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Enriques surface

For simplicity, we work over the the complex number field C.

Definition

A projective smooth surface Y is an Enriques surface if it is the quotient
X/〈ι〉 of a K3 surface X by a fixed-point free involution ι.

Enriques surfaces form an important piece in the Enriques-Kodaira
classification of compact complex surfaces.

The Kodaira dimension of Enriques surfaces is κ = 0.

Enriques surfaces form an irreducible deformation family. In
particular, they are diffeomorphic to each other. The dimension of the
moduli is 10.

π1(Y ) ∼= Z/2Z, H2(Y ,Z) = Z10 ⊕ (Z/2Z) and H2,0(Y ) = 0.

Let SY denote the lattice of numerical equivalence classes of divisors
on Y . Then SY = H2(Y ,Z)/torsion is isomorphic to L10.
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Terminologies about lattices

A lattice is a free Z-module L of finite rank with
a non-degenerate symmetric bilinear form 〈 , 〉 : L× L→ Z.

The automorphism group of a lattice L is denoted by O(L).
The action is from the right: v 7→ vg for g ∈ O(L).

A lattice L is unimodular if det(Gram matrix) = ±1.

A lattice L is even (or of type II ) if 〈x , x〉 ∈ 2Z for all x ∈ L.

A lattice L of rank n is hyperbolic if the signature of L⊗ R is
(1, n − 1).

We will mainly deal with even hyperbolic lattices.

A positive cone PL of a hyperbolic lattice L is one of the two
connected components of

{ x ∈ L⊗ R | 〈x , x〉 > 0 }.

A vector r ∈ L is called a (−2)-vector if 〈r , r〉 = −2.

I. Shimada (Hiroshima University) Automorphisms of Enriques surfaces 2021 Dec 17 3 / 32



Terminologies about even hyperbolic lattices

Let L be an even hyperbolic lattice with a positive cone P. We put

O(L,P) := { g ∈ O(L) | Pg = P }.

We have O(L) = O(L,P)× {±1}.
For a vector v ∈ L⊗ R with 〈v , v〉 < 0, we put

(v)⊥ := { x ∈ P | 〈v , x〉 = 0 }.

A (−2)-vector r ∈ L defines the reflection into the mirror (r)⊥:

sr : x 7→ x + 〈x , r〉r .

Then sr preserves the positive cone P, that is, sr ∈ O(L,P).
Let W (L) denote the subgroup of O(L,P) generated by all reflections sr
with respect to (−2)-vectors r . We call W (L) the Weyl group of L.
Note that W (L) is a normal subgroup in O(L,P).
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Standard fundamental domain

Let L be an even hyperbolic lattice with a positive cone P.
A standard fundamental domain of the action of W (L) on P is the closure
of a connected component of

P \
⋃

(r)⊥,

where r runs through the set of all (−2)-vectors. Then W (L) acts on the
set of standard fundamental domains simple-transitively.

We fix a standard fundamental domain N. We put

O(L,N) := { g ∈ O(L) | Ng = N }.

Then we have

W (L) = 〈 sr | the hyperplane (r)⊥ is a wall of N 〉,
O(L,P) = W (L) o O(L,N).
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Even unimodular hyperbolic lattice

Theorem

For a positive integer n with n ≡ 2 mod 8, there exists an even unimodular
hyperbolic lattice Ln of rank n. (A more standard notation is II1,n−1.)
For each n, the lattice Ln is unique up to isomorphism.

We denote by U (instead of L2) the hyperbolic plane

[
0 1
1 0

]
.

If Y is an Enriques surface, then the lattice SY of numerical equivalence
classes of divisors on Y is even, unimodular (by Poincaré duality) and
hyperbolic (by Hodge index theorem) of rank 10. Hence

SY ∼= L10.

We study the geometry of an Enriques surface Y by looking at the lattice
SY ∼= L10. In particular, we study the automorphism group Aut(Y ) of Y
and its action on SY by means of lattice theory.
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Vinberg chambers

The lattice L10 is generated by ten (−2)-vectors r1, . . . , r10 whose dual
graph is the Dynkin diagram of type E10.b

b b b b b b b b b
Theorem (Vinberg)

A standard fumdamental domain N of the action of W (L10) is bounded by
10 hyperplanes (r1)⊥, . . . , (r10)⊥ defined by the ten (−2)-vectors
r1, . . . , r10

Since the graph E10 has only trivial symmetries, we have O(L10,N) = {id}
and O(L10,P) = W (L10).

