

# Del Pezzo surfaces of degree one and examples of Zariski multiples

Ichiro Shimada

Singularities and Algebraic Geometry  
University of Phan Thiet  
2026 January 26

# Zariski multiples

The notion of **Zariski multiples** concerns the topological methods in classical complex projective geometry.

The knot theory studies the embedding topology of finite unions of circles (links) in  $S^3$ .

We study complex projective plane curves  $C \subset \mathbb{P}^2$  (possibly reducible) and investigate their embedding topology in  $\mathbb{P}^2$ , that is, we explore an analogue of knot theory within the framework of algebraic geometry.

## Example

In the 1930s, in his study of equisingular families of plane curves, Zariski found a pair of plane curves  $C_1$  and  $C_2$  of degree 6 such that

- ① each of  $C_1$  and  $C_2$  has six ordinary cusps as its only singularities, but
- ②  $\pi_1(\mathbb{P}^2 \setminus C_1) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ , whereas  $\pi_1(\mathbb{P}^2 \setminus C_2) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ , where  $*$  denotes the free product.

# Zariski multiples

In 1994, Artal Bartolo revisited Zariski's work, and formulated the notion of *Zariski pairs*.

In this talk, we work over  $\mathbb{C}$ , and by a plane curve, we mean a complex reduced, possibly reducible, projective plane curve.

## Definition

We say that a pair of plane curves  $C_1$  and  $C_2$  of the same degree form a *Zariski pair* if

- ① there is a tubular neighborhood  $T_i$  of  $C_i$  in  $\mathbb{P}^2$  for  $i = 1$  and  $2$  such that  $(T_1, C_1)$  is homeomorphic to  $(T_2, C_2)$ , but
- ②  $(\mathbb{P}^2, C_1)$  and  $(\mathbb{P}^2, C_2)$  are not homeomorphic.

The first condition can be rephrased as “ $C_1$  and  $C_2$  have the same combinatorial type of singularities”, and the second condition means that they differ in their embedding topology.

## Definition

A collection of  $N$  plane curves of the same degree is called a *Zariski  $N$ -tuple* if any two in the collection form a Zariski pair.

Since this seminal definition by Artal Bartolo (1994), many Zariski multiples have been constructed using a wide variety of methods.

The notion of Zariski multiples itself has diversified, and many variants have been introduced; for example, arithmetic Zariski multiples,  $\pi_1$ -Zariski multiples, Alexander Zariski multiples, . . . .

In short, the construction of Zariski multiples has served as a good testing ground for various techniques in the study of embedding topology of plane curves.

# Our result

In this talk, I will explain a construction of a Zariski  $N$ -tuple of plane curves of degree  $127 = 1 + 6 + 2 \times 60$ , where

$$N > 2.77 \times 10^{26}.$$

This lower bound,  $2.77 \times 10^{26}$ , is larger than Avogadro's number. It is approximately equal to the number of  $\text{H}_2\text{O}$  molecules contained in about 8 liters of water.

Our method is very elementary, and is based on the classical theory of del Pezzo surfaces and the Weyl groups  $W(E_8)$ .

So we start by reviewing the well-known properties of Pezzo surfaces.

## Definition

A smooth projective surface  $X$  is called a *del Pezzo surface* of degree  $d$  if its anti-canonical class  $\alpha_X := [-K_X]$  is ample and of self-intersection number  $\langle \alpha_X, \alpha_X \rangle = d$ .

We consider only the cases where  $d = 1, 2, 3$ , and put

$$n := 9 - d.$$

The Picard lattice  $\text{Pic}(X)$  of a del Pezzo surface  $X$  of degree  $d$  is of rank  $n + 1$ , and is canonically isomorphic to  $H^2(X, \mathbb{Z})$ . The surface  $X$  is obtained by a blowing-up

$$\beta: X \rightarrow \mathbf{P}^2$$

of  $\mathbf{P}^2$  at distinct  $n$  points, and  $\text{Pic}(X)$  has a basis  $h, e_1, \dots, e_n$ , where  $h$  is the class of the pullback of a line, and  $e_1, \dots, e_n$  are the classes of exceptional curves.

