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Abstract

Conway theory is a theory about a certain hyperbolic lattice.

Néron–Severi lattices of K3 surfaces are hyperbolic lattices.

Borcherds’s method enables us to use Conway theory in the computation
of the automorphism groups of K3 surfaces.

We explain this method without going into too much detail.
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What can we do with Conway theory?

We illustrate, through an example, what we can achieve in the theory of
K3 surfaces with Conway theory via Borcherds’ method.

We consider the complex affine smooth surface defined by

ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s,

where ξ1, ξ2, ξ3 are coordinates of the 3-dimensional affine space A3 and
s ∈ C is a parameter.

For simplicity, we always assume that s ∈ C is very general. The projective
completion of this affine surface is a quartic surface in P3, and it has only
rational double points as its singularities. By the minimal resolution, we
arrive at a K3 surface. We call this K3 surface

an Apéry-Fermi K3 surface.
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What can we do with Conway theory? (continued)

This K3 surface has been studied extensively by many researchers.
I will explain the origin of the names “Apéry” and “Fermi”.

The Picard-Fuchs equation of a family of Apéry-Fermi K3 surfaces is
related to a recurrence relation associated with Apéry’s proof of the
irrationality of ζ(3). (Beukers and Peters.)

The real part of the affine surface

X ◦ : ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s

with s ∈ R is the Fermi surface of a toy model of a metal in the solid-state
physics. (Peters and Stienstra.)
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What can we do with Conway theory? (continued)

We study the automorphism group Aut(X ) of the Apéry-Fermi K3 surface
X . Note that the affine surface X ◦ above has the group (Z/2Z)3 ⋊S3 of
order 48 as its symmetry. The full automorphism group Aut(X ) is,
however, infinite. Our result is as follows:

Theorem

The automorphism group Aut(X ) is generated by a finite subgroup
Aut(X ,D0) of order 16 isomorphic to the dihedral group, and eight
additional automorphisms.

I will explain D0 later.
Moreover, we can describe these generators explicitly
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What is Conway theory?

A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form

〈 , 〉 : L× L→ Z.

We let the automorphism group O(L) of a lattice L (the orthogonal group
of L) act on L from the right: v 7→ vg for v ∈ L and g ∈ O(L).
A lattice L is even if 〈v , v〉 ∈ 2Z for all v ∈ L.
A lattice L is unimodular if the natural embedding L→ Hom(L,Z) given
by v 7→ 〈−, v〉 is an isomorphism.
A lattice L of rank n > 1 is hyperbolic if the signature of L⊗ R is
(1, n − 1). (Caution: This sign convention is opposite of that of standard
lattice theory. Ours is more suitable for algebraic geometry.)

Theorem

An even unimodular hyperbolic lattice of rank n exists if and only if
n ≡ 2 (mod 8) holds.
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What is Conway theory? (continued)

We also have the uniqueness.

Theorem

For n such that n ≡ 2 (mod 8), an even unimodular hyperbolic lattice Ln

of rank n is unique up to isomorphism.

The lattice

L2 = U =

[
0 1
1 0

]
is called a hyperbolic plane. We have

L2+8k
∼= U ⊕ E⊕k

8 ,

where E8 is the even unimodular negative-definite lattice of rank 8, which
is unique up to isomorphism.
Vinberg determined O(L10) and O(L18).

Conway determined O(L26).
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How to describe O(L)?

Let L be an even hyperbolic lattice. A positive cone of L is one of the two
connected components of the space

{ x ∈ L⊗ R | 〈x , x〉 > 0 }.

Let PL be a positive cone of L. Then we have

O(L) = O(L,PL)× {±1},

where O(L,PL) := { g ∈ O(L) | Pg
L = PL } is the stabilizer of PL.

For v ∈ L⊗ R with 〈v , v〉 < 0, we define

(v)⊥ := { x ∈ PL | 〈x , v〉 = 0 },

which is a real hyperplane of PL.
We say that r ∈ L is a (−2)-vector if 〈r , r〉 = −2. A (−2)-vector r defines
a reflection

sr : x 7→ x + 〈x , r〉r ∈ O(L,PL)
into the mirror (r)⊥.
I. Shimada (Hiroshima University) Conway Theory and K3 Surfaces 2025 March 14 8 / 25



How to describe O(L)? (continued)

The Weyl group W (L) is the subgroup of O(L,PL) generated by all the
reflections sr associated with (−2)-vectors r ∈ L.

Definition

A standard fundamental domain of the action of the Weyl group W (L) on
PL is the closure in PL of a connected component of the complement

PL \
∪

(r)⊥

of all mirrors (r)⊥ associated with (−2)-vectors r .

Then the Weyl group W (L) acts on the set of standard fundamental
domains simple transitively.
Moreover W (L) is generated by reflections with respect to the
(−2)-vectors defining the walls of a standard fundamental domain F .
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How to describe O(L)? (continued)

Let F be a standard fundamental domain, and we put

O(L,F ) := { g ∈ O(L) | F g = F }.