Definition

We call a standard fundamental domain of L10 a Vinberg chamber.
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Conway chamber

The standard fumdamental domain of the action of W (L26) was
determined by Conway.

A negative-definite even unimodular lattice of rank 24 is called a Niemeier
lattice. Niemeier showed that there exist exactly 24 isomorphism classes of
Niemeier lattices, one of which is the famous Leech lattice Λ.
The Leech lattice is characterized as the unique Niemeier lattice that has
no vectors r of 〈r , r〉 = −2.

The lattice L26 is written as an orthogonal direct sum

U ⊕ (a Niemeier lattice).

A vector w ∈ L26 is called a Weyl vector if w is written as (1, 0, 0) in a
decomposition

L26 = U ⊕ Λ.

Equivalently, a vector w ∈ L26 is a Weyl vector if and only if w is non-zero
and primitive, 〈w,w〉 = 0, and the Niemeier lattice (Zw)⊥/Zw is
isomorphic to the Leech lattice Λ.
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We fix a positive cone PL26 ⊂ L26 ⊗ R. Let w ∈ L26 be a Weyl vector
contained in the boundary ∂ PL26 of PL26 . A (−2)-vector r ∈ L26 is a
Leech root with respect to w if 〈w, r〉 = 1. Under the decomposition
L26 = U ⊕ Λ such that w = (1, 0, 0), Leech roots are written as

rλ :=

(
−λ

2

2
− 1, 1, λ

)
, where λ ∈ Λ.

Theorem (Conway)

There exists a bijection between the set of Weyl vectors and the set of
standard fundamental domains of L26 in such a way that a standard
fundamental domain N is bounded by hyperplanes (rλ)⊥ defined by Leech
roots rλ with respect to the corresponding Weyl vector w.

Definition

We call a standard fundamental domain of L26 a Conway chamber.
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The bijection between the walls (rλ)⊥ of a Conway chamber C and the
vectors λ ∈ Λ yields the following:

Corollary

Let C be a Conway chamber of L26. Then the group

O(L26, C) = { g ∈ O(L26) | Cg = C }

is the group Co∞ of affine isometries of Λ ( O(Λ) + translations ).
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Borcherds method

Note that PL26 is tessellated by Conway chambers. Borcherds contrived a
method to study an even hyperbolic lattice (not necessarily unimodular) S
with a positive cone PS by embedding

S ↪→ L26

and pulling back the tessellation of PL26 by Conway chambers to a
tessellation of PS .

This method has been used in the computation of the automorphism
groups of some K3 surfaces. For example, see

Shigeyuki Kondo and Ichiro Shimada
The automorphism group of a supersingular K3 surface with
Artin invariant 1 in characteristic 3.
Int. Math. Res. Not. IMRN 2014, no. 7, 1885–1924.
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Borcherds method for L10(2)

Let L10(2) denote the lattice obtained from L10 by multiplying the bilinear
form L10 × L10 → Z by 2. We have O(L10(2)) = O(L10) and
L10(2)∨/L10(2) ∼= (Z/2Z)10.

Theorem (S. and Brandhorst)

Up to the action of O(L10) and O(L26), there exist exactly 17 primitive
embeddings of L10(2) into L26.

12A, 12B, 20A, . . . , 20F, 40A, . . . , 40E, 96A, . . . , 96C, infty.

Recall that the positive cone PL26 of L26 is tessellated by Conway
chambers. Hence an embedding ι : L10(2) ↪→ L26 such that ι(PL10) ⊂ PL26

induces a tessellation of PL10 by induced chambers

ι−1(C) = PL10 ∩ C,

where C are Conway chambers such that ι−1(C) contains a non-empty
open subset of PL10 .
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Theorem (S. and Brandhorst)

Except for the embedding of type infty, the following hold.

The induced chambers on PL10 are isomorphic to each other under
the action of O(L10,PL10).

Each induced chamber D is bounded by a finite number of walls
D ∩ (r)⊥, and each wall D ∩ (r)⊥ is defined by a (−2)-vector r of L10.
(The name of the embedding indicates the number of walls.)

The reflection sr with respect to r maps D to the induced chamber
adjacent to D across the wall D ∩ (r)⊥.