With respect to this basis, the Gram matrix of  $\text{Pic}(X)$  is

$$\begin{pmatrix} 1 & & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \end{pmatrix},$$

and the anti-canonical class  $\alpha_X \in \text{Pic}(X) = H^2(X, \mathbb{Z})$  is written as

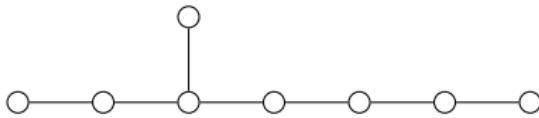
$$\alpha_X = (3, -1, \dots, -1) = 3h - e_1 - \dots - e_n.$$

Then we can easily prove that its orthogonal complement

$$R(X) := (\alpha_X)^\perp$$

in  $\text{Pic}(X)$  is a *negative-definite* root lattice of Dynkin type type  $E_n$ , namely,  $R(X)$  has a basis  $r_1, \dots, r_n$  consisting of  $(-2)$ -vectors whose dual graph is the ordinary Dynkin diagram of type  $E_n$ .

Below is the Dynkin diagram of type  $E_8$ :



Let  $W(R(X)) \cong W(E_n)$  be the Weyl group of the lattice  $R(X)$ , that is, the subgroup of the orthogonal group  $O(R(X))$  of  $R(X)$  generated by reflections with respect to  $(-2)$ -vectors.

The group  $W(E_n)$  has a generating set of  $n$  reflections with the defining relations given by the Dynkin diagram of type  $E_n$ .

| $d$ | $n$ | $W(E_n)$                       | order     |
|-----|-----|--------------------------------|-----------|
| 3   | 6   | $W(E_6) \cong U_4(2).2$        | 51840     |
| 2   | 7   | $W(E_7) \cong 2 \times O_7(2)$ | 2903040   |
| 1   | 8   | $W(E_8) \cong 2.O_8^+(2).2$    | 696729600 |

We have

$$O(R(X)) = \begin{cases} W(E_6).2 & \text{if } d = 3, \\ W(E_7) & \text{if } d = 2, \\ W(E_8) & \text{if } d = 1. \end{cases}$$

We put

$$O(\text{Pic}(X), \alpha_X) := \{ g \in O(\text{Pic}(X)) \mid \alpha_X^g = \alpha_X \}.$$

The following is a purely lattice-theoretic result,  
and is proved by the theory of discriminant forms of even lattices.

### Proposition

*The image of the natural injective homomorphism*

$$O(\text{Pic}(X), \alpha_X) \hookrightarrow O(R(X))$$

*is equal to  $W(R(X)) \subset O(R(X))$ .*

# Monodromy

Let  $f: \mathcal{X} \rightarrow \mathcal{U}$  be a family of del Pezzo surfaces of degree  $d$  over a smooth and irreducible parameter space  $\mathcal{U}$ .

For a point  $u$  of  $\mathcal{U}$ , we put  $X_u := f^{-1}(u)$  and  $\alpha_u := \alpha_{X_u}$ .

We choose a base point  $b \in \mathcal{U}$ . The local system

$$R^2 f_* \mathbb{Z} \rightarrow \mathcal{U}$$

is a family of the lattices  $\text{Pic}(X_u) \cong H^2(X_u, \mathbb{Z})$  with a section  $u \mapsto \alpha_u$ .

Hence we obtain a monodromy homomorphism

$$\Phi : \pi_1(\mathcal{U}, b) \rightarrow \text{O}(\text{Pic}(X_b), \alpha_b) \cong W(R(X_b)).$$

We investigate the surjectivity of the monodromy homomorphism  $\Phi$ .

## Remark

We have the classical theory of the monodromy on vanishing cycles of  $ADE$ -singularities due to Brieskorn, and the theory of Mordell-Weil lattices of type  $E_n$  with large Galois groups due to Shioda.

We pursue an alternative approach.

