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Example

Consider two surfaces Sy in C3 defined by

w?(G(x,y) £V5-H(x,y)) =1, where

G(x,y) = —9x* —14x3y + 58 x> — 48 x%y? — 64 x°y
+10x% + 108 xy® — 20 xy” — 44 y® + 10 y*,
H(x,y) = 5x*+10x%y —30x® +30x%y* +

+20x%y — 40 xy® + 20 °.

Then S, and S_ are not homeomorphic.

Many examples of non-homeomorphic conjugate complex
varieties are known since Serre (1964).
| hope the above is the most concrete and simplest example.



Plane curves

Let B and B’ be reduced (possibly reducible) projective plane
curves of the same degree. We assume that they have only
simple singularities (the singularities without moduli):

A, x"4+y?2=0 (n>1)

D, x"14+xy2=0 (n>4)

E6 X4 + _)/3 =0

E Xy+y*=0

Eg x5+y3=0

We denote by

Rg : the ADE-type of Sing B,
degs B : the list of degrees of irred comps of B.



Two equivalence relations

B and B’ are of the same config type and write B ~ B’ if
» they have the same type of singularities; Rg = Rp/,
» the degrees of irred comps are same; degs B = degs B/,

» their intersection patterns are same.

We write B ~.n, B’ if there exists a homeomorphism
Y (P2, B) > (P2, B).

We have B ~epp, BY = B~ B'.

Example: For degree 6, we have

# of config types = 11159 < # of emb-top types =7
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Zariski pairs

A Zariski pair is a pair [B, B] of projective plane curves of the
same degree with only simple singularities such that

B~y B but Bt B

A Zariski k-ple is a collection of k plane curves such that any
two of them form a Zariski pair.
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Example (Zariski)

Let B be a plane curve of degree 6 defined by

f34+g>=0, degf=2, degg =3, general.

Then B is irreducible and has six cusps as its only singularities;

degs B = [6], Rg = 6A;. We have
m(P?\ B) = Z/(2) x Z/(3).

Zariski showed that there exists B’ with degs B’ = [6],
Rg = 6A5 such that

m(P*\ B )= Z/(2) x Z/(3).
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Example of Zariski triple

We have three plane curves of degree 6
Bi=G+Q, B=0G+Q, Bi=GG+ Qs

where Q; is a quartic with one tacnode and C; is a smooth
conic tangent to Q; at two points with multiplicity 4;

degs B; = [2,4], R, = A3+ 2A;.

Let E; — Q; be the normalization of Q;. Then E; is of genus 1
and has four special points

p,q the pull-back of A3, s,t the pull-back of 2A;.

Then the order of [p+ g — s — t] in Pic’(E;) is 1, 2 and 4
according to i = 1,2, 4. Their emb-top types are different, and
they form a Zariski triple.



Algebraic lattice-theoretic invariants

The idea is to consider the double covering
Yg — P

branching along the plane curve B, and the cup-product on
the middle cohomology group

H*(Xg, Z)

of the minimal resolution Xg of Ys.
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A lattice is a free Z-module L of finite rank with a
non-degenerate symmetric bilinear form

LxL—7Z.
A lattice L is canonically embedded into its dual lattice
LY := Hom(L,Z)
as a submodule of finite index. The finite abelian group
D, :=L"/L

is called the discriminant group of L. The Z-valued symmetric
bilinear form on L extends to a Q-valued symmetric bilinear
form on LV, and it defines a finite quadratic form

q.: D — Q/Z, %+ x* mod Z.

We call g, the discriminant form of L.

9
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Let B be a plane curve of even degree. We denote by
PB - XB — YB — ]P2

the composite of the minimal resolution and the double
covering. Let g be the set of exceptional curves Xg — Yjg,
and let

Yg:=([E]| E€ &) ® (hg) C H*(Xg)

be the sublattice generated by the classes [E] of E € £g and
the polarization class hg = [p5Op2(1)].

B ~cfg B = ZB = ZB/.

We then denote by
Ag C H*(Xs)

the primitive closure of ¥ g.

10
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The topological property of the lattice invariants

Theorem
If B ~cmp B, then we have (Da,, qn,) = (Da,, . G, )-

Proof.

Let Tz denote the orthogonal complement of Ag in the
unimodular lattice H*(Xg). Then we have

(D14,975) = (Dag, —ang)-

On the other hand, Ty is a topological invariant of the open
surface

Us = pg'(P*\ B) C Xs.

