Zariski pairs and lattice theory

Ichiro Shimada

Hiroshima University
2009.05 Antalya

Example

Consider two surfaces $S_{ \pm}$in \mathbb{C}^{3} defined by

$$
\begin{aligned}
& w^{2}(G(x, y) \pm \sqrt{5} \cdot H(x, y))=1, \quad \text { where } \\
G(x, y) & :=-9 x^{4}-14 x^{3} y+58 x^{3}-48 x^{2} y^{2}-64 x^{2} y \\
& +10 x^{2}+108 x y^{3}-20 x y^{2}-44 y^{5}+10 y^{4}, \\
H(x, y) & :=5 x^{4}+10 x^{3} y-30 x^{3}+30 x^{2} y^{2}+ \\
+ & 20 x^{2} y-40 x y^{3}+20 y^{5} .
\end{aligned}
$$

Then S_{+}and S_{-}are not homeomorphic.
Many examples of non-homeomorphic conjugate complex varieties are known since Serre (1964).
I hope the above is the most concrete and simplest example.

Plane curves

Let B and B^{\prime} be reduced (possibly reducible) projective plane curves of the same degree. We assume that they have only simple singularities (the singularities without moduli):

$$
\begin{array}{lll}
A_{n} & x^{n+1}+y^{2}=0 & (n \geq 1) \\
D_{n} & x^{n-1}+x y^{2}=0 & (n \geq 4) \\
E_{6} & x^{4}+y^{3}=0 \\
E_{7} & x^{3} y+y^{3}=0 \\
E_{8} & x^{5}+y^{3}=0
\end{array}
$$

We denote by

$$
\begin{aligned}
R_{B}: & \text { the } A D E \text {-type of } \operatorname{Sing} B, \\
\operatorname{degs} B: & \text { the list of degrees of irred comps of } B .
\end{aligned}
$$

Two equivalence relations

B and B^{\prime} are of the same config type and write $B \sim_{\mathrm{cfg}} B^{\prime}$ if

- they have the same type of singularities; $R_{B}=R_{B^{\prime}}$,
- the degrees of irred comps are same; $\operatorname{degs} B=\operatorname{degs} B^{\prime}$,
- their intersection patterns are same.

We write $B \sim_{\text {emb }} B^{\prime}$ if there exists a homeomorphism

$$
\psi:\left(\mathbb{P}^{2}, B\right) \simeq\left(\mathbb{P}^{2}, B^{\prime}\right) .
$$

We have $B \sim_{\text {emb }} B^{\prime} \Longrightarrow B \sim_{\mathrm{cfg}} B^{\prime}$.
Example: For degree 6, we have

$$
\# \text { of config types }=11159<\# \text { of emb-top types }=\text { ? }
$$

Zariski pairs

A Zariski pair is a pair $\left[B, B^{\prime}\right]$ of projective plane curves of the same degree with only simple singularities such that

$$
B \sim_{\mathrm{cfg}} B^{\prime} \text { but } B \chi_{\mathrm{emb}} B^{\prime} .
$$

A Zariski k-ple is a collection of k plane curves such that any two of them form a Zariski pair.

Example (Zariski)

Let B be a plane curve of degree 6 defined by

$$
f^{3}+g^{2}=0, \quad \operatorname{deg} f=2, \quad \operatorname{deg} g=3, \quad \text { general. }
$$

Then B is irreducible and has six cusps as its only singularities; $\operatorname{degs} B=[6], R_{B}=6 A_{2}$. We have

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash B\right) \cong \mathbb{Z} /(2) * \mathbb{Z} /(3)
$$

Zariski showed that there exists B^{\prime} with $\operatorname{degs} B^{\prime}=[6]$, $R_{B^{\prime}}=6 A_{2}$ such that

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash B^{\prime}\right) \cong \mathbb{Z} /(2) \times \mathbb{Z} /(3)
$$

Example of Zariski triple

We have three plane curves of degree 6

$$
B_{1}=C_{1}+Q_{1}, \quad B_{2}=C_{2}+Q_{2}, \quad B_{4}=C_{4}+Q_{4}
$$

where Q_{i} is a quartic with one tacnode and C_{i} is a smooth conic tangent to Q_{i} at two points with multiplicity 4;

$$
\operatorname{degs} B_{i}=[2,4], \quad R_{B_{i}}=A_{3}+2 A_{7}
$$

Let $E_{i} \rightarrow Q_{i}$ be the normalization of Q_{i}. Then E_{i} is of genus 1 and has four special points
p, q the pull-back of $A_{3}, \quad s, t$ the pull-back of $2 A_{7}$.
Then the order of $[p+q-s-t]$ in $\operatorname{Pic}^{0}\left(E_{i}\right)$ is 1,2 and 4 according to $i=1,2,4$. Their emb-top types are different, and they form a Zariski triple.