# Lines on a del Pezzo surface

A smooth rational curve  $\ell$  on  $X$  is called a *line* if  $\langle \ell, \alpha_X \rangle = 1$ .  
The set of lines in  $X$  is identified with

$$L(X) := \{ \lambda \in \text{Pic}(X) \mid \langle \lambda, \lambda \rangle = -1, \langle \lambda, \alpha_X \rangle = 1 \},$$

and hence we can enumerate all elements of  $L(X)$  explicitly.

The numbers of lines are

$$|L(X)| = \begin{cases} 27 & \text{for } d = 3, \\ 56 & \text{for } d = 2, \\ 240 & \text{for } d = 1. \end{cases}$$

Let  $L^{[n]}(X)$  denote the set of all ordered  $n$ -tuples

$$\lambda = [\lambda_1, \dots, \lambda_n]$$

of lines such that  $\langle \lambda_i, \lambda_j \rangle = 0$  for any  $i, j$  with  $i \neq j$ .

We have the following purely lattice-theoretic result, which can be verified by a brute-force computation for  $n = 6, 7, 8$ .

### Proposition

*The natural action of  $O(\text{Pic}(X), \alpha_X) \cong W(R(X))$  on  $L^{[n]}(X)$  is free and transitive.*

For  $\lambda = [\lambda_1, \dots, \lambda_n] \in L^{[n]}(X)$ , we have a birational morphism

$$\beta_\lambda : X \rightarrow \mathbf{P}(X/\lambda)$$

to a projective plane that is the contraction of the lines  $\ell_1, \dots, \ell_n$  whose classes are  $\lambda_1, \dots, \lambda_n$ . The variety of ordered  $n$  points on  $\mathbf{P}^2$  that can be the centers of  $\beta_\lambda$  for some  $X$  and some  $\lambda \in L^{[n]}(X)$  via some isomorphism  $\mathbf{P}(X/\lambda) \cong \mathbf{P}^2$  is irreducible, since it is a Zariski open subset of  $(\mathbf{P}^2)^n$ .

Using this fact and the above lattice theoretic proposition, we can prove the surjectivity of  $\Phi: \pi_1(\mathcal{U}, b) \rightarrow W(E_n)$  for many cases.

# Family of cubic surfaces

Let  $X$  be a del Pezzo surface of degree  $d = 3$ . Then  $|\alpha_X|$  embeds  $X$  in  $\mathbb{P}^3$  as a smooth cubic surface. Conversely, every smooth cubic surface is the anti-canonical model of a del Pezzo surface of degree 3.

We fix a projective space  $\mathbb{P}^3$ , and consider the family  $\mathcal{X} \rightarrow \mathcal{U}$  of smooth cubic surfaces, where  $\mathcal{U}$  is the Zariski open subset of  $|\mathcal{O}_{\mathbb{P}^3}(3)| \cong \mathbb{P}^{19}$  parameterizing all smooth cubic surfaces.

The following reproduces the result of Harris (1979) on the Galois group of 27 lines in a smooth cubic surface.

## Proposition

*For the family  $\mathcal{X} \rightarrow \mathcal{U}$  of smooth cubic surfaces, the monodromy homomorphism  $\Phi$  is surjective onto the Weyl group  $W(R(X_b))$  of type  $E_6$ .*

# Family of quartic double planes

Let  $X$  be a del Pezzo surface of degree  $d = 2$ . Then  $|\alpha_X|$  realizes  $X$  as a double cover  $X \rightarrow \mathbb{P}^2$  branching along a smooth quartic curve. Conversely, every double plane branching along a smooth quartic curve is the anti-canonical model of a del Pezzo surface of  $d = 2$ . The 56 lines in  $X$  are mapped to the 28 bitangents of the branch curve by two-to-one map.

Let  $\mathcal{U}$  be the Zariski open subset of  $|\mathcal{O}_{\mathbb{P}^2}(4)| \cong \mathbb{P}^{14}$  that parameterizes all smooth quartic curves, and we consider the family  $\mathcal{X} \rightarrow \mathcal{U}$  of smooth quartic double planes.