In fact, we have
Tg := H*(Ug)/ Ker.

If B ~emp B, then Ug and Ug: are homeomorphic. O]
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We consider the finite abelian group

G(B) = /\B/ZB-

Corollary
If B ~e B but |G(B)| # |G(B')

, then Bot, . B

Indeed, B ~g, B’ implies X5 = ¥ g/, and hence their
discriminant groups are isomorphic. Then |G(B)| # |G(B’)|
implies that the discriminant groups of Ag and Ag: have
different orders.

This corollary produces many examples of Zariski pairs.



Example of Zariski triple again

For the Zariski triple
Bi=G+ @, B=G+Q, Bi=0CG+Q
described above, we have
G(B) =7/272, G(By)=7Z/4Z, G(By)=1Z/8Z.

Hence they are topologically distinct.
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Remark on even discriminant forms

A lattice L is said to be even if x?> € 27Z holds for any x € L.
If L is even, then the discriminant form

q.: D — Q/Z7
is refined to

g.: D — @/2Z7
which we call the even discriminant form of L.

If H?(X3) is an even unimodular lattice, that is, if
deg B = 2 mod 4, then we can refine the above results to the
even discriminant forms.
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These invariants (Da,, ga,), (Dsg, gx,) and G(B) are
algebraic in the following sense:

Definition

An invariant ¢ of plane curves is said to be algebraic if
¢(B) = ¢(B) holds for any B and o € Aut(C).

Hence they cannot distinguish conjugate plane curves.

Remark that the configuration type is algebraic.



A topological lattice invariant

Recall that Tg C H?(Xg) is the orthogonal complement of Ag.
Tg:={t € H*(Xg)|(t,hg) = 0and (t,[E]) =0forV E € £}.

As we have said, Tg is a topological invariant of the open
surface
Us = pg'(P*\ B) C Xs.

We use the isomorphism class of Tg as an invariant of B.
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Tg is not algebraic

We consider the plane curves B of degree 6. Then Xg is a K3
surface, and the total Milnor number ppg of B is at most 19.

We say that B is a maximizing sextic if yug = 19.

A K3 surface X is said to be a singular K3 surface if its
Picard number is 20, that is, its transcendental lattice

T(X) := NS(X)*

is a positive-definite even lattice of rank 2.

If B is a maximizing sextic, then Xp is a singular K3 surface
and T(XB) = TB-

17 /23



X: asingular K3 surface

T(X) is canonically oriented by

T(X)® C = H**(X) @ H*?(X).

Theorem (Shioda-Inose)

The map X — T(X) is a bijection from the set of isom.
classes of singular K3 surfaces to the set of isom. classes of
oriented pos-definite even binary lattices.

Theorem (S. and Schiitt)

Let X and X' be singular K3 surfaces defined over Q such
that T(X) and T(X') have the isomorphic (even) discriminant
forms. Then 3 o € Gal(Q/Q) such that X' = X7,
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Application to maximizing sextics

The set of positive-definite even lattices of rank 2 with a given
discriminant form is called a genus.

Corollary

Let B be a maximizing sextic defined over Q. If the genus
containing Tg contains more than one isomorphism class of
lattices, then 3 o € Gal(Q/Q) such that B, B°.
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Example revisited

We consider the configuration type of maximizing sextics
B =L+ Q with
» degL =1, deg @ =5,
» L and Q are tangent at one point with multiplicity 5
(Ag-singularity), and
» @ has one Ajp-singular point.

Such maximizing sextics are projectively isomorphic to
z: (G(Xayaz) + \/g H(X,y,Z)) = 0,

where G(x,y,z) and H(x,y, z) are homogenizations of the G
and H in the first example.
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The genus corresponding to (Da,, —qa,) (that is, the genus
containing the transcendental lattice Tg) consists of

2 1 8 3
1 28 |’ 3 8]
We can show that, if we choose ++/5, then

~[2 1
TB+:[1 28]’

while if we choose —+/5, then
|18 3
Ts = { - } |
Question

m(P?\ B-) = m(P?\ B.)?

(Their profinite completions are isomorphic.)
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Summary

Some lattice theoretic invariants of plane curves are defined.

They are a strong tool to study the topology of embeddings of
plane curves into P?.

In particular, we can construct many Zariski pairs by means of
them.



More important summary

We appreciate the excellent work of the
organizers.

Thank you very much.
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