By the second assertion, each induced chamber is tessellated by Vinberg
chambers. The volume of an induced chamber is defined to be the number
of Vinberg chambers contained in the induced chamber.
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17 embeddings

No. name volume |aut| isom NK

1 12A 269824 22 I
2 12B 12142080 23 · 3 II
3 20A 64757760 23 · 3 V
4 20B 145704960 26 III
5 20C 777093120 23 · 3 · 5 20D VII
6 20D 777093120 23 · 3 · 5 20C VII
7 20E 906608640 23 · 3 · 5 VI
8 20F 2039869440 26 · 5 IV
9 40A 8159477760 27 · 3

10 40B 18650234880 27 · 32 40C
11 40C 18650234880 27 · 32 40B
12 40D 32637911040 25 · 32 · 5 40E
13 40E 32637911040 25 · 32 · 5 40D
14 96A 163189555200 213 · 3
15 96B 652758220800 212 · 33 96C
16 96C 652758220800 212 · 33 96B
17 infty ∞
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Nikulin–Kondo classification

Nikulin (1984) and Kondo (1986) classified Enriques surfaces Y with finite
automorphism group.

If Aut(Y ) is finite, then Y contains only finite number of smooth rational
curves. By the configuration of these smooth rational curves, Enriques
surfaces Y with finite automorphism group are devided into 7 classes
I, II, . . . ,VII.

Each smooth rational curve is represented by a (−2)-vector of SY ∼= L10.

These 7 configurations appear as the configurations of (−2)-vectors
bounding the induced chambers of PL10 .
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Application to the geometry of Enriques surfaces

Let Y be an Enriques surface with the universal covering π : X → Y .
Recall that SY ∼= L10. Let SX be the lattice of numerical equivalence
classes of divisors on the K3 surface X . Then SX is an even hyperbolic
lattice. Let PX be the positive cone of SX containing an ample class of X .
We put

NX := { x ∈ PX | 〈x ,C 〉 ≥ 0 for all curves C on X },
and call it the nef-and-big cone of X .

Proposition

The cone NX is a standard fundamental domain of the action of the Weyl
group W (SX ).

We define PY and NY similarly. Then the double covering π : X → Y
induces a primitive embedding

SY (2) ↪→ SX ,

which induces PY ↪→ PX , and we have NY = PY ∩ NX .
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Goal

Calculate the image G of Aut(Y )→ O(SY ,PY ), and the fundamental
domain NY /Aut(Y ) of the action of Aut(Y ) on the cone NY .

For simplicity, we assume that the period H2,0(X ) is general in the period
domain of TX ⊗ C, where TX is the transcendental lattice of X , and
hence, via Torelli theorem for K3 surfaces, the following holds.

Proposition

An isometry g ∈ O(SY ,PY ) belongs to G if and only if g extends to an
isometry g̃ of SX that preserves NX and acts on the discriminant group
S∨X/SX of SX as ±1.

In particular, we can determine, for a given isometry g ∈ O(SY ,PY ),
whether g ∈ G or not effectively.
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An algorithm on a graph

We consider the following graph (V ,E ), on which G acts. Recall that NY

is tessellated by Vinberg chambers.

V := the set of Vinberg chambers D contained in NY ,

E := the set of pairs {D,D ′} of distinct Vinberg chambers in NY

such that D and D ′ share a common wall.

Our goal is to calculate

a complete set of representatives of the orbits V /G , and

a generating set of the group G .

The set V of vertices is infinite in general, but (V ,E ) and G have the
following local effectiveness properties:

I. Shimada (Hiroshima University) Automorphisms of Enriques surfaces 2021 Dec 17 18 / 32



1 For any v ∈ V , the set

adj(v) := { v ′ ∈ V | {v , v ′} ∈ E }

is finite, and can be calculated effectively. Indeed, a wall (r)⊥ of a
Vinberg chamber v ∈ V with 〈r , r〉 = −2 is a wall of NY if and only
if the image of r by π∗ : SY (2) ↪→ SX is a sum of (−2)-vectors of SX .

2 For any v , v ′ ∈ V , we can determine effectively whether

TG (v , v ′) := { g ∈ G | vg = v ′ }

is empty or not, and when TG (v , v ′) 6= ∅, we can calculate an
element g ∈ TG (v , v ′). In the current situation, the set
{ g ∈ O(SY ) | vg = v ′ } is a singleton.

