符号と超特異 K3 曲面のモジュライ

北大·理 島田 伊知朗 (Ichiro SHIMADA)

標数2の射影平面の純非分離な2重被覆として得られる超特異 K3 曲面の幾何学的 構造が,ある性質をもつ長さ21の線形符号によって記述されるということを解説す る.標数2の超特異 K3 曲面のモジュライは,これらの線形符号の同型類に対応した strata に分割される.次元の低い strata について詳しく調べる.

証明の細部については [8], [9] および [11] を参照されたい.論説 [10] と重なる部分 が多くあることをお断りしておく.

1 超特異 *K*3 符号と超特異 *K*3 格子

超特異 K3 符号も超特異 K3 格子も,どちらもこの論説のなかでのみ使われる用語である.

定義 1.1 次を満たす長さ 21 の線形符号 $\mathcal{C} \subset \mathbb{F}_2^{21}$ を超特異 K3 符号という.

(i) $[1, 1, \ldots, 1] \in \mathcal{C}$,

(ii) 任意の語 $A \in C$ の Hamming 重み |A| は $|A| \in \{0, 5, 8, 9, 12, 13, 16, 21\}$ をみたす.

計算機を使って超特異 K3 符号の同型類を完全に決定した.超特異 K3 符号の次元は 高々10 であり, d 次元の超特異 K3 符号の同型類の個数 s(d) は下の表で与えられる:

d	10	9	8	7	6	5	4	3	2	1
s(d)	1	3	13	41	58	43	21	8	3	1

21個の元からなる集合

 $\mathcal{P} := \{1, 2, \dots, 21\}$

を固定し, \mathbb{F}_2^{21} を \mathcal{P} のベキ集合 $Pow(\mathcal{P})$ と自然に同一視する. 超特異 K3 符号の各語 は, 長さ 21 の \mathbb{F}_2 -係数のベクトルとして表され, また \mathcal{P} の部分集合としても表される. 定義 1.2 重みが 5,8 または 9の語 $A \in \mathbb{F}_2^{21}$ の次数 deg A を

$$\deg A := \begin{cases} 1 & \text{if } |A| = 5, \\ 2 & \text{if } |A| = 8, \\ 3 & \text{if } |A| = 9 \end{cases}$$

により定める.Cを超特異 K3 符号とし, $A \in C$ かつ $|A| \in \{5, 8, 9\}$ とする.分解

$$A = A_1 + A_2 \qquad (A_1, A_2 \in \mathcal{C}_G)$$

で, $|A_1|, |A_2| \in \{5, 8, 9\}$ かつ $\deg A = \deg A_1 + \deg A_2$ なるものが存在するとき,AはCにおいて可約であるという.AがCのなかで可約でないとき,AはCのなかで既約であるという.

定義により,超特異 K3 符号は $\mathcal{P} = [1, 1, \dots, 1]$ と既約な語により生成される.次数 $\deg A$ の幾何学的な意味については $\S4$ を参照されたい.

この論説の最後に,各同型類を代表する超特異 K3 符号の一覧表を載せる.この表には次のデータが記載されている.

• $\sigma = 11 - \dim \mathcal{C}$.

• basis: \mathbb{F}_2 上の基底.

● 1: 重さ5の語の個数.(重さ5の語はすべて既約である.)

● q: 重さ8の既約な語の個数.

● e: 重さ9の既約な語の個数.

•tl: 相異なる重さ 5 の語の 3 つ組 L_1, L_2, L_3 で, 各語を \mathcal{P} の部分集合とみたときの共通部分 $L_1 \cap L_2 \cap L_3$ が 1 点からなるものの個数.

• 1q: 重さ 5 の語 L と既約な重さ 8 の語 Q のペア (L,Q) で , $L \cap Q$ が空集合となる ものの個数 .

• qq: 既約な重さ 8 の語のペア (Q_1, Q_2) で, $|Q_1 \cap Q_2| = 2$ となるものの個数. basis においては, C の各元は長さ 21 の bit ベクトル $[\alpha_0, \dots, \alpha_{20}]$ によりあらわされ, bit ベクトルは,整数 $2^{20}\alpha_0 + \dots + 2\alpha_{19} + \alpha_{20}$ によりあらわされている.ただし, $[1, 1, \dots, 1] = 2^{21} - 1$ はすべての基底にあらわれるので省略されている.

例 1.3 No. 191 の 10 次元超特異 K3 符号 C_{191} は Dolgachev-Kondo 符号 C_{DK} とよば れ ([3]),次のように構成される.射影平面の \mathbb{F}_4 -有理点の集合 $\mathbb{P}^2(\mathbb{F}_4)$ は 21 個の元か

らなる . C_{DK} は , 1 直線上にある 5 個の \mathbb{F}_4 -有理点のなす 21 個の語で生成される符号 である . その weight-enumerator は

 $1 + 21z^{5} + 210z^{8} + 280z^{9} + 280z^{12} + 210z^{13} + 21z^{16} + z^{21}$

であたえられる.

注意 1.4 定義より直ちにわかるように、 \mathcal{C}_{DK} の部分符号で $\mathcal{P} = [1, 1, \dots, 1]$ を含むものは超特異 K3符号である、Nos. 139, 150, 179, 185 以外の同型類はこの方法で作られる、同型類 Nos. 139, 150, 179, 185 はこの方法では作れない、

定義 1.5 超特異 K3 符号 C が与えられたとする.語 $A \in C$ に対し,長さ 22 の語 \widetilde{A} を

$$\widetilde{A} := \begin{cases} (A,0) & \text{if } |A| \equiv 0 \mod 4, \\ (A,1) & \text{if } |A| \equiv 1 \mod 4 \end{cases}$$

により定義し,

$$\widetilde{\mathcal{C}} := \{ \widetilde{A} \mid A \in \mathcal{C} \} \subset \mathbb{F}_2^{21} \oplus \mathbb{F}_2$$

とおく. \tilde{C} は線形符号になり, dim \tilde{C} は dim Cと等しい.このようにして得られる線形符号 \tilde{C} を拡大超特異 K3 符号とよぶ.