Algebraic lattice-theoretic invariants

The idea is to consider the double covering

$$
Y_{B} \rightarrow \mathbb{P}^{2}
$$

branching along the plane curve B, and the cup-product on the middle cohomology group

$$
H^{2}\left(X_{B}, \mathbb{Z}\right)
$$

of the minimal resolution X_{B} of Y_{B}.

A lattice is a free \mathbb{Z}-module L of finite rank with a non-degenerate symmetric bilinear form

$$
L \times L \rightarrow \mathbb{Z}
$$

A lattice L is canonically embedded into its dual lattice

$$
L^{\vee}:=\operatorname{Hom}(L, \mathbb{Z})
$$

as a submodule of finite index. The finite abelian group

$$
D_{L}:=L^{v} / L
$$

is called the discriminant group of L. The \mathbb{Z}-valued symmetric bilinear form on L extends to a \mathbb{Q}-valued symmetric bilinear form on L^{\vee}, and it defines a finite quadratic form

$$
q_{L}: D_{L} \rightarrow \mathbb{Q} / \mathbb{Z}, \quad \bar{x} \mapsto x^{2} \bmod \mathbb{Z} .
$$

We call q_{L} the discriminant form of L.

Let B be a plane curve of even degree. We denote by

$$
\rho_{B}: X_{B} \rightarrow Y_{B} \rightarrow \mathbb{P}^{2}
$$

the composite of the minimal resolution and the double covering. Let \mathcal{E}_{B} be the set of exceptional curves $X_{B} \rightarrow Y_{B}$, and let

$$
\Sigma_{B}:=\left\langle[E] \mid E \in \mathcal{E}_{B}\right\rangle \oplus\left\langle h_{B}\right\rangle \subset H^{2}\left(X_{B}\right)
$$

be the sublattice generated by the classes $[E]$ of $E \in \mathcal{E}_{B}$ and the polarization class $h_{B}=\left[\rho_{B}^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right]$.

$$
B \sim_{\text {cfg }} B^{\prime} \Rightarrow \Sigma_{B} \cong \Sigma_{B^{\prime}}
$$

We then denote by

$$
\Lambda_{B} \subset H^{2}\left(X_{B}\right)
$$

the primitive closure of Σ_{B}.

The topological property of the lattice invariants

Theorem
If $B \sim_{\text {emb }} B^{\prime}$, then we have $\left(D_{\Lambda_{B}}, q_{\Lambda_{B}}\right) \cong\left(D_{\Lambda_{B^{\prime}}}, q_{\Lambda_{B^{\prime}}}\right)$.
Proof.
Let T_{B} denote the orthogonal complement of Λ_{B} in the unimodular lattice $H^{2}\left(X_{B}\right)$. Then we have

$$
\left(D_{T_{B}}, q_{T_{B}}\right) \cong\left(D_{\Lambda_{B}},-q_{\Lambda_{B}}\right) .
$$

On the other hand, T_{B} is a topological invariant of the open surface

$$
U_{B}:=\rho_{B}^{-1}\left(\mathbb{P}^{2} \backslash B\right) \subset X_{B}
$$

In fact, we have

$$
T_{B}:=H^{2}\left(U_{B}\right) / \text { Ker } .
$$

If $B \sim_{\text {emb }} B^{\prime}$, then U_{B} and $U_{B^{\prime}}$ are homeomorphic.

We consider the finite abelian group

$$
G(B):=\Lambda_{B} / \Sigma_{B}
$$

Corollary
If $B \sim_{\mathrm{cfg}} B^{\prime}$ but $|G(B)| \neq\left|G\left(B^{\prime}\right)\right|$, then $B \not \chi_{\mathrm{emb}} B^{\prime}$.
Indeed, $B \sim_{\text {cfg }} B^{\prime}$ implies $\Sigma_{B} \cong \Sigma_{B^{\prime}}$, and hence their discriminant groups are isomorphic. Then $|G(B)| \neq\left|G\left(B^{\prime}\right)\right|$ implies that the discriminant groups of Λ_{B} and $\Lambda_{B^{\prime}}$ have different orders.

This corollary produces many examples of Zariski pairs.

Example of Zariski triple again

For the Zariski triple

$$
B_{1}=C_{1}+Q_{1}, \quad B_{2}=C_{2}+Q_{2}, \quad B_{4}=C_{4}+Q_{4}
$$

described above, we have

$$
G\left(B_{1}\right) \cong \mathbb{Z} / 2 \mathbb{Z}, \quad G\left(B_{2}\right) \cong \mathbb{Z} / 4 \mathbb{Z}, \quad G\left(B_{4}\right) \cong \mathbb{Z} / 8 \mathbb{Z}
$$

Hence they are topologically distinct.

Remark on even discriminant forms

A lattice L is said to be even if $x^{2} \in 2 \mathbb{Z}$ holds for any $x \in L$. If L is even, then the discriminant form

$$
q_{L}: D_{L} \rightarrow \mathbb{Q} / \mathbb{Z}
$$

is refined to

$$
\tilde{q}_{L}: D_{L} \rightarrow \mathbb{Q} / 2 \mathbb{Z},
$$

which we call the even discriminant form of L.
If $H^{2}\left(X_{B}\right)$ is an even unimodular lattice, that is, if $\operatorname{deg} B \equiv 2 \bmod 4$, then we can refine the above results to the even discriminant forms.