Then we have
O(L,PL) = W (L)⋊O(L,F ).

Hence all we need to do is to describe the set of walls of F , and calculate
the stabilizer subgroup O(L,F ).

Vinberg showed that, for L = L10 and L = L18, the standard fundamental
domain F has only finitely many walls: 10 walls and 19 walls, respectively.

For L = L26, F has infinitely many walls.
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Conway’s result

A Niemeier lattice is an even unimodular negative-definite lattice of rank
24. There exist exactly 24 isomorphism classes of Niemeier lattices. For
any Niemeier lattice N (for example, E⊕3

8 ), we have L26
∼= U ⊕ N.

The famous Leech lattice Λ is characterized as the unique Niemeier lattice
(up to isomorphism) that has no (−2)-vectors. (Other Niemeier lattices
are generated by (−2)-vectors up to finite index.)

Conway proved the following:

Theorem

We put
w0 := (1, 0, 0) ∈ U ⊕ Λ = L26.

Then the set
{ r ∈ L26 | 〈r , r〉 = −2, 〈w0, r〉 = 1 }

of Leech roots form the set of walls of a standard fundamental domain F .
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Conway’s result (continued)

The Leech roots are parametrized by vectors λ ∈ Λ as follows:

rλ = (a(λ), 1, λ) ∈ U ⊕ Λ,

where 2a(λ) + λ2 = −2. Hence we obtain the following:

Corollary

The group O(L26,F ) is isomorphic to the group Co∞ of affine isometries
of the Leech lattice Λ.

Note that Co0 := O(Λ) is of order

8, 315, 553, 613, 086, 720, 000,

and its quotient by {±1} is a simple group. The group Co∞ is the
semidirect product

Λ⋊ Co0.
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The Néron–Severi lattice of a K3 surface

Let X be a K3 surface. For simplicity, we suppose that X defined over C,
but the theory below can be applied to supersingular K3 surfaces in
positive characteristics.

The Néron–Severi lattice

SX := H2(X ,Z) ∩ H1,1(X )

is the group of numerical equivalence classes of divisors of X with the
intersection pairing. We assume that rank SX > 1. Then SX is an even
hyperbolic lattice. Let

PX ⊂ SX ⊗ R

be the positive cone of SX containing an ample class.
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The Néron–Severi lattice of a K3 surface (continued)

By Riemann-Roch, we see that the nef-and-big cone

NX := { x ∈ PX | 〈x ,C 〉 ≥ 0 for any curve C }

is a standard fundamental domain of W (SX ), or is the standard
fundamental domain of W (SX ) that contains an ample class. Note that
the class of a smooth rational curve C is a (−2)-vector:

〈C ,C 〉 = −2.

We have a more precise description of NX :

NX = { x ∈ PX | 〈x ,C 〉 ≥ 0 for any smooth rational curve C }

and a (−2)-vector r ∈ SX is the class of a smooth rational curve if and
only if the hyperplane (r)⊥ defines a wall of NX and r is outward from NX .

We have a natural homomorphism

Aut(X )→ O(SX ,NX ).
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Torelli theorem for complex K3 surfaces implies that

the kernel of Aut(X )→ O(SX ,NX ) is finite, and

the image is of finite index.

The kernel and cokernel are described by the period of X , and are easily
handled. Hence the essential part of the calculation of Aut(X ) is to
calculate O(SX ,NX )

Remark

Usually X contains infinitely many smooth rational curves. In fact,
Aut(X ) is finite if and only if X contains only finitely many smooth
rational curves, and such K3 surfaces have been classified by Kondo.

Remark

Conway theory can be regarded as a study of the nef-and-big cone of a
non-existing (← Caution!) K3 surface X with Néron–Severi lattice L26.
We can say Aut(X) ∼= Co∞.
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Borcherds’ method

An idea due to Borcherds is that we embed SX into L26 primitively and
to analyze NX by Conway theory.

We fix a primitive embedding

SX ↪→ L26.

Let P26 be the positive cone of L26 such that

PX = (SX ⊗ R) ∩ P26.

Recall that P26 is tessellated by standard fundamental domains of
W (L26), which we will call Conway chambers.

Definition

An induced chamber is a closed subset D of PX containing a non-empty
open subset of PX such that D is of the form PX ∩ DL, where DL is a
Conway chamber.
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Borcherds’ method (continued)

Observation 1.
Since P26 is tessellated by Conway chambers, the cone PX is also
tessellated by induced chambers. Since every (−2)-vector of SX is also a
(−2)-vector of L26, each wall of the standard fundamental domain NX is
the intersection of PX with a wall of a Conway chamber. Hence NX is
tessellated by induced chambers.

Observation 2.
In general, the induced chambers are not congruent to each other.
However the finiteness theorem of Siegel implies that the number of
congruence classes of induced chambers is finite. Therefore the number of
the Aut(X )-congruence classes of induced chambers is also finite.