注意 1.6 講演中に指摘されたことであるが, \tilde{C}_{DK} は 24 次元の binary Golay code の引 き戻しとして得られる. φ を拡大に対応する新しい座標とし, $\mathbb{P}^2(\mathbb{F}_4) \sqcup \{\varphi\}$ から MOG の positions への写像 γ を表 1.1 により定義すると, γ による Golay code の引き戻し が \tilde{C}_{DK} になる.この写像 γ は,論文 [7] において標数 2 における Fermat cubic 4-fold の中間次元のある代数的サイクルのなす格子が laminated lattice Λ_{22} ([2, Chapter 6]) と同型であることを示すときにもあらわれた.

定義 1.7 σを 10 以下の正整数とする. ランク 22 の格子 *L* が次をみたすとき, *L* を超 特異 *K*3 格子という.

- (i) even (すなわち $v^2 \in 2\mathbb{Z}$ がすべての $v \in L$ に対して成立),
- (ii) hyperbolic (fab5 L O signature l(1, 21)),
- (iii) disc $L = -2^{2\sigma}$,
- (iv) 2-elementary (すなわち $L^{\vee}/L \cong (\mathbb{Z}/2\mathbb{Z})^{2\sigma}$, ここで L^{\vee} は L の双対格子 Hom (L,\mathbb{Z})),
- (v) type I (すなわち $v^2 \in \mathbb{Z}$ がすべての $v \in L^{\vee}$ に対して成立).

$(1:\omega:0)$	$(1:\bar{\omega}:0)$	(1:1:0)	(1:0:0)	(0:1:0)	(0:0:1)
$(1:\omega:1)$	$(1:\bar{\omega}:1)$	(1:1:1)	(1:0:1)	(0:1:1)	arphi
$(1:\omega:\omega)$	$(1:\bar{\omega}:\omega)$	$(1:1:\omega)$	$(1:0:\omega)$	$(0:1:\omega)$	φ
$(1:\omega:\bar{\omega})$	$(1:\bar{\omega}:\bar{\omega})$	$(1:1:\bar{\omega})$	$(1:0:ar{\omega})$	$(0:1:\bar{\omega})$	arphi

 $\omega \in \mathbb{F}_4$ は1の原始3乗根, $\bar{\omega} = \omega + 1$.

表 1.1: γ の定義

次の定理が Rudakov-Shafarevich [6] によって示された .

定理 1.8 各 $\sigma = 1, ..., 10$ に対し, disc $L = -2^{2\sigma}$ なる超特異 K3 格子は同型を除いて unique に存在する.

超特異 K3 符号と超特異 K3 格子は次のような関係にある.

 A_1 をランク1の負定符号の root 格子 [-2]とし, 2-elementary かつ hyperbolic な ランク 22 の格子

を考える. S_0 の標準直交基底を r_i (i = 1, ..., 21), hとする:

$$r_i = (0, \dots, 1, \dots, 0), \qquad h = (0, \dots, 0, 1).$$

 S_0 の discriminant group S_0^{\lor}/S_0 は自然に $\mathbb{F}_2^{21} \oplus \mathbb{F}_2$ と同型である.したがって S_0 の overlattice S (すなわち, S_0^{\lor} の部分加群で S_0 を含みかつ S_0^{\lor} 上の Q-値双線形形式が S上で Z に値をとるもの)に対し, S/S_0 は長さ 22の線形符号になる. $\widetilde{\mathcal{C}} := S/S_0$ と おくと, disc Sは $-2^{2\sigma}(\sigma = 11 - \dim \widetilde{\mathcal{C}})$ に等しい.

命題 1.9 $S \in S_0^{\vee}$ の部分加群で S_0 を含むものとする.Sが下の条件(i)-(iii)を満たすための必要十分条件は, $S/S_0 \subset \mathbb{F}_2^{21} \oplus \mathbb{F}_2$ が拡大超特異K3符号となることである.

(i) S は超特異 K3 格子であり,

- (ii) { $v \in S \mid vh = 1, v^2 = 0$ } は空集合であり,
- (iii) { $v \in S \mid vh = 0, v^2 = -2$ } は { $\pm r_1, \dots, \pm r_{21}$ } と一致する.

2 K3 曲面とその Néron-Severi 格子

kを代数閉体とし,代数多様体はすべてこの上で定義されているとする.

定義 **2.1** 非特異射影代数曲面 *X* は , どの点でも 0 とならない正則 2-形式をもち , か つ $h^1(X, \mathcal{O}_X) = 0$ となるとき , *K*3 曲面と呼ばれる .

定義 2.2 X を非特異射影代数曲面とする . X上の因子 $D = \sum m_i C_i (m_i \text{ L整数}, C_i \text{ L} X$ 上の既約な曲線)を考える . X上の任意の曲線 C'に対して $D \ge C'$ の交点数 DC'が 0 となるとき , D は数値的に 0 と同値であるという . D を含む数値的同値類を [D]と書く .

定義 2.3 X を非特異射影代数曲面とする . X 上の因子の数値的同値類のなすアーベ ル群を NS(X) と書く . [D][D'] := DD' により NS(X) は格子になる . この格子を Xの Néron-Severi 格子という . またそのランクを X の Picard 数という .

標数 0 の体上定義された K3 曲面の Picard 数は高々20 である.一方,正標数の体上
 定義された K3 曲面の Picard 数は, 20 以下であるかあるいは 22 である.

定義 2.4 K3 曲面は , その Picard 数が 22 となるとき (Shioda の意味で) 超特異で あるといわれる .

例 2.5 4次曲面

$$X = \{x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\} \subset \mathbb{P}^3$$

を考える.基礎体 k の標数が 2 でなければ, この 4 次曲面は非特異でしたがって K3 曲面になる. Picard 数は

$$\operatorname{rank} NS(X) = \begin{cases} 20 & \text{if char } k \equiv 0 \text{ or char } k \equiv 1 \mod 4, \\ 22 & \text{if char } k \equiv 3 \mod 4 \end{cases}$$

となる.

つぎの定理は, Artin [1] および Rudakov-Shafarevich [6] によって示された.

