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Example

Consider two surfaces S± in C3 defined by

w 2(G (x , y)±
√

5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y 2 − 64 x2y

+10 x2 + 108 xy 3 − 20 xy 2 − 44 y 5 + 10 y 4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y 2 +

+20 x2y − 40 xy 3 + 20 y 5.

Then S+ and S− are not homeomorphic.

Many examples of non-homeomorphic conjugate complex
varieties are known since Serre (1964).
I hope the above is the most concrete and simplest example.
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Plane curves

Let B and B ′ be reduced (possibly reducible) projective plane
curves of the same degree. We assume that they have only
simple singularities (the singularities without moduli):

An xn+1 + y 2 = 0 (n ≥ 1)
Dn xn−1 + xy 2 = 0 (n ≥ 4)
E6 x4 + y 3 = 0
E7 x3y + y 3 = 0
E8 x5 + y 3 = 0

We denote by

RB : the ADE -type of Sing B ,

degs B : the list of degrees of irred comps of B .
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Two equivalence relations

B and B ′ are of the same config type and write B ∼cfg B ′ if

I they have the same type of singularities; RB = RB′ ,

I the degrees of irred comps are same; degs B = degs B ′,
I their intersection patterns are same.

We write B ∼emb B ′ if there exists a homeomorphism

ψ : (P2,B) →∼ (P2,B ′).

We have B ∼emb B ′ =⇒ B ∼cfg B ′.

Example: For degree 6, we have

# of config types = 11159 < # of emb-top types =?
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Zariski pairs

A Zariski pair is a pair [B ,B ′] of projective plane curves of the
same degree with only simple singularities such that

B ∼cfg B ′ but B 6∼embB
′.

A Zariski k-ple is a collection of k plane curves such that any
two of them form a Zariski pair.
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Example (Zariski)

Let B be a plane curve of degree 6 defined by

f 3 + g 2 = 0, deg f = 2, deg g = 3, general.

Then B is irreducible and has six cusps as its only singularities;
degs B = [6], RB = 6A2. We have

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3).

Zariski showed that there exists B ′ with degs B ′ = [6],
RB′ = 6A2 such that

π1(P2 \ B ′) ∼= Z/(2)× Z/(3).
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Example of Zariski triple
We have three plane curves of degree 6

B1 = C1 + Q1, B2 = C2 + Q2, B4 = C4 + Q4,

where Qi is a quartic with one tacnode and Ci is a smooth
conic tangent to Qi at two points with multiplicity 4;

degs Bi = [2, 4], RBi
= A3 + 2A7.

Let Ei → Qi be the normalization of Qi . Then Ei is of genus 1
and has four special points

p, q the pull-back of A3, s, t the pull-back of 2A7.

Then the order of [p + q − s − t] in Pic0(Ei) is 1, 2 and 4
according to i = 1, 2, 4. Their emb-top types are different, and
they form a Zariski triple.
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Algebraic lattice-theoretic invariants

The idea is to consider the double covering

YB → P2

branching along the plane curve B , and the cup-product on
the middle cohomology group

H2(XB ,Z)

of the minimal resolution XB of YB .
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A lattice is a free Z-module L of finite rank with a
non-degenerate symmetric bilinear form

L× L → Z.

A lattice L is canonically embedded into its dual lattice

L∨ := Hom(L,Z)

as a submodule of finite index. The finite abelian group

DL := L∨/L

is called the discriminant group of L. The Z-valued symmetric
bilinear form on L extends to a Q-valued symmetric bilinear
form on L∨, and it defines a finite quadratic form

qL : DL → Q/Z, x̄ 7→ x2 mod Z.

We call qL the discriminant form of L.
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Let B be a plane curve of even degree. We denote by

ρB : XB → YB → P2

the composite of the minimal resolution and the double
covering. Let EB be the set of exceptional curves XB → YB ,
and let

ΣB := 〈 [E ] | E ∈ EB 〉 ⊕ 〈hB〉 ⊂ H2(XB)

be the sublattice generated by the classes [E ] of E ∈ EB and
the polarization class hB = [ρ∗BOP2(1)].

B ∼cfg B ′ ⇒ ΣB
∼= ΣB′ .

We then denote by
ΛB ⊂ H2(XB)

the primitive closure of ΣB .
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The topological property of the lattice invariants

Theorem
If B ∼emb B ′, then we have (DΛB

, qΛB
) ∼= (DΛB′ , qΛB′ ).

Proof.
Let TB denote the orthogonal complement of ΛB in the
unimodular lattice H2(XB). Then we have

(DTB
, qTB

) ∼= (DΛB
,−qΛB

).

On the other hand, TB is a topological invariant of the open
surface

UB := ρ−1
B (P2 \ B) ⊂ XB .