3 For any v ∈ V , the stabilizer subgroup TG (v , v) of v in G is finitely
generated, and a finite set of generators of TG (v , v) can be calculated
effectively. Indeed, in the current situation, TG (v , v) is always {1}.

I. Shimada (Hiroshima University) Automorphisms of Enriques surfaces 2021 Dec 17 19 / 32



Let ∼ denote the G -equivalence relation: v ∼ v ′ ⇐⇒ TG (v , v ′) 6= ∅.
Suppose that V0 ⊂ V is a non-empty finite subset with the following
properties:

If v , v ′ ∈ V0 and v 6= v ′, then v 6∼ v ′.

We put Ṽ0 :=
⋃

v ′0∈V0
adj(v ′0). For each v ∈ Ṽ0, there is a vertex

v ′ ∈ V0 such that v ∼ v ′. Note that v ′ is unique for each v ∈ Ṽ0.

For each v ∈ Ṽ0 − V0, we choose an element h(v) ∈ TG (v , v ′), where
v ′ ∈ V0 satisfies v ∼ v ′, and put H := { h(v) | v ∈ Ṽ0 − V0 } ⊂ G .

Proposition

Let v0 be an element of V0. The natural mapping

V0 ↪→ V →→ V /∼ = V /G

is a bijection, and the group G is generated by TG (v0, v0) ∪H.

For the proof, the connectedness of (V ,E ) is crucial.
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We can calculate V0 and H by the following procedure. This procedure
terminates if and only if |V /G | <∞.

Initialize V0 := [v0], H := {}, and i := 0.
while i < |V0| do

Let vi be the (i + 1)st entry of the list V0.
Let adj(vi ) be the set of vertices adjacent to vi .
for each vertex v ′ in adj(vi ) do

Set flag := true.
for each v ′′ in V0 do

if TG (v ′, v ′′) 6= ∅ then
Add an element h of TG (v ′, v ′′) to H.
Replace flag by false.
Break from the innermost for–loop.

if flag = true then
Append v ′ to the list V0 as the last entry.

Replace i by i + 1.
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Thus we can calculate a complete set of representatives for V /G and a
finite set of generators of G .

Note that the size |V /G | can be regarded as a volume of the fundamental
domain of the action of Aut(Y ) on the cone NY (the volume measured by
the number of Vinberg chambers). We define

vol(NY /Aut(Y )) := |V /G |.

This naive method does not work in practice, because the volume
|V0| = |V /G | is very large, and the computation is too heavy.
We have an example due to Barth-Peters.
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Aut of a generic Enriques surface

Let Y be a generic Enriques surface, that is, SY (2) ∼= SX and H2,0(X ) is
very general in the period domain of TX ⊗ C, where TX is the
transcendental lattice of the K3 surface X .

Then Y has no smooth rational curves. Therefore we have NY = PY , and
hence V is the set of all Vinberg chambers.

Theorem (Barth-Peters)

The fundamental domain of the action of Aut(Y ) on the cone NY = PY
is a union of

|O(L10 ⊗ F2)| = 221 · 35 · 52 · 7 · 17 · 31 = 46998591897600 ≈ 47× 1012

copies of Vinberg chambers.

Therefore we have to go through the while–loop about 47× 1012 times.
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We use the embedding SY (2) ∼= L10(2) ↪→ L26 that factors as

SY (2) ∼= L10(2)
π∗−→ SX −→ L26.

We generalize the notion of induced chambers.

Definition

Let M ↪→ L be a primitive embedding of hyperbolic lattices, and let
PM ↪→ PL be the induced embedding of positive cones. A closed subset
DM of PM is an L/M-chamber if

DM contains a non-empty open subset of PM , and

there exists a standard fundamental domain NL of the action of W (L)
on PL such that DM = PM ∩ NL.

Remark

L/M-chambers DM need not be isomorphic to each other.

A standard fundamental domain NM of the action of W (M) on PM is
tessellated by L/M-chambers DM .
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We consider
SY (2) ∼= L10(2)

π∗−→ SX −→ L26.

We assume that the composite SY (2) ↪→ L26 is not of type infty.
Since NX is a standard fundamental domain of the action of W (SX ), the
cone NY = NX ∩ PY is an SX/SY (2)-chamber, and it is tessellated by
L26/SY (2)-chambers. (Recall that L26/SY (2)-chambers are the induced
chambers in the previous terminology.)