These invariants $\left(D_{\Lambda_{B}}, q_{\Lambda_{B}}\right),\left(D_{\Sigma_{B}}, q_{\Sigma_{B}}\right)$ and $G(B)$ are algebraic in the following sense:

Definition
An invariant ϕ of plane curves is said to be algebraic if $\phi(B)=\phi\left(B^{\sigma}\right)$ holds for any B and $\sigma \in \operatorname{Aut}(\mathbb{C})$.

Hence they cannot distinguish conjugate plane curves.
Remark that the configuration type is algebraic.

A topological lattice invariant

Recall that $T_{B} \subset H^{2}\left(X_{B}\right)$ is the orthogonal complement of Λ_{B}.
$T_{B}:=\left\{t \in H^{2}\left(X_{B}\right) \mid\left(t, h_{B}\right)=0\right.$ and $(t,[E])=0$ for $\left.\forall E \in \mathcal{E}\right\}$.
As we have said, T_{B} is a topological invariant of the open surface

$$
U_{B}:=\rho_{B}^{-1}\left(\mathbb{P}^{2} \backslash B\right) \subset X_{B}
$$

We use the isomorphism class of T_{B} as an invariant of B.

T_{B} is not algebraic

We consider the plane curves B of degree 6. Then X_{B} is a $K 3$ surface, and the total Milnor number μ_{B} of B is at most 19.
We say that B is a maximizing sextic if $\mu_{B}=19$.
A $K 3$ surface X is said to be a singular $K 3$ surface if its Picard number is 20 , that is, its transcendental lattice

$$
T(X):=\mathrm{NS}(X)^{\perp}
$$

is a positive-definite even lattice of rank 2.
If B is a maximizing sextic, then X_{B} is a singular $K 3$ surface and $T\left(X_{B}\right)=T_{B}$.
X : a singular $K 3$ surface
$T(X)$ is canonically oriented by

$$
T(X) \otimes \mathbb{C}=H^{2,0}(X) \oplus H^{0,2}(X)
$$

Theorem (Shioda-Inose)
The map $X \mapsto T(X)$ is a bijection from the set of isom. classes of singular K3 surfaces to the set of isom. classes of oriented pos-definite even binary lattices.
Theorem (S. and Schütt)
Let X and X^{\prime} be singular $K 3$ surfaces defined over $\overline{\mathbb{Q}}$ such that $T(X)$ and $T\left(X^{\prime}\right)$ have the isomorphic (even) discriminant forms. Then $\exists \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that $X^{\prime} \cong X^{\sigma}$.

Application to maximizing sextics

The set of positive-definite even lattices of rank 2 with a given discriminant form is called a genus.
Corollary
Let B be a maximizing sextic defined over $\overline{\mathbb{Q}}$. If the genus containing T_{B} contains more than one isomorphism class of lattices, then $\exists \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that $B \not \chi_{\mathrm{emb}} B^{\sigma}$.

Example revisited

We consider the configuration type of maximizing sextics
$B=L+Q$ with

- $\operatorname{deg} L=1, \operatorname{deg} Q=5$,
- L and Q are tangent at one point with multiplicity 5 (A_{9}-singularity), and
- Q has one $A_{10 \text {-singular point. }}$

Such maximizing sextics are projectively isomorphic to

$$
z \cdot(G(x, y, z) \pm \sqrt{5} \cdot H(x, y, z))=0
$$

where $G(x, y, z)$ and $H(x, y, z)$ are homogenizations of the G and H in the first example.

The genus corresponding to ($D_{\Lambda_{B}},-q_{\Lambda_{B}}$) (that is, the genus containing the transcendental lattice T_{B}) consists of

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & 28
\end{array}\right], \quad\left[\begin{array}{ll}
8 & 3 \\
3 & 8
\end{array}\right] .
$$

We can show that, if we choose $+\sqrt{5}$, then

$$
T_{B_{+}} \cong\left[\begin{array}{cc}
2 & 1 \\
1 & 28
\end{array}\right],
$$

while if we choose $-\sqrt{5}$, then

$$
T_{B_{-}} \cong\left[\begin{array}{ll}
8 & 3 \\
3 & 8
\end{array}\right]
$$

Question
$\pi_{1}\left(\mathbb{P}^{2} \backslash B_{-}\right) \cong \pi_{1}\left(\mathbb{P}^{2} \backslash B_{+}\right) ?$
(Their profinite completions are isomorphic.)

Summary

Some lattice theoretic invariants of plane curves are defined.
They are a strong tool to study the topology of embeddings of plane curves into \mathbb{P}^{2}.
In particular, we can construct many Zariski pairs by means of them.

More important summary

We appreciate the excellent work of the organizers.

Thank you very much.