## Proposition

*For the family  $\mathcal{X} \rightarrow \mathcal{U}$  of smooth quartic double planes, the monodromy  $\Phi$  is surjective onto the Weyl group  $W(R(X_b))$  of type  $E_7$ .*

A result concerning the Galois group of the 28 bitangents of a smooth quartic curve had been proved in Harris (1979).

# Bi-anti-canonical models of del Pezzo surfaces of degree 1

Let  $X$  be a del Pezzo surface of degree  $d = 1$ . Then the linear system  $|2\alpha_X|$  of bi-anti-canonical divisors gives rise to a double covering

$$X \rightarrow Q \subset \mathbb{P}^3$$

of a singular quadric surface  $Q$  of rank 3 (a quadric cone) that branches along  $B \cup \{V\}$ , where  $B$  is a smooth member of  $|\mathcal{O}_Q(3)|$  and  $V \in Q$  is the vertex. Conversely, for a quadric cone  $Q$  with the vertex  $V \in Q$  and a smooth member  $B \in |\mathcal{O}_Q(3)|$ , the double cover  $X \rightarrow Q$  branching along  $B \cup \{V\}$  is the  $|2\alpha_X|$ -model of a del Pezzo surface  $X$  of  $d = 1$ .

We fix a quadric cone  $Q \subset \mathbb{P}^3$ . Let  $\mathcal{U}$  be the Zariski open subset of  $|\mathcal{O}_Q(3)| \cong \mathbb{P}^{15}$  parameterizing all smooth members, and consider the family  $\mathcal{X} \rightarrow \mathcal{U}$  of  $|2\alpha_X|$ -models of del Pezzo surfaces with  $d = 1$ .

## Proposition

*The monodromy homomorphism  $\Phi$  for this family  $\mathcal{X} \rightarrow \mathcal{U}$  is surjective onto the Weyl group  $W(R(X_b))$  of type  $E_8$ .*

From now on, we consider only the case  $d = 1$ . Note that

$$\mathrm{Pic}(X_b) = \mathbb{Z}\alpha_b \oplus R(X_b).$$

### Definition

The deck-transformation of the bi-anti-canonical model  $X_b \rightarrow Q$  is called the *Bertini involution*.

Let  $B_b \in |\mathcal{O}_Q(3)|$  be the branch curve corresponding to  $b$ .

### Definition

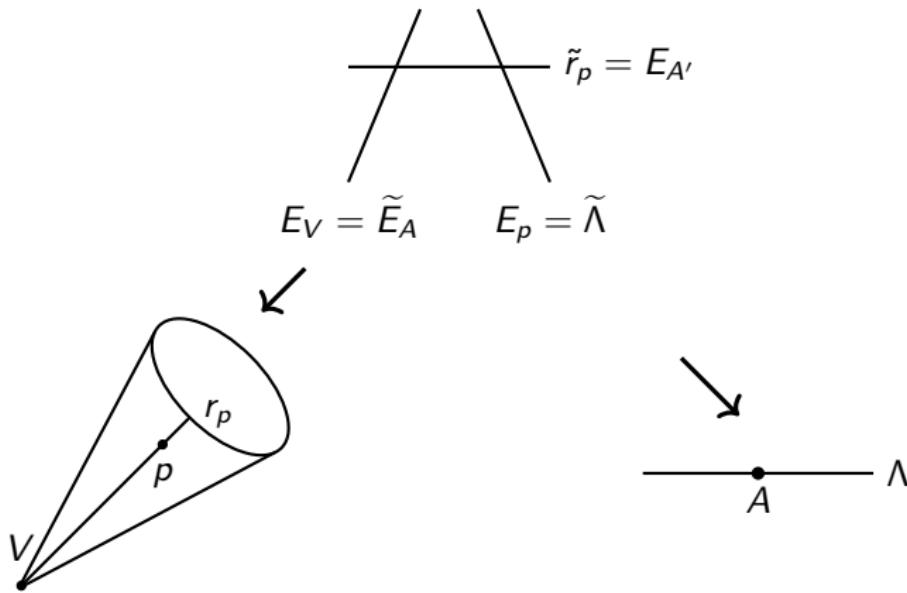
A plane section  $H \cap Q$  of  $Q$ , where  $H$  is a linear plane in  $\mathbb{P}^3$ , is called a *tangent plane section for  $B_b$*  if  $V \notin H$  and the local intersection number at each intersection point of  $H$  and  $B_b$  is 2.

