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Apéry-Fermi K3 surface

We consider the complex affine surface defined by

ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s,

where ξ1, ξ2, ξ3 are coordinates of the 3-dimensional affine space A3 and
s ∈ C is a parameter.

For simplicity, we always assume that

the value of the parameter s ∈ C is very general.

Putting the terms over a common denominator, we obtain a quartic
polynomial in the numerator. Hence the projective completion of this
smooth affine surface is a quartic surface in P3, and it has only rational
double points as its singularities. By the minimal desingularization, we
arrive at a K3 surface. We call this K3 surface the Apéry-Fermi K3
surface.
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Apéry

The “Apéry” in the Apéry-Fermi K3 surface is the mathematician who
proved in 1979 that the zeta value at 3

ζ(3) = 1.20206 . . .

is irrational. This number is now called the Apéry constant. His proof
consists of very acrobatic arguments and miraculous equalities.

Then, in the same year, Frits Beukers gave a very short and simple proof
based on Apéry’s arguments.

In 1984, Beukers and Peters constructed a one-dimensional family of K3
surfaces whose Picard-Fuchs equation is the differential equation related to
Apéry’s proof of irrationality of ζ(3). The general member of this family is
the Apéry-Fermi K3 surface.
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Fermi

The other name in the Apéry-Fermi K3 surface, “Fermi”, is the famous
physicist in the first half of the 20th century. He is famous for very many
things in particle physics and statistical mechanics. For example, the term
“fermion” comes from Fermi.

He studied electrons moving in a crystal, a periodic potential. Since
electrons are fermions, at most two electrons can occupy a single state.
So the occupied states at the zero temperature form a certain body in the
momentum space, and the boundary surface of this body is called the
Fermi surface. This surface explains the various physical properties of
metals.

Few people would define a metal as “a solid with a Fermi
surface.” This may nevertheless be the most meaningful definition
of a metal one can give today; . . .

A. R. Mackintosh
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Fermi surface

The affine surface

ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s

is the Fermi surface of the very simple toy model of electrons moving in a
crystal.

In 1989, Peters and Stienstra studied this surface and revealed that this
surface is birational to the K3 surface Beukers and Peters discovered in the
relation with Apéry’s proof. Peters and Stienstra calculated the
Néron–Severi lattice of the surface. They also studied the Picard-Fuchs
equation and the monodromy with respect to the parameter s.

Hence the name “Apéry-Fermi K3 surface”.
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Previous research

There exist many works on this beautiful K3 surface.

In 1996, Dolgachev introduced the notion of lattice polarized K3
surfaces. Peters and Stienstra showed that the Néron–Severi lattice
SX of X is isomorphic to the lattice M6, where

M6 := U ⊕ E8(−1)⊕ E8(−1)⊕ 〈−12〉 ∼= SX .

Here, U is a hyperbolic plane, E8(−1) is the negative-definite root
lattice of type E8, and 〈−12〉 is the lattice of rank 1 generated by a
vector with square-norm −12. Hence the Apéry-Fermi K3 surface is
an M6-lattice polarized K3 surface. Dolgachev determined, among
other things, the coarse moduli space of Apéry-Fermi K3 surfaces.

In 2004, Hosono and others used Apéry-Fermi K3 surfaces in the
study of the autoequivalences of derived category of its Fourier-Mukai
partner, a K3 surface with Picard number 1 and of degree 12.
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Previous research (continued)

The smooth 3-fold birational to

ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
+ ξ4 +

1

ξ4
= 0

is a rigid Calabi-Yau 3-fold, and its modularity was studied by van
Geemen and Nygaard (1995), Verrill (2000), and Ahlgren and Ono
(2000).

In 2007, Dardanelli and van Geemen presented the Apéry-Fermi K3
surfaces as the Hessian quartics of certain cubic surfaces.

In 2015, Mukai and Ohashi found another birational model of the
Apéry-Fermi K3 surface; the symmetric quartic surface Yt ⊂ P3

defined by

(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)2 = t x1x2x3x4,

where (x1 : x2 : x3 : x4) is a homogeneous coordinate system of P3

and t ∈ C is a parameter.
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Previous research (continued)

In 2019, Festi and van Straten gives an account on the relation of the
Apéry-Fermi K3 surface with quantum electrodynamics, a member of
the Apéry-Fermi pencil appears in the calculation of the Feynman
integrals of Bhabha scattering

e− + e+ → e− + e+.