Observation 3.
We can show the following. Suppose that the orthogonal complement
(SX ↪→ L26)

⊥ contains a (−2)-vector. Then each induced chamber has
only finitely many walls.

I. Shimada (Hiroshima University) Conway Theory and K3 Surfaces 2025 March 14 17 / 25



Borcherds’ method (continued)

We assume that (SX ↪→ L26)
⊥ contains a (−2)-vector.

Starting from an induced chamber D0 contained in NX , we execute the
following algorithm. We set

V := [D0], i := 1, G := { }.

While the counter i is ≤ |V |, we do the following:
Let Di be the ith element of the list V . We calculate the adjacent induced
chambers of Di .
For each adjacent induced chamber D ′,

if D ′ is not contained in NX , then do nothing,

if D ′ is contained in NX and is Aut(X )-congruent to some Dj ∈ V ,
add an element g ∈ Aut(X ) such that Dg

i = Dj to G , and

if D ′ is contained in NX and is not Aut(X )-congruent to any Dj ∈ V ,
then add Di to V .
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Borcherds’ method (continued)

This algorithm terminates, because
each induced chamber has only finitely many adjacent induced chambers,
and there exists only finitely many Aut(X )-congruence classes of induced
chambers.

When this algorithm terminates, we obtain a complete set V of
representatives of Aut(X )-congruence classes of induced chambers, and
a finite subset G of Aut(X ).

Proposition

The group Aut(X ) is generated by G and the finite subgroup

Aut(X ,D0) := { g ∈ Aut(X ) | Dg
0 = D0 }.

Hence we obtain a finite generating set of Aut(X ).
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Apéry-Fermi K3 surface revisited

Recall that the Apéry-Fermi K3 surface is the K3 surface birational to the
smooth affine surface

X ◦ : ξ1 +
1

ξ1
+ ξ2 +

1

ξ2
+ ξ3 +

1

ξ3
= s.

Let X be the Apéry-Fermi K3 surface. From the equation, we find 32
smooth rational curves on X . Then SX is of rank 19 generated by the
classes of these 32 smooth rational curves, and is isomorphic to

U ⊕ E8 ⊕ E8 ⊕ 〈−12〉,

where 〈−12〉 is the lattice of rank 1 generated by a vector with
square-norm −12.

From the polarization of degree 4 given by X ◦ ↪→ A3 and the singularities
of the projective completion of X ◦, we describe the nef-and-big cone NX .
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Apéry-Fermi K3 surface revisited (continued)

We embed SX into L26 primitively in such a way that the orthogonal
complement is isomorphic to the root lattice of type D5 + A2.
We then find an induced chamber D0 ⊂ NX . It turns out that D0 has
exactly 80 walls, and Aut(X ,D0) is isomorphic to a dihedral group of order
16. The action Aut(X ,D0) on D0 decomposes the 80 walls in 10 orbits:

80 = 8 + 16 + 4 + 8 + 8 + 8 + 8 + 4 + 8 + 8.

Among the 80 walls, 8 + 16 walls are walls of NX ; they are defined by
(−2)-vectors in SX . Hence the corresponding adjacent chambers are
outside of NX .
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Apéry-Fermi K3 surface revisited (continued)

The other 56 walls are not walls of NX ; we cannot take the defining vector
in SX of square norm −2. Hence the corresponding adjacent chambers are
inside of NX .

These inner adjacent chambers are all Aut(X )-congruent to D0. This
means that the algorithm described above terminates at i = 1. Hence
Aut(X ) is generated by Aut(X ,D0) and eight extra automorphisms, which
correspond to the eight orbits of inner walls.

Thus we obtain the following:

Theorem

The automorphism group Aut(X ) is generated by a finite subgroup
Aut(X ,D0) of order 16 isomorphic to the dihedral group, and eight
additional automorphisms.
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Another example: a double plane of degree 6

As another application, we calculate the automorphism group of the
complex K3 surface Xf ,g obtained as the minimal resolution of the double
cover of P2 defined by

w2 = f (x , y , z)2 + g(x , y , z)3, (1)

where f and g are very general homogeneous polynomials on P2 of degree
3 and 2, respectively.

Remark

The plane curve f (x , y , z)2 + g(x , y , z)3 = 0 is called a torus sextic, and
was investigated by Pho Duc Tai and Mutsuo Oka.
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Another example: a double plane of degree 6 (continued)

The rank of SX for X = Xf ,g is 13. We find a primitive embedding

SX ↪→ L26

such that, by the algorithm of Borcherds’ method, we find six
Aut(X )-congruence classes of induced chambers.

Theorem

The automorphism group Aut(Xf ,g ) of Xf ,g is generated by 463
involutions associated with double coverings Xf ,g → P2 and 360 elements
of infinite order in Mordell–Weil groups of Jacobian fibrations of Xf ,g .
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The last remark

In many cases, the number of Aut(X )-congruence classes of induced
chambers is extremely large. In these cases, the algorithm of Borcherds’
method does not terminate in practical time.

Thank you very much for your attention!
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