定理 2.6 標数 p > 0の基礎体の上で考える. 超特異 K3曲面 X の Néron-Severi 格子 NS(X)は, even かつ hyperbolic であり, $NS(X)^{\vee}/NS(X)$ は $(\mathbb{Z}/p\mathbb{Z})^{2\sigma(X)}$ と同型に なる.ここで, $\sigma(X)$ は 10以下の正整数であり, Xの Artin 不変量とよばれる. さらに, p = 2なら NS(X)は type I である.

定理 1.8 と定理 2.6 より次を得る.

系 2.7 標数 2 の体上定義された超特異 K3 曲面の Néron-Severi 格子は, 超特異 K3 格子である.

つぎの存在定理は, Artin [1], Shioda [12] および Rudakov-Shafarevich [5] によって示 された.

定理 2.8 素数 $p \ge 10$ 以下の正整数 σ の任意のペア (p, σ) に対し,標数 p の体上定義 された超特異 K3 曲面で, Artin 不変量が σ となるものが存在する.

3 標数 2 における超特異 K3 曲面のモジュライ

以下,基礎体 k の標数は 2 であるとする.

G = G(X, Y, Z)を3変数6次同次多項式,すなわち射影平面 \mathbb{P}^2 の可逆層 $\mathcal{O}(6)$ の大 域切断とする.標数2においては,Gの微分dGをベクトル束 $\Omega^1(6)$ の大域切断として 定義できる.実際,同型 $\mathcal{O}(6) \cong \mathcal{O}(3)^{\otimes 2}$ を用いることにより,直線束 $\mathcal{O}(6)$ の局所自 明化でその変換関数がすべて t^2 のかたちをしているものをとることができる. $g = t^2g'$ なら $dg = t^2dg'$ が成立するので,Gの局所データgの微分dgははり合わさってベク トル束 $\Omega^1(6)$ の大域切断dGを定める.Z(dG)により,dG = 0で定義された \mathbb{P}^2 の部 分スキームをあらわす. $P \in Z(dG)$ とする.ベクトル束 $\Omega^1(6)$ の全空間のなかで,切 断dGとゼロ切断がPにおいて横断的に交わっているとき,Z(dG)はPにおいて0次 元かつ被約であるという.すべての $P \in Z(dG)$ においてZ(dG)が0次元かつ被約で あるとき,Z(dG)は0次元かつ被約であるという.

定義 3.1 Z(dG) が 0 次元かつ被約となる次数 6 の同次多項式 G のなす集合を U と 書く.U は次数 6 の同次多項式全体のなす 28 次元のベクトル空間 H⁰(ℙ², O(6)) の Zariski 開集合である.

Gが Uに属する同次多項式なら, Z(dG)は

 $c_2(\Omega^1(6)) = 21$

個の被約な点からなる.ここで c_2 は第 2 Chern 類である.逆に,Z(dG) が 21 個の点 からなれば,それらの点はすべて被約であり, $G \in U$ が成立する.

例 3.2 Dolgachev-Kondo [3] によって発見された次の同次 6 次多項式を考えよう.

$$G_{\rm DK} := XYZ(X^3 + Y^3 + Z^3).$$

 $Z(dG_{\rm DK})$ は \mathbb{P}^2 の \mathbb{F}_4 -有理点の集合 $\mathbb{P}^2(\mathbb{F}_4)$ と一致する . $|\mathbb{P}^2(\mathbb{F}_4)| = 21$ より $G_{\rm DK} \in \mathcal{U}$ である. したがって \mathcal{U} は空でない.

直線束 O(3) の全空間のなかで,方程式

 $w^2 = G$

により定義される曲面 Y_G を考える.ここで,w は直線束 $\mathcal{O}(3)$ のファイバー座標である. 被覆射 $\pi_G: Y_G \to \mathbb{P}^2$ は純非分離射となる. Y_G の特異点集合 $\operatorname{Sing} Y_G$ は $\pi_G^{-1}(Z(dG))$ と一致し,さらに $P \in Z(dG)$ が被約な点であるという条件と P 上の Y_G の特異点が 通常 2 重点であるという条件は同値である.したがって,G が \mathcal{U} に属する同次多項式 であるための必要十分条件は, $\operatorname{Sing}(Y_G)$ が 21 個の通常 2 重点からなることである.

非特異曲面上の自己交点数が -2の非特異有理曲線を (-2)-曲線という.通常 2 重点 の最小特異点解消には例外曲線として (-2)-曲線が 1 本あらわれる. $G \in U$ のとき, Y_G の最小特異点解消として得られる曲面 X_G は超特異 K3曲面となる.実際, K3曲面 X_G の上には, \mathbb{P}^2 の直線の引き戻しとして得られる曲線と,最小特異点解消 $X_G \rightarrow Y_G$ により Y_G の特異点につぶされる 21 本の (-2)-曲線が存在し,これらの数値的同値類 は \mathbb{Q} 上 1 次独立であるから, X_G の Néron-Severi 格子 $NS(X_G)$ のランクは 22 となる.

逆に次が成立する:

定理 3.3 ([8]) X を標数 2 における超特異 K3 曲面とすると, ある $G \in \mathcal{U}$ が存在して, X は X_G と同型になる.

線型写像 $G \mapsto dG$ の核を \mathcal{V} とする.

$$\mathcal{V} = \{ H^2 \in H^0(\mathbb{P}^2, \mathcal{O}(6)) \mid H \in H^0(\mathbb{P}^2, \mathcal{O}(3)) \}$$

である. $G \in \mathcal{U}$ ならば,任意の $H^2 \in \mathcal{V}$ に対して $G + H^2 \in \mathcal{U}$ である.すなわち, \mathcal{V} は \mathcal{U} に平行移動により作用する. $G \geq G'$ を \mathcal{U} に属する同次多項式とする. $X_G \geq X_{G'}$ が \mathbb{P}^2 上同型であるための必要十分条件は,ある $c \in k^{\times} \geq H^2 \in \mathcal{V}$ が存在して,

$$G' = cG + H^2$$

が成立することである.したがって,標数2における次数2の超特異 K3曲面のモジュ ライ空間を

$$\mathfrak{M} := PGL(3,k) \setminus \mathbb{P}_*(\mathcal{U}/\mathcal{V})$$

により構成することができる. 300 の次元は

$$\dim \mathfrak{M} = h^{0}(\mathbb{P}^{2}, \mathcal{O}(6)) - h^{0}(\mathbb{P}^{2}, \mathcal{O}(3)) - 1 - \dim PGL(3, k) = 9$$

であるから,たしかに Artin [1] の結果と一致する.

