379--400.
  39. On normal K3 surfaces. Michigan Math. J. 55 (2007), no. 2, 395--416.
  40. (joint work with De-Qi Zhang) K3 surfaces with ten cusps. Algebraic geometry, 187--211, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007.
  41. (joint work with Duc Tai Pho) Unirationality of certain supersingular K3 surfaces in characteristic 5. Manuscripta Math. 121 (2006), no. 4, 425--435.
  42. Singularities of dual varieties in characteristic 3. Geom. Dedicata 120 (2006), 141-177.
  43. Moduli curves of supersingular K3 surfaces in characteristic 2 with Artin invariant 2. Proc. Edinb. Math. Soc. (2) 49 (2006), no. 2, 435--503.
  44. Supersingular K3 surfaces in characteristic 2 as double covers of a projective plane. Asian J. Math. 8 (2004), no. 3, 531--586.
  45. Vanishing cycles, the generalized Hodge conjecture and Gr\"obner bases. Geometric singularity theory, 227--259, Banach Center Publ., 65, Polish Acad. Sci., Warsaw, 2004.
  46. Rational double points on supersingular K3 surfaces. Math. Comp. 73 (2004), no. 248, 1989--2017 (electronic).
  47. Supersingular K3 surfaces in odd characteristic and sextic double planes. Math. Ann. 328 (2004), no. 3, 451--468.
  48. Equisingular families of plane curves with many connected components. Vietnam J. Math. 31 (2003), no. 2, 193--205.
  49. Fundamental groups of algebraic fiber spaces. Comment. Math. Helv. 78 (2003), no. 2, 335--362.
  50. The fundamental group of the complement of a resultant hypersurface. Pacific J. Math. 210 (2003), no. 2, 351--357.
  51. Zariski hyperplane section theorem for Grassmannian varieties. Canad. J. Math. 55 (2003), no. 1, 157--180.
  52. On the Zariski-van Kampen theorem. Canad. J. Math. 55 (2003), no. 1, 133--156.
  53. Lattices of algebraic cycles on Fermat varieties in positive characteristics. Proc. London Math. Soc. (3) 82 (2001), no. 1, 131--172.
  54. (joint work with Zhang, De-Qi) Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. Nagoya Math. J. 161 (2001), 23--54.
  55. On elliptic K3 surfaces. Michigan Math. J. 47 (2000), no. 3, 423--446.
  56. On the commutativity of fundamental groups of complements to plane curves. Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 1, 49--52.
  57. Fundamental groups of complements to singular plane curves. Amer. J. Math. 119 (1997), no. 1, 127--157.
  58. Picard-Lefschetz theory for the universal coverings of complements to affine hypersurfaces. Publ. Res. Inst. Math. Sci. 32 (1996), no. 5, 835--927.
  59. A note on Zariski pairs. Compositio Math. 104 (1996), no. 2, 125--133.
  60. Grothendieck's generalized Hodge conjecture for certain Fano varieties. Algebraic cycles and related topics (Kitasakado, 1994), 51--67, World Sci. Publishing, River Edge, NJ, 1995.
  61. A generalization of Lefschetz-Zariski theorem on fundamental groups of algebraic varieties. Internat. J. Math. 6 (1995), no. 6, 921--932.
  62. A generalization of Morin-Predonzan's theorem on the unirationality of complete intersections. J. Algebraic Geom. 4 (1995), no. 4, 597--638.
  63. On the fundamental group of the complement of a divisor in a homogeneous space. Math. Z. 220 (1995), no. 3, 445--448.
  64. Fundamental groups of open algebraic varieties. Topology 34 (1995), no. 3, 509--531.
  65. Remarks on fundamental groups of complements of divisors on algebraic varieties. Kodai Math. J. 17 (1994), no. 2, 311--319.
  66. A construction of algebraic curves whose Jacobians have non-trivial endomorphisms. Comment. Math. Univ. St. Paul. 43 (1994), no. 1, 25--34.
  67. Unirationality of certain complete intersections in positive characteristics. Tohoku Math. J. (2) 44 (1992), no. 3, 379--393.
  68. On supercuspidal families of curves on a surface in positive characteristic. Math. Ann. 292 (1992), no. 4, 645--669.
  69. On the cylinder homomorphism for a family of algebraic cycles. Duke Math. J. 64 (1991), no. 1, 201--205.
  70. On the cylinder isomorphism associated to the family of lines on a hypersurface. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 3, 703--719.
  71. On the cylinder homomorphisms of Fano complete intersections. J. Math. Soc. Japan 42 (1990), no. 4, 719--738.

Back to Top (English Top Page)

Back to Top (Japanese Top Page)
END