### Proposition

*There are exactly 120 tangent plane sections for  $B_b$ , and the double cover  $X_b \rightarrow Q$  maps the 240 lines in  $X_b$  to the tangent plane sections of  $B_b$  by two-to-one mapping.*

# Plane curves associated with del Pezzo surfaces of degree 1

The quadric cone  $Q \subset \mathbb{P}^3$  is ruled by lines passing through the vertex  $V$ . We choose a smooth point  $p \in Q \setminus \{V\}$ . Then the projection from  $p$  induces a birational map  $\pi_p: Q \dashrightarrow \mathbb{P}^2$ . We describe  $\pi_p$  in detail.



This birational map  $\pi_p$  defines a line  $\Lambda \subset \mathbb{P}^2$  and a point  $A \in \Lambda$ . We call this pair  $(A, \Lambda)$  a *frame*.

The line  $r_p \subset Q$  is contracted to the point  $A$ . Every member of the ruling of  $Q$  other than  $r_p$  is mapped to a line passing through  $A$ .

A plane section  $H \cap Q$  not containing  $V$  and  $p$  is mapped to a smooth conic that is passing through  $A$  and is tangent to  $\Lambda$  at  $A$ .

The branch curve  $B_b \subset Q$  is mapped to a sextic curve on  $\mathbb{P}^2$  that has a singular point at  $A$ . We investigate the image of  $B_b$  and its 120 tangent plane sections more closely.

# A combinatorial type $\sigma_k$ of plane curves

## Definition

A germ  $(C, 0)$  of isolated plane curve singularity is a  $t_m$ -singularity if  $C$  consists of  $m$  smooth local branches and each pair of the local branches has intersection number 2.

## Definition

Let  $C \subset \mathbb{P}^2$  be a plane curve with a  $t_m$ -singularity at  $A \in C$ . The common tangent line  $\Lambda \subset \mathbb{P}^2$  to the local branches of  $C$  at  $A$  is called the *tangent line to  $C$  at  $A$* .

## Definition

A plane curve  $C$  of degree 6 is called a  $t_3$ -sextic if  $\text{Sing}(C)$  consists of a single point  $A$ , and  $A \in C$  is a  $t_3$ -singular point.

A  $t_3$ -sextic with the singular point  $A$  and the tangent line  $\Lambda$  at  $A$  is called a  $t_3$ -sextic *in the frame*  $(A, \Lambda)$ .

### Lemma

For a fixed  $(A, \Lambda)$ , the variety  $\mathcal{T}$  parameterizing all  $t_3$ -sextics in the frame  $(A, \Lambda)$  is a Zariski open subset of  $\mathbb{P}^{15}$ .

For a point  $t \in \mathcal{T}$ , let  $C_t \subset \mathbb{P}^2$  denote the corresponding  $t_3$ -sextic in the frame  $(A, \Lambda)$ .

Now we consider the frame  $(A, \Lambda)$  determined by the birational projection  $\pi_p: Q \dashrightarrow \mathbb{P}^2$ . Recall that the parameter space  $\mathcal{U} \subset |\mathcal{O}_Q(3)|$  of all branch curves  $B_u$  of  $X \rightarrow Q$  is of dimension 15.

### Proposition

For a general  $u \in \mathcal{U}$ , the image of  $B_u \subset Q$  by  $\pi_p: Q \dashrightarrow \mathbb{P}^2$  is a  $t_3$ -sextic in the frame  $(A, \Lambda)$ .

For a general  $t \in \mathcal{T}$ , the image of  $C_t$  by the inverse of the birational map  $\pi_p: Q \dashrightarrow \mathbb{P}^2$  is  $B_u$  for some  $u \in \mathcal{U}$ .

Thus,  $\pi_P$  induces a birational map between the 15-dimensional varieties  $\mathcal{U}$  and  $\mathcal{T}$ .