注意 3.4 一般に, ℙ²の純非分離被覆として得られる曲面は Zariski 曲面とよばれ, その一般的な性質が [4] において詳しく調べられている.

Gを Uに属する次数 6 の同次多項式とする . $[G] \in \mathfrak{M}$ により,対応するモジュライ空間上の点をあらわす.また,

$$\phi_G : X_G \to \mathbb{P}^2$$

により, Y_G の最小特異点解消 $X_G \to Y_G$ と純非分離な被覆射 $\pi_G: Y_G \to \mathbb{P}^2$ の合成をあらわす. \mathbb{P}^2 の general な直線の引き戻しとして得られる既約曲線を $H_G \subset X_G$ とする.また,

$$Z(dG) = \{P_1, \dots, P_{21}\}$$

とし, $\Gamma_i \subset X_G$ で P_i につぶされる (-2)-曲線をあらわす. X_G の Néron-Severi 格子 $NS(X_G)$ のなかで,数値的同値類 [Γ_1],..., [Γ_{21}] および [H_G] により生成される部分 格子を $NS(X_G)_0$ と書く.対応 $r_i \mapsto [\Gamma_i]$, $h \mapsto [H_G]$ により,格子 $NS(X_G)_0$ は (1.1) で定義された格子 S_0 と同型になる.したがって, $NS(X_G)_0$ の discriminant group $(NS(X_G)_0)^{\vee}/NS(X_G)_0$ は $\mathbb{F}_2^{21} \oplus \mathbb{F}_2$ と同型であり,第1ファクター \mathbb{F}_2^{21} は Z(dG)のベ 丰集合 Pow(Z(dG))と自然に同一視できる. $NS(X_G)$ と $NS(X_G)_0$ はともにランクが 22 であるから, $NS(X_G)$ は $NS(X_G)_0$ の overlattice である.長さ 22 の線形符号 C_G^{\sim} を,

 $\mathcal{C}_G^{\sim} := NS(X_G)/NS(X_G)_0 \subset (NS(X_G)_0)^{\vee}/NS(X_G)_0 = \mathbb{F}_2^{21} \oplus \mathbb{F}_2 = \operatorname{Pow}(Z(dG)) \oplus \mathbb{F}_2$ により定義し,長さ21の線形符号

$$\mathcal{C}_G \subset \mathbb{F}_2^{21} = \operatorname{Pow}(Z(dG))$$

を \mathcal{C}_{G}^{\sim} の第 1 ファクターへの射影とする . X_{G} の Artin 不変量 $\sigma(X_{G})$ は

$$\sigma(X_G) = 11 - \dim_{\mathbb{F}_2} \mathcal{C}_G^{\sim} = 11 - \dim_{\mathbb{F}_2} \mathcal{C}_G$$

により求められる.次の定理が基本的である.この定理は,命題 1.9 と系 2.7 を用いて証明される.

定理 **3.5** 長さ 21 の線形符号 C に対し, ある $G \in U$ が存在して C が C_G と同型になる ための必要十分条件は, C が超特異 K3 符号であることである.

この定理により,モジュライ空間 \mathfrak{M} を超特異 K3 符号の同型類に対応した 192 個の部 分集合に分割することができる.すなわち, $[\mathcal{C}_0], \ldots, [\mathcal{C}_{191}]$ を §5 の一覧表により番号 付けされた超特異 K3 符号の同型類とし,

$$\mathfrak{M}_i := \{ [G] \in \mathfrak{M} \mid \mathcal{C}_G \ \mathsf{tc} \ \mathcal{C}_i \ \mathsf{cln} \blacksquare \} \}$$

とおくと,分割

$$\mathfrak{M} = \bigsqcup_{i=0}^{191} \mathfrak{M}_i$$

を得る. \mathfrak{M}_0 は \mathfrak{M} のZariski 開集合になる. $\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3$ は \mathfrak{M} において余次元1で あり,かつ既約であることが証明される.

4 符号から超特異 K3 曲面の幾何学へ

符号 C_G から超特異 K3 曲面 X_G , あるいは純非分離被覆 $Y_G \to \mathbb{P}^2$ の幾何学的性質についての情報を得ることができる.以下にいくつかの例をあげる. C_G の各語は, Z(dG) の部分集合と自然にみなされることに注意する.

命題 4.1 3 点 $P_{i_1}, P_{i_2}, P_{i_3} \in Z(dG)$ が直線上にあるための必要十分条件は, C_G の重 さ5の語で $P_{i_1}, P_{i_2}, P_{i_3}$ を含むものが存在することである.

系 4.2 Z(dG)のある $3 \pm i$ が直線 $L \subset \mathbb{P}^2$ 上にあれば, $L \cap Z(dG)$ は $5 \pm i$ からなる.

命題 4.3 $6 ext{ i}_{i_1}, \dots, P_{i_6} \in Z(dG)$ が非特異 2 次曲線上にあるための必要十分条件は, \mathcal{C}_G の重さ 8 の既約な語で P_{i_1}, \dots, P_{i_6} を含むものが存在することである.

系 4.4 Z(dG)のある6点が非特異2次曲線 $Q \subset \mathbb{P}^2$ 上にあれば, $Q \cap Z(dG)$ は8点からなる.

定義 4.5 平面 3 次曲線の pencil $\mathcal{E} = \{E_t\}$ が regular であるとは次の条件を満たすことである .

(i) \mathcal{E} の base locus は 9 点からなる.

(ii) \mathcal{E} の特異メンバーはすべて I_0 型である.

命題 4.6 C_G の重さ 9の既約な語 A に対し, A ϵ base locus とする 3 次曲線の regular pencil が存在する.