In 2020, Bertin and Lecacheux determined all the Jacobian fibrations
of the Apéry-Fermi K3 surface by Kneser–Nishiyama method, and
studied the quotient by the 2-torsions.

. . . .
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Main result

We study the automorphism group Aut(X ) of the Apéry-Fermi K3 surface
X . Note that the affine surface

X ◦ : ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s

has the group (Z/2Z)3 oS3 of order 48 as its symmetry. But the full
automorphism group Aut(X ) is infinite.

Our main result is as follows:

Theorem

The automorphism group Aut(X ) is generated by a finite subgroup
Aut(X ,D0) of order 16 isomorphic to the dihedral group, and eight extra
automorphisms.

We explain the contents of this theorem more in detail.
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Main result (continued)

Theorem

Aut(X ) = 〈Aut(X ,D0), eight extra automorphisms〉.

The D0 in Aut(X ,D0) is a finite polyhedral cone in the nef cone NX of X :

D0 ⊂ NX ⊂ SX ⊗ R ∼= R1,18.

The nef cone NX has infinitely many walls, but the cone D0 has exactly 80
walls, and Aut(X ,D0) is the stabilizer subgroup in Aut(X ) of D0. The nef
cone NX is tessellated by the images of D0 by the action of Aut(X ), that
is, we have

NX =
⋃

g∈Aut(X )

Dg
0 ,

and if Dg
0 6= Dg ′

0 , then Dg
0 ∩ Dg ′

0 is contained in a linear subspace of
SX ⊗ R of codimension ≥ 1.
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Main result (continued)

Hence a fundamental domain of the action of Aut(X ,D0) on D0 is a
fundamental domain of the action of Aut(X ) on NX .

As a corollary, we obtain the following:

Corollary

The automorphism group Aut(X ) acts on the set C(A1) of smooth
rational curves transitively.

Let C(2A1) be the set of pairs of disjoint smooth rational curves.
Then the action of Aut(X ) on C(2A1) decomposes this set into two
orbits.

Let C(A2) be the set of pairs of smooth rational curves intersecting at
one point transversely. Then Aut(X ) acts on C(A2) transitively.

We also have some more results in the same vein.
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Method

We prove our results by the following procedure.

1 Describe the Néron–Severi lattice SX and the transcendental lattice
TX of X . This task has been already done by Peters and Stienstra.
It follows that Aut(X ) acts on SX faithfully, and hence we can regard
Aut(X ) as a subgroup of the orthogonal group O(SX ).

2 Apply Borcherds’ method to obtain a finite set of generators of
Aut(X ) lattice theoretically, namely, we obtain a set of 19× 19
matrices in O(SX ) that generate the subgroup Aut(X ). Borcherds’
method goes as follows:

a Embed SX into the even unimodular lattice L26 of rank 26 and
signature (1, 25).

b Calculate the tessellation of NX induced by the tessellation of the
positive cone of L26 by Conway chambers.

It turns out that, for the Apéry-Fermi K3 surface X , the induced
tessellation is simple.

3 Find geometric of generators of Aut(X ).
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Smooth rational curves

We make the projective completion X of the affine surface

X ◦ : ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s

in P6 by the following. Let X be defined in P6 by

u1 + u2 + u3 + v1 + v2 + v3 = s w ,

u1v1 − w2 = u2v2 − w2 = u3v3 − w2 = 0,

where (w : u1 : u2 : u3 : v1 : v2 : v3) is a homogeneous coordinate system
of P6 such that we have

ξi = ui/w = w/vi .

Then X has 12 ordinary nodes on the hyperplane H∞ = {w = 0} of P6.
On the other hand, the intersection H∞ ∩ X consists on 8 lines. Thus we
obtain 12 + 8 smooth rational curves Lγ1γ2γ3 on the minimal
desingularization X of X , where γ1, γ2, γ3 ∈ {−, 0,+}.
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Smooth rational curves (continued)

These lines form the following dual graph.