Let  $u \in \mathcal{U}$  be a general point, and let  $C_t$  be the  $t_3$ -sextic in the frame  $(A, \Lambda)$  corresponding to  $B_u$ .

### Definition

A smooth conic  $\Gamma$  is said to be a *special tangent conic* of  $C_t$  if the following hold;

- the conic  $\Gamma$  passes through  $A$ , and  $C_t + \Gamma$  has  $t_4$ -singularity at  $A$ , and
- at every intersection point of  $C_t$  and  $\Gamma$  other than  $A$ , the intersection multiplicity is 2.

### Proposition

*The  $t_3$ -sextic  $C_t$  has exactly 120 special tangent conics, and they are the images of 120 special tangent plane sections of  $B_u$ .*

For a special tangent conic  $\Gamma$ , we put

$$\text{Tac}(\Gamma) := \text{Sing}(C_t + \Gamma) \setminus \{A\}.$$

Recall that  $u \in \mathcal{U}$  is a general point and hence the corresponding  $t$  is a *general* point of  $\mathcal{T}$

### Proposition

*The special tangent conics  $\Gamma_1, \dots, \Gamma_{120}$  of  $C_t$  are in a general position, in the sense that*

- any two of  $\Gamma_1, \dots, \Gamma_{120}$  have local intersection number 2 at  $A$ ,
- each  $\text{Tac}(\Gamma_i)$  consists of 3 tacnodes of  $C_t + \Gamma_i$ ,
- the sets  $\text{Tac}(\Gamma_1), \dots, \text{Tac}(\Gamma_{120})$  are disjoint to each other, and
- the singular points of the union  $C_t + \Gamma_1 + \dots + \Gamma_{120}$  other than  $A$  and the tacnodes in  $\text{Tac}(\Gamma_1), \dots, \text{Tac}(\Gamma_{120})$  are ordinary nodes.

For a subset  $\Sigma$  of  $\{\Gamma_1, \dots, \Gamma_{120}\}$ , we consider the plane curve

$$D(\Sigma) := \Lambda + C_t + \sum_{\Gamma_i \in \Sigma} \Gamma_i.$$

## Corollary

If  $|\Sigma| = |\Sigma'|$ , then  $D(\Sigma)$  and  $D(\Sigma')$  have the same combinatorial type of singularities.

## Definition

The combinatorial type of singularities of  $D(\Sigma)$  is denoted by  $\sigma_k$ , where  $k = |\Sigma|$ .

The curve of combinatorial type  $\sigma_k$  is of degree  $7 + 2k$ , and its singularities consist of one  $t_{4+k}$ -singular point,  $3k$  tacnodes, and  $k(k - 1)$  ordinary nodes.

For a fixed  $C_t$ , there are

$$\binom{120}{k}$$

curves  $D(\Sigma)$  with combinatorial type of singularities  $\sigma_k$ . We classify these curves by their embedding topology into  $\mathbb{P}^2$ .

# Embedding topology into $\mathbb{P}^2$

We have bijections

$$\begin{aligned} & \{\text{special tangent conics of } C_t\} \\ & \cong \{\text{special tangent plane sections of } B_u\} \\ & \cong \{\text{lines on } X_u\}/\langle \text{Bertini involution} \rangle \\ & \cong \{(-2)\text{-vectors in } R(X_u)\}/\langle \pm 1 \rangle, \end{aligned}$$

where the first  $\cong$  comes from the projection  $\pi_p: Q \dashrightarrow \mathbb{P}^2$ ,  
the second  $\cong$  comes from the double covering  $X_u \rightarrow Q$ , and  
the third  $\cong$  comes from  $\text{Pic}(X_u) = \mathbb{Z}\alpha_X \oplus R(X_u)$ .

We put

$$\overline{\Delta}(X_u) := \{(-2)\text{-vectors in } R(X_u)\}/\langle \pm 1 \rangle.$$

Then, by these bijections, the set of all choices  $\Sigma$  of  $k$  special tangent conics of  $C_t$  is identified with

$$\binom{\overline{\Delta}(X_u