*X_G*の射影的自己同型群

 $\operatorname{ProjAut}(X_G) := \{ g \in PGL(3,k) \mid g(Z(dG)) = Z(dG) \}$

を考える. ProjAut(X_G)の各元は Z(dG)の置換を引き起こす.定義により,各 $g \in$ ProjAut(X_G)は部分空間 $C_G \subset Pow(Z(dG))$ を保つ.したがって,K3曲面の射影的自 己同型群 ProjAut(X_G)を符号の自己同型群 Aut(C_G)のなかに埋め込むことができる.

 Artin 不変量の小さな超特異 K3 曲面の同型類のなす strata , すなわち次元の大きな超特異 K3 符号に対応する strata の構造を詳しく見てみよう .

Artin 不変量 1 の超特異 K3 曲面の同型類からなる stratum \mathfrak{M}_{191} は 1 点 $[G_{\text{DK}}]$ から なる(例 3.2 参照 .) ProjAut $(X_{G_{\text{DK}}})$ は $PGL(3, \mathbb{F}_4)$ に等しい . Dolgachev-Kondo [3] は $X_{G_{\text{DK}}}$ の全自己同型群 Aut $(X_{G_{\text{DK}}})$ も決定している .

Artin 不変量 2 の超特異 K3 曲面の同型類からなる 3 個の strata $\mathfrak{M}_{188}, \mathfrak{M}_{189}, \mathfrak{M}_{190}$ はいずれも 1 次元であり,アフィン直線 \mathbb{A}^1 から原点を取り除いたものと同型である.

 $GA[\lambda] := XYZ (X + Y + Z) (X^{2} + Y^{2} + (\lambda^{2} + \lambda) Z^{2} + XY + YZ + ZX)$

とおく . $\lambda \notin \mathbb{F}_4$ ならば , $[GA[\lambda]]$ は \mathfrak{M}_{188} の点となる . 逆に , \mathfrak{M}_{188} の任意の点はある $\lambda \notin \mathbb{F}_4$ により $[GA[\lambda]]$ と表される .

$$J_A(\lambda) := \frac{(\lambda^2 + \lambda + 1)^3}{\lambda^2 (\lambda + 1)^2}$$

 $Q_{\lambda} := (\bar{\omega}\lambda + \omega) X^{2} + \bar{\omega} Y^{2} + \omega \lambda Z^{2} + (\lambda + 1) XY + (\bar{\omega}\lambda + \omega) YZ + (\lambda + 1) ZX,$ $GB[\lambda] := XYZ (X + Y + Z) Q_{\lambda}$ とおく . $\lambda \notin \mathbb{F}_4$ ならば , $[GB[\lambda]]$ は \mathfrak{M}_{189} の点となる . 逆に , \mathfrak{M}_{189} の任意の点はある $\lambda \notin \mathbb{F}_4$ により $[GB[\lambda]]$ と表される .

$$J_B(\lambda) := \frac{(\lambda + \omega)^{12}}{\lambda^3 (\lambda + 1)^3 (\lambda + \bar{\omega})^3}$$

とおくと, $[GB[\lambda]] = [GB[\lambda']]$ となるのは $J_B(\lambda) = J_B(\lambda')$ のときおよびそのときに限る. つまり J_B が $\mathfrak{M}_{189} \cong \mathbb{A}^1 \setminus \{0\}$ 上の自然な座標を与える. Aut(\mathcal{C}_{189}) は位数 432の群であり, ProjAut($X_{GB[\lambda]}$) はその位数 18の部分群となる. $\lambda = \omega$ のとき (すなわち $J_B(\lambda) = 0$ のとき), $[GB[\lambda]]$ の Artin 不変量は 1 になる, つまり $[GB[\lambda]] = [G_{DK}]$ となる.

$$GC[\lambda] := XYZ\left(X^3 + Y^3 + Z^3\right) + (\lambda^4 + \lambda)X^3Y^3$$

とおく . $\lambda \notin \mathbb{F}_4$ ならば , $[GC[\lambda]]$ は \mathfrak{M}_{190} の点となる . 逆に , \mathfrak{M}_{190} の任意の点はある $\lambda \notin \mathbb{F}_4$ により $[GC[\lambda]]$ と表される .

$$J_C := (\lambda^4 + \lambda)^3$$

とおくと, $[GC[\lambda]] = [GC[\lambda']]$ となるのは $J_C(\lambda) = J_C(\lambda')$ のときおよびそのときに限る. つまり J_C が $\mathfrak{M}_{190} \cong \mathbb{A}^1 \setminus \{0\}$ 上の自然な座標を与える. $\operatorname{Aut}(\mathcal{C}_{190})$ は位数 23040の群であり, $\operatorname{ProjAut}(X_{GC[\lambda]})$ はその位数 960の部分群となる. $\lambda \in \mathbb{F}_4$ のとき (すなわち $J_C(\lambda) = 0$ のとき), $[GC[\lambda]]$ の Artin 不変量は 1 になる, つまり $[GC[\lambda]] = [G_{\mathrm{DK}}]$ となる.

以上のことからわかるように,3個の strata $\mathfrak{M}_{188}, \mathfrak{M}_{189}, \mathfrak{M}_{190}$ は \mathfrak{M} のなかで 1 点 $[G_{\mathrm{DK}}]$ において交わる.

5 超特異 K3 符号の同型類

No. σ basis	l q e tl lq qq
--------------------	----------------

 $\dim \mathcal{C} = 1. \qquad s(1) = 1.$

 $\dim \mathcal{C} = 2. \qquad s(2) = 3.$

1 9 31	1	0	0 1 0	0	0
2 9 255	10	1	0 1 0	0	0
3 9 511	0	0	1 0	0	0

 $[\]dim \mathcal{C} = 3. \qquad s(3) = 8.$

4 8 31, 481	2	0	0 0	0	0
5 8 31, 8160	1	2	0 0	2	0
6 8 31, 2019	1	1	0 0	0	0
7 8 31, 8161	1	0	$2 \mid 0$	0	0
8 8 255, 3855	0	3	0 0	0	0
9 8 255, 16131	0	2	1 0	0	1
9 8 255, 16131 10 8 255, 7951	0	2 1	$\begin{array}{c c}1 & 0\\2 & 0\end{array}$	0	1 0

 $\dim \mathcal{C} = 4. \qquad s(4) = 21.$

12 7 31, 8160, 481	3	1	0 1	3	0
13 7 31, 2019, 2301	3	0	0 0	0	0
14 7 31, 8160, 516193	2	2	0 0	2	0
15 7 31, 2019, 6244	2	2	0 0	0	0
16 7 31, 8161, 253987	2	1	1 0	0	0
17 7 31, 8160, 123360	1	6	0 0	6	0
18 7 31, 8160, 25059	1	4	0 0	2	2
19 7 31, 2019, 63533	1	3	0 0	0	3
20 7 31, 2019, 14565	1	3	0 0	0	0
21 7 31, 8160, 123361	1	2	4 0	2	0
22 7 31, 8161, 25062	1	2	$2 \mid 0$	0	1
23 7 31, 8161, 254178	1	1	4 0	0	0
24 7 255, 3855, 13107	0	7	0 0	0	0
25 7 255, 3855, 28951	0	6	1 0	0	3
26 7 255, 3855, 62211	0	5	$2 \mid 0$	0	4
27 7 255, 3855, 127249	0	4	$3 \mid 0$	0	3
28 7 255, 16131, 115471	0	3	$4 \mid 0$	0	3
29 7 255, 3855, 29491	0	3	4 0	0	0
30 7 255, 16131, 50973	0	2	$5 \mid 0$	0	1
31 7 255, 7951, 123187	0	1	6 0	0	0
32 7 511, 32263, 233016	0	0	7 0	0	0

33 | 6 | 31, 8160, 123360, 1966081 0 10 0 5 00 34 6 31, 8160, 25059, 28385 4 1 0 1 3 0 35 | 6 | 31, 2019, 6244, 8637 4 1 0 0 0 0 36 | 6 | 31, 8160, 25059, 105991 3 0 | 1 70 537 | 6 | 31, 8160, 25059, 26215 0 | 14 3 53 38 6 31, 8161, 253987, 319591 3 3 $1 \mid 0$ 0 0 39 6 31, 8160, 25059, 238049 0 | 13 3 3 0 40 | 6 | 31, 8160, 25059, 42497 0 0 $\mathbf{2}$ 3 3 1 41 | 6 | 31, 8160, 516193, 582560 2 0 0 6 0 6 42 6 31, 8160, 25059, 100324 2 0 0 6 6 4 43 | 6 | 31, 8160, 25059, 44583 2 6 0 0 26 44 | 6 | 31, 2019, 63533, 68551 2 6 0 0 0 1245 6 31, 2019, 6244, 27049 0 2 6 0 0 0 46 | 6 | 31, 8160, 25059, 492257 2 4 2 | 02247 | 6 | 31, 8161, 253987, 271302 2 4 2 | 00 548 | 6 | 31, 8161, 253987, 288708 2 4 $2 \mid 0$ 0 $\mathbf{2}$ 49 6 31, 8160, 123360, 419424 1 14 0 0 14 0 50 6 31, 8160, 25059, 241184 120 0 6 1 1051 | 6 | 31, 8160, 25059, 124512 121 10 0 0 6 52 | 6 | 31, 8160, 25059, 492069 1 0 0 2128 53 | 6 | 31, 8160, 25059, 42605 1 8 0 0 $\mathbf{2}$ 6 54 | 6 | 31, 8160, 123360, 419425 0 $1 \ 6$ 8 0 6 55 | 6 | 31, 8160, 25059, 99948 4 0 1 26 8 56 | 6 | 31, 8160, 25059, 238119 4 | 0 1 6 $\mathbf{2}$ 8 57 | 6 | 31, 8161, 25062, 99051 1 $2 \mid 0$ 9 6 0 58 | 6 | 31, 8161, 25062, 42602 1 6 $2 \mid 0$ 0 3 59 6 31, 8160, 25059, 239201 2 $1 \ 4$ 8 0 260 | 6 | 31, 8161, 25062, 229998 1 4 6 0 0 6 61 | 6 | 31, 8161, 25062, 501288 1 4 6 0 0 3 62 | 6 | 255, 3855, 13107, 21845 0 15 0 0 0 0 63 | 6 | 255, 3855, 28951, 46881 0 13 $2 \mid 0$ 0 1264 | 6 | 255, 3855, 28951, 492145 0 11 4 0 0 1665 | 6 | 255, 3855, 62211, 208947 0 9 6 0 0 1866 | 6 | 255, 3855, 28951, 233577 6 0 150 9 0 67 6 255, 3855, 13107, 116021 0 9 6 0 0 12 $68 \mid 6 \mid 255, 3855, 127249, 405606$ 120 78 0 0 69 | 6 | 255, 3855, 28951, 111147 0 7 8 0 9 0

 $\dim \mathcal{C} = 5. \qquad s(5) = 43.$

70 6 255, 3855, 13107, 54613	0	7	8 0	0	0
71 6 255, 16131, 115471, 412723	0	5	10 0	0	10
72 6 255, 3855, 127249, 144998	0	5	10 0	0	7
73 6 255, 3855, 62211, 79157	0	5	10 0	0	4
74 6 255, 16131, 115471, 396597	0	3	12 0	0	3
75 6 255, 3855, 29491, 230741	0	3	12 0	0	0