In fact, we have
TB := H2(UB)/Ker .

If B ∼emb B ′, then UB and UB′ are homeomorphic.
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We consider the finite abelian group

G (B) := ΛB/ΣB .

Corollary
If B ∼cfg B ′ but |G (B)| 6= |G (B ′)|, then B 6∼embB

′.

Indeed, B ∼cfg B ′ implies ΣB
∼= ΣB′ , and hence their

discriminant groups are isomorphic. Then |G (B)| 6= |G (B ′)|
implies that the discriminant groups of ΛB and ΛB′ have
different orders.

This corollary produces many examples of Zariski pairs.
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Example of Zariski triple again

For the Zariski triple

B1 = C1 + Q1, B2 = C2 + Q2, B4 = C4 + Q4

described above, we have

G (B1) ∼= Z/2Z, G (B2) ∼= Z/4Z, G (B4) ∼= Z/8Z.

Hence they are topologically distinct.
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Remark on even discriminant forms

A lattice L is said to be even if x2 ∈ 2Z holds for any x ∈ L.
If L is even, then the discriminant form

qL : DL → Q/Z,

is refined to
q̃L : DL → Q/2Z,

which we call the even discriminant form of L.

If H2(XB) is an even unimodular lattice, that is, if
deg B ≡ 2 mod 4, then we can refine the above results to the
even discriminant forms.
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These invariants (DΛB
, qΛB

), (DΣB
, qΣB

) and G (B) are
algebraic in the following sense:

Definition
An invariant φ of plane curves is said to be algebraic if
φ(B) = φ(Bσ) holds for any B and σ ∈ Aut(C).

Hence they cannot distinguish conjugate plane curves.

Remark that the configuration type is algebraic.
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A topological lattice invariant

Recall that TB ⊂ H2(XB) is the orthogonal complement of ΛB .

TB := {t ∈ H2(XB) | (t, hB) = 0 and (t, [E ]) = 0 for ∀ E ∈ E}.

As we have said, TB is a topological invariant of the open
surface

UB := ρ−1
B (P2 \ B) ⊂ XB .

We use the isomorphism class of TB as an invariant of B .
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TB is not algebraic

We consider the plane curves B of degree 6. Then XB is a K3
surface, and the total Milnor number µB of B is at most 19.

We say that B is a maximizing sextic if µB = 19.

A K3 surface X is said to be a singular K3 surface if its
Picard number is 20, that is, its transcendental lattice

T (X ) := NS(X )⊥

is a positive-definite even lattice of rank 2.

If B is a maximizing sextic, then XB is a singular K3 surface
and T (XB) = TB .
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X : a singular K3 surface

T (X ) is canonically oriented by

T (X )⊗ C = H2,0(X )⊕ H0,2(X ).

Theorem (Shioda-Inose)
The map X 7→ T (X ) is a bijection from the set of isom.
classes of singular K3 surfaces to the set of isom. classes of
oriented pos-definite even binary lattices.

Theorem (S. and Schütt)
Let X and X ′ be singular K3 surfaces defined over Q such
that T (X ) and T (X ′) have the isomorphic (even) discriminant
forms. Then ∃ σ ∈ Gal(Q/Q) such that X ′ ∼= X σ.
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Application to maximizing sextics

The set of positive-definite even lattices of rank 2 with a given
discriminant form is called a genus.

Corollary
Let B be a maximizing sextic defined over Q. If the genus
containing TB contains more than one isomorphism class of
lattices, then ∃ σ ∈ Gal(Q/Q) such that B 6∼embB

σ.
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Example revisited

We consider the configuration type of maximizing sextics
B = L + Q with

I deg L = 1, deg Q = 5,

I L and Q are tangent at one point with multiplicity 5
(A9-singularity), and

I Q has one A10-singular point.

Such maximizing sextics are projectively isomorphic to

z · (G (x , y , z)±
√

5 · H(x , y , z)) = 0,

where G (x , y , z) and H(x , y , z) are homogenizations of the G
and H in the first example.
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The genus corresponding to (DΛB
,−qΛB

) (that is, the genus
containing the transcendental lattice TB) consists of

[
2 1
1 28

]
,

[
8 3
3 8

]
.

We can show that, if we choose +
√

5, then

TB+
∼=

[
2 1
1 28

]
,

while if we choose −√5, then

TB−
∼=

[
8 3
3 8

]
.

Question
π1(P2 \ B−) ∼= π1(P2 \ B+)?

(Their profinite completions are isomorphic.)
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Summary

Some lattice theoretic invariants of plane curves are defined.

They are a strong tool to study the topology of embeddings of
plane curves into P2.

In particular, we can construct many Zariski pairs by means of
them.
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More important summary

We appreciate the excellent work of the

organizers.

Thank you very much.
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