−−−

−−0

−−+

−0−

−0+

−+−

−+0
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0−−

0−+

0+−

0++

+−−

+−0

+−+

+0−

+0+

++−

++0

+++
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Smooth rational curves (continued)

We need some more smooth rational curves to generate SX .

Let σ, σ−1 ∈ C be the roots of the equation ξ + 1/ξ = s. For
k ∈ {1, 2, 3}, the intersection of the affine surface X ◦ ⊂ A3 and the plane

ξk = σ±1

is a union of two curves:

ξi +
1

ξi
+ ξj +

1

ξj
=

(ξi + ξj)(ξiξj + 1)

ξiξj
= 0,

where {i , j , k} = {1, 2, 3}. Let M◦kαβ be the curve on X ◦ ⊂ A3 obtained in
this way, where α, β ∈ {+,−} are defined in a suitable way. Taking the
strict transform of the closure of M◦kαβ, we obtain 12 smooth rational
curves Mkαβ on X .
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Néron–Severi lattice SX

Then Peters and Stienstra proved the following:

Theorem

The classes of these (12 + 8) + 12 smooth rational curves on X span the
Néron–Severi lattice SX of X , and SX is isomorphic to the lattice

M6 := U ⊕ E8(−1)⊕ E8(−1)⊕ 〈−12〉.

We can choose a basis of SX in such a way that the Gram matrix is

0 1
1 0

E8(−1)

E8(−1)

−12


,
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Néron–Severi lattice SX (continued)

where

E8(−1) =



−2 0 0 1 0 0 0 0
0 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
1 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


,

and that the classes of the 32 smooth rational curves are given as

L−−− : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−−0 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−−+ : [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
L−0− : [4, 3,−8,−5, . . . ,−4,−8,−12,−10,−8,−6,−3,−1]
L−0+ : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

. . .

. . .
M3−+ : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
M3+− : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
M3++ : [12, 11,−24,−16, . . . ,−48,−40,−30,−20,−10,−3]
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Lattice theoretic algorithms

Our description of SX is so explicit that we can do the following things by
automated lattice theoretic calculations.

For a given vector v ∈ SX , we can determine whether v is nef (resp.
ample) or not.

For a given vector r ∈ SX with 〈r , r〉 = −2, we can determine
whether r is the class of a smooth rational curve C .

Suppose that h ∈ SX is nef and 〈h, h〉 > 0. We can make the list of
the classes [C ] of smooth rational curves C that contract in the
projective model (X , h). In particular, we can calculate the type of
the rational double points on (X , h).

For an isometry g ∈ O(SX ), we can determine whether g ∈ Aut(X )
or not.

Suppose that the classes (f , z) of a fiber and a zero section of a
Jacobian fibration φ : X → P1 are given. We can calculate the
Mordell-Weil group of φ : X → P1 and its action on SX .

. . . .
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Chambers and tessellations

We fix terminologies and notation about lattice theory and hyperbolic
spaces. Let L be an even lattice of signature (1, l − 1) with l ≥ 2. A
positive cone of L is one of the two connected components of the space

{ x ∈ L⊗ R | 〈x , x〉 > 0 }.

We fix a positive cone PL, and denote the autochronous subgroup of O(L)
by

O(L,PL) := { g ∈ O(L) | Pg
L = PL }.

We then put
RL := { r ∈ L | 〈r , r〉 = −2 }.

For v ∈ L⊗ R with 〈v , v〉 < 0, let (v)⊥ be the real hyperplane in PL
defined by

(v)⊥ := { x ∈ PL | 〈x , v〉 = 0 }.
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Chambers and tessellations (continued)

The Weyl group W (L) is the subgroup of O(L,PL) generated by reflections

x 7→ x + 〈x , r〉r

into the mirrors (r)⊥ defined by vectors r ∈ RL.

Definition

A standard fundamental domain of the action of the Weyl group W (L) on
PL is the closure in PL of a connected component of the complement

PL \
⋃

r∈RL

(r)⊥

of all mirrors (r)⊥ associated with vectors r ∈ RL.

Then W (L) acts on the set of standard fundamental domains
simple-transitively.
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Induced tessellation

Let M be a primitive sublattice of L with signature (1,m − 1) with m ≥ 2:

M ↪→ L.