 $\dim \mathcal{C} = 6. \qquad s(6) = 58.$

76 5 31, 8160, 25059, 238049, 3618	6	0	0 10	0	0
77 5 31, 2019, 6244, 8637, 19179	6	0	0 0	0	0
78 5 31, 8160, 25059, 105991, 26232	5	8	0 10	8	0
79 5 31, 8160, 25059, 105991, 147041	5	4	0 2	8	0
80 5 31, 8160, 25059, 42605, 26781	5	4	0 1	3	3
81 5 31, 8161, 253987, 288708, 894990	4	7	2 0	0	0
82 5 31, 8160, 25059, 238119, 25661	4	7	0 1	7	4
83 5 31, 8160, 25059, 42605, 98704	4	7	0 1	5	8
84 5 31, 8160, 25059, 492069, 534498	4	7	0 0	4	10
85 5 31, 8160, 25059, 105991, 394851	3	13	0 1	15	24
86 5 31, 8160, 25059, 105991, 42605	3	13	0 1	15	0
87 5 31, 8160, 25059, 238119, 377379	3	13	0 1	11	28
88 5 31, 8160, 25059, 105991, 434281	3	13	0 1	7	32
89 5 31, 8160, 25059, 42605, 2724	3	13	0 1	3	12
90 5 31, 8161, 253987, 271302, 901198	3	9	3 0	0	27
91 5 31, 8160, 25059, 42605, 100414	3	9	$2 \mid 0$	2	13
92 5 31, 8160, 25059, 238119, 49277	3	9	1 0	4	17
93 5 31, 8160, 25059, 105991, 140901	3	9	0 1	7	8
94 5 31, 8160, 25059, 238119, 1736	3	9	0 1	3	18
95 5 31, 8160, 25059, 492069, 106180	3	9	0 0	6	15
96 5 31, 8160, 25059, 124512, 951009	3	9	0 0	6	9
97 5 31, 8160, 25059, 238119, 1869504	2	14	0 0	8	36
98 5 31, 8160, 25059, 492069, 1615373	2	14	0 0	4	42
99 5 31, 8160, 25059, 42605, 101942	2	14	0 0	4	30
100 5 31, 8160, 25059, 241184, 370273	2	10	4 0	6	12
101 5 31, 8160, 25059, 492069, 101592	2	10	4 0	4	24
102 5 31, 8160, 25059, 238119, 884843	2	10	4 0	4	18
103 5 31, 8160, 25059, 238119, 888353	2	10	4 0	2	24
104 5 31, 8161, 253987, 288708, 622825	2	10	4 0	0	30

105 5 31, 8161, 253987, 288708, 796873	2	10	4 0	0	24
106 5 31, 8161, 253987, 288708, 567406	2	10	4 0	0	12
107 5 31, 8160, 123360, 419424, 699040	1	30	0 0	30	0
108 5 31, 8160, 25059, 124512, 494240	1	22	0 0	14	56
109 5 31, 8160, 25059, 124512, 396941	1	18	0 0	6	60
110 5 31, 8160, 25059, 124512, 166317	1	18	0 0	6	54
111 5 31, 8160, 25059, 124512, 43685	1	18	0 0	6	36
112 5 31, 8160, 123360, 419424, 699041	1	14	16 0	14	0
113 5 31, 8160, 25059, 238119, 828508	1	14	8 0	6	40
114 5 31, 8160, 25059, 238119, 372292	1	14	8 0	6	40
115 5 31, 8160, 25059, 492069, 124520	1	14	4 0	2	48
116 5 31, 8160, 25059, 238119, 885801	1	14	4 0	2	42
117 5 31, 8160, 25059, 42605, 101044	1	14	4 0	2	24
118 5 31, 8160, 25059, 124512, 436897	1	10	16 0	6	12
119 5 31, 8160, 25059, 238119, 296165	1	10	12 0	2	26
120 5 31, 8160, 25059, 42605, 477857	1	10	12 0	2	20
121 5 31, 8161, 25062, 99051, 427305	1	10	10 0	0	30
122 5 31, 8161, 25062, 99051, 173347	1	10	10 0	0	24
123 5 255, 3855, 28951, 492145, 538402	0	25	6 0	0	60
124 5 255, 3855, 28951, 492145, 564498	0	21	10 0	0	66
125 5 255, 3855, 28951, 492145, 558755	0	21	10 0	0	60
126 5 255, 3855, 28951, 492145, 110650	0	17	14 0	0	58
127 5 255, 3855, 28951, 492145, 623923	0	17	14 0	0	52
128 5 255, 3855, 28951, 233577, 893570	0	13	18 0	0	42
129 5 255, 3855, 13107, 116021, 415508	0	13	18 0	0	42
130 5 255, 3855, 28951, 492145, 570411	0	13	18 0	0	36
131 5 255, 3855, 28951, 111147, 398693	0	9	22 0	0	24
132 5 255, 3855, 127249, 144998, 284986	0	9	22 0	0	24
133 5 255, 3855, 62211, 208947, 87381	0	9	22 0	0	18

 $\dim \mathcal{C} = 7. \qquad s(7) = 41.$

134 4 31, 8160, 25059, 238119, 1736, 1867799	7	7	0 11	9	0
135 4 31, 8160, 25059, 105991, 394851, 139649	7	7	0 7	21	0
136 4 31, 8160, 25059, 105991, 434281, 614571	7	7	0 3	9	12
137 4 31, 8160, 25059, 238119, 884843, 418183	6	12	0 3	15	24
138 4 31, 8160, 25059, 42605, 2724, 987586	6	12	$0 \mid 2$	6	18

140 4 31, 8160, 25059, 238119, 372292, 29575	5	24	0 10	24	96
141 4 31, 8160, 25059, 105991, 26232, 43689	5	24	0 10	24	0
142 4 31, 8160, 25059, 238119, 884843, 1058259	5	16	0 2	16	44
143 4 31, 8160, 25059, 238119, 884843, 7297	5	16	0 2	16	20
144 4 31, 8160, 25059, 238119, 49277, 516264	5	16	0 1	11	53
145 4 31, 8160, 25059, 238119, 884843, 1409677	4	19	2 0	8	74
146 4 31, 8160, 25059, 238119, 884843, 52788	4	19	0 1	13	70
147 4 31, 8160, 25059, 238119, 884843, 1474759	4	19	0 1	9	66
148 4 31, 8160, 25059, 238119, 49277, 984106	4	19	0 0	12	78
149 4 31, 8160, 25059, 238119, 372292, 103644	3	29	0 1	23	152
150 4 31, 8160, 25059, 105991, 394851, 696425	3	29	0 1	15	184
151 4 31, 8160, 25059, 238119, 377379, 950861	3	29	0 1	15	160
152 4 31, 8160, 25059, 238119, 49277, 281774	3	21	$4 \mid 0$	6	111
153 4 31, 8160, 25059, 238119, 884843, 1475209	3	21	$4 \mid 0$	6	87
154 4 31, 8160, 25059, 238119, 884843, 1451537	3	21	$2 \mid 0$	10	95
155 4 31, 8160, 25059, 238119, 884843, 1352755	3	21	0 1	15	72
156 4 31, 8160, 25059, 105991, 42605, 141990	3	21	$0 \mid 1$	15	48
157 4 31, 8160, 25059, 238119, 372292, 699489	3	21	0 1	7	104
158 4 31, 8160, 25059, 238119, 1869504, 475241	2	30	0 0	12	186
159 4 31, 8160, 25059, 238119, 1869504, 1902665	2	30	0 0	12	162
160 4 31, 8160, 25059, 238119, 884843, 321232	2	22	8 0	8	110
161 4 31, 8160, 25059, 238119, 884843, 167565	2	22	8 0	4	122
162 4 31, 8160, 25059, 238119, 888353, 1355336	2	22	8 0	4	122
163 4 31, 8160, 25059, 124512, 494240, 700700	1	46	0 0	30	240
164 4 31, 8160, 25059, 124512, 396941, 662065	1	38	0 0	14	240
165 4 31, 8160, 25059, 238119, 372292, 955584	1	30	16 0	14	176
166 4 31, 8160, 25059, 238119, 372292, 442537	1	30	8 0	6	192
167 4 31, 8160, 25059, 238119, 372292, 950861	1	30	8 0	6	192
168 4 31, 8160, 25059, 238119, 372292, 829089	1	22	24 0	6	120
169 4 31, 8160, 25059, 238119, 296165, 591468	1	22	20 0	2	128
170 4 255, 3855, 28951, 492145, 564498, 42406	0	45	18 0	0	270
171 4 255, 3855, 28951, 492145, 564498, 722490	0	37	26 0	0	246
172 4 255, 3855, 28951, 492145, 564498, 1127602	0	29	34 0	0	190
173 4 255, 3855, 28951, 233577, 893570, 308270	0	21	42 0	0	126
174 4 255, 3855, 13107, 116021, 415508, 714818	0	21	42 0	0	126

 $\dim \mathcal{C} = 8. \qquad s(8) = 13.$

175 3 31, 8160, 25059, 238119, 884843, 1474759, 475241	9	18	0 20	18	0
176 3 31, 8160, 25059, 238119, 884843, 418183, 1451537	9	18	0 16	30	48
177 3 31, 8160, 25059, 238119, 884843, 418183, 57025	9	18	0 9	27	63
178 3 31, 8160, 25059, 238119, 884843, 418183, 699489	7	31	0 5	35	182
179 3 31, 8160, 25059, 238119, 884843, 1409677, 1058259	7	31	0 3	33	204
180 3 31, 8160, 25059, 238119, 372292, 29575, 955584	5	56	0 10	56	576
181 3 31, 8160, 25059, 238119, 884843, 1451537, 699489	5	40	0 2	32	324
182 3 31, 8160, 25059, 238119, 884843, 1451537, 1474759	5	40	0 1	27	357
183 3 31, 8160, 25059, 238119, 372292, 442537, 934222	3	61	0 1	39	744
184 3 31, 8160, 25059, 238119, 884843, 1451537, 167565	3	45	6 0	18	495
185 3 31, 8160, 25059, 238119, 884843, 167565, 1352755	3	45	0 1	15	504
186 3 31, 8160, 25059, 124512, 396941, 662065, 700700	1	78	0 0	30	1008
187 3 31, 8160, 25059, 238119, 372292, 442537, 955584	1	62	16 0	14	816

 $\dim \mathcal{C} = 9. \qquad s(9) = 3.$

188 2 31, 8160, 25059, 238119, 884843, 418183, 1451537, 13 13 699489 69	28	0 46 60 96
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	66	0 12 90 864
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120	0 10 120 2880

 $\dim \mathcal{C} = 10. \qquad s(10) = 1.$

191	1	31, 8160, 25059, 238119, 884843, 418183, 1451537, 21	0	0 210 0	0
		699489, 929948			

参考文献

- M. Artin, Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4) 7 (1974), 543–567 (1975).
- [2] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed., Springer-Verlag, New York, 1999.

- [3] I. R. Dolgachev and S. Kondo, A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. 2003, no. 1, 1–23. (2001).
- [4] P. Blass and J. Lang, Zariski surfaces and differential equations in characteristic p > 0, Marcel Dekker Inc., New York, 1987.
- [5] A. N. Rudakov and I. R. Šafarevič, Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 4, 848–869: Igor R. Shafarevich, Collected mathematical papers, Springer-Verlag, Berlin, 1989, pp. 614–632.
- [6] _____, Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981, pp. 115–207: Igor R. Shafarevich, Collected mathematical papers, Springer-Verlag, Berlin, 1989, pp. 657–714.
- [7] I. Shimada, Lattices of algebraic cycles on Fermat varieties in positive characteristics, Proc. London Math. Soc. (3) 82 (2001), no. 1, 131–172.
- [8] _____, Rational double points on supersingular K3 surfaces, Math. Comp. 73 (2004), no. 248, 1989–2017 (electronic).
- [9] _____, Supersingular K3 surfaces in characteristic 2 as double covers of a projective plane, preprint, to appear in Asian J. Math. http://www.math.hokudai.ac.jp/~shimada/ssK3.html
- [10] _____, Supersingular K3 surfaces as double covers of the projective plane
 (日本語),京都大学数理解析研究所講究録, No. 1345,代数曲線束の局所不変量の
 研究, 89-108. http://www.math.hokudai.ac.jp/~shimada/ronzetsu_j.html
- [11] _____, Moduli curves of supersingular K3 surfaces in characteristic 2 with Artin invariant 2, preprint. http://www.math.hokudai.ac.jp/~shimada/ssK3.html
- [12] T. Shioda, Supersingular K3 surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., Vol. 732, Springer, Berlin, 1979, pp. 564–591.

060-0810

札幌市北区北10条西8丁目

北海道大学理学部数学教室

shimada@math.sci.hokudai.ac.jp