Since elements of

G = Im(Aut(Y )→ O(SY ,PY ))

acts on the discriminant group ∼= (Z/2Z)10 of SY (2) as the identity (by
the assumption on the period of X ), the action of G on NY preserves this
tessellation.

We replace the previous graph (V ,E ) with

V ′ := the set of L26/SY (2)-chambers contained in NY ,

and E ′ being the usual adjacency relation of the tessellation, and apply the
same algorithm.
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Since each L26/SY (2)-chamber consists of large number of Vinberg
chambers, the amount of the computation |V ′/G | becomes much smaller.

No. name volume |aut| isom NK

. . . . . .
15 96B 652758220800 212 · 33 96C
16 96C 652758220800 212 · 33 96B

We have to compensate this reduction of the amount of computation by
the calculation of the automorphism group TG (v , v) of an
L26/SY (2)-chamber. Nevertheless, we obtain a huge computational
advantage, and the algorithm becomes tractable in many cases.
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Main results in geometry

We need the notion of (τ, τ̄)-generic Enriques surfaces, where τ and τ̄ are
ADE-types of the same rank.

Examples

The generic Enriques surface of Barth-Peters is (0, 0)-generic.

A general nodal Enriques surface is (A1,A1)-generic. More generally,
if Y is an Enriques surface that is very general in the moduli of
Enriques surfaces containing n disjoint smooth rational curves, then
Y is (nA1, nA1)-generic.

If Y is very general in the moduli of Enriques surfaces containing two
smooth rational curves whose dual graph is c c, then Y is
(A2,A2)-generic. We say that such an Enriques surface Y is general
cuspidal.

There are 156 types (τ, τ̄) for which (τ, τ̄)-generic Enriques surfaces exist.
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Volume formula

We put 1BP := 46998591897600. (BP stands for Barth-Peters.)

Theorem (S. and Brandhorst)

Let Y be a (τ, τ̄)-generic Enriques surface. Then we have

vol(NY /Aut(Y )) = |{Vinberg chambers in NY }/G | =
c(τ,τ̄)

|W (Rτ )|
· 1BP,

where W (Rτ ) is the Weyl group of type τ , and c(τ,τ̄) ∈ {1, 2} is the
number of numerically trivial automorphisms of Y , that is, the size of the
kernel of Aut(Y )→ O(SY ,PY ).

Example

If Y is generic, then vol = 1BP. This is the definition of 1BP.

If Y is general nodal, then vol = 1BP/2.
If Y is general n-nodal, then vol = 1BP/2nn! for n ≤ 8.

If Y is general cuspidal, then vol = 1BP/6.
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There are two good things about this formula.

We can confirm the formula by computer.

We have a proof that does not use computer.

We have geometric applications of the explicit computation of V /G .

First, we obtain a finite set of generators of
G = Im(Aut(Y )→ O(SY ,PY )).

Second, we can calculate the sets

R(Y ) := the set of smooth rational curves on Y , and

E(Y ) := the set of elliptic fibrations Y → P1

modulo the action of Aut(Y ).
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Application to rational curves on Y

We put

R(Y ) := the set of smooth rational curves on Y .

Theorem

Let Y be a (τ, τ̄)-generic Enriques surface. Suppose that rank(τ) ≤ 6.
Then |R(Y )/Aut(Y )| is equal to the number of connected components
of the Dynkin graph of τ .

Example

If Y is general nodal, then |R(Y )/Aut(Y )| = 1. This had been
proved by Cossec-Dolgachev.

If Y is general n-nodal with n ≤ 6, then |R(Y )/Aut(Y )| = n.

If Y is general cuspidal, then |R(Y )/Aut(Y )| = 1.

. . .
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Application to elliptic fibrations on Y

We put
E(Y ) := the set of elliptic fibrations Y → P1.

Theorem (Barth-Peters)

Let Y be a generic Enriques surface. Then |E(Y )/Aut(Y )| = 527.

We generalize this theorem as follows:

Theorem

Let Y be a general nodal Enriques surface. Then

|E(Y )/Aut(Y )| = 136 + 255.

In the representatives of elements of E(Y )/Aut(Y ),
136 elliptic fibrations have no reducible fibers, and
255 elliptic fibrations have one non-multiple reducible fiber of type A1.
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Our preprints are available from:

Borcherds’ method for Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:1903.01087

Automorphism groups of certain Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:2012.10622

Thank you very much for listening!
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