Let PM be the positive cone (M ⊗ R) ∩ PL of M.

Definition

An L/M-chamber is a closed subset D of PM containing a non-empty
open subset of PM such that D is of the form PM ∩ DL, where DL is a
standard fundamental domain of the action of W (L) on PL.

The positive cone PM is then tessellated by L/M-chambers.

According to this terminology, we can rephrase “standard fundamental
domain of the action of W (L) on PL” by “L/L-chamber”.
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Example

Let PX be the positive cone of SX containing an ample class. The nef cone

NX := { x ∈ PX | 〈x ,C 〉 ≥ 0 for all curves C on X }

of X is an SX/SX -chamber, and its walls are in one-to-one correspondence
with the smooth rational curves of X .

Example

Let L26 be an even unimodular lattice of rank 26 and signature (1, 25),
which is unique up to isomorphism. Conway (1983) determined the shape
of L26/L26-chambers. Hence we call an L26/L26-chamber a Conway
chamber. Conway showed that

the walls of a Conway chamber are in one-to-one correspondence with
the vectors of the Leech lattice Λ, and

O(L26,P26) is isomorphic to the group of affine isometries of Λ.
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Induced tessellation (continued)

The L/M-chambers make a tessellation of PM , and each M/M-chamber is
also tessellated by L/M-chambers.

In general, L/M-chambers are not congruent to each other. We say that
the tessellation by L/M-chambers is simple if all L/M-chambers are
congruent to each other. (In the figure below, the left one is not simple,
because the squares in PL cut out from PM line segments of different
lengths, whereas the right one is simple.)

,
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Borcherds method

We embed SX into L26 primitively, and consider the tessellation of the
SX/SX -chamber NX by L26/SX -chambers.

The crucial point of the whole work is that I found a primitive embedding
SX ↪→ L26 such that the tessellation by L26/SX -chambers is simple.

We obtained an L26/SX -chamber

D0 ⊂ NX

that has exactly 80 walls, and all other L26/SX -chambers are congruent to
D0. The stabilizer subgroup

Aut(X ,D0) := { g ∈ Aut(X ) | Dg
0 = D0 }

is a dihedral group of order 16, and its action on D0 decomposes the 80
walls in 10 orbits:

80 = 8 + 16 + 4 + 8 + 8 + 8 + 8 + 4 + 8 + 8.
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Borcherds method (continued)

A wall D0 ∩ (v)⊥ of D0 is outer if the L26/SX -chamber adjacent to D0

across the wall D0 ∩ (v)⊥ is outside of NX . Otherwise the wall is called
inner. A wall w of D0 is outer if and only if there exists a smooth rational
curve C such that w = D0 ∩ (C )⊥.
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Borcherds method (continued)

Among the

80 = 8 + 16 + 4 + 8 + 8 + 8 + 8 + 4 + 8 + 8

walls of D0, the 8 + 16 walls in the first and the second orbits are outer.

For each of the other 8 orbits o3, . . . , o10 of inner walls, we find an
automorphism g(oi ) that maps D0 to the L26/SX -chamber adjacent to D0

across a wall in the orbit oi , that is, the L26/SX -chamber D
g(oi )
0 shares a

wall w ∈ oi with D0.

Then Aut(X ) is generated by Aut(X ,D0) and the eight automorphisms
g(o3), . . . , g(o10).
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Geometric realization

The next task is to realize these automorphisms geometrically. We take
g(o4) as an example. Consider the configuration

L0−−

L−−+ L−−0 L−−− L−0− L−+−
L0+−L0−+

L+−+ L++−

The seven white nodes with the gray node form an affine Dynkin diagram
of type E7. Therefore we obtain a Jacobian fibration φ : X → P1 with the
zero section L+−+. The Mordell–Weil group is isomorphic to Z/2Z, and
its non-trivial element is given by the section L++−. The translation by
this non-trivial torsion section serves as g(o4).
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Looking at the faces of the finite polyhedral cone D0, we can prove many
geometric properties of X . For example, we obtain a set of defining
relations of Aut(X ) with respect to a certain set of generators.

Thank you very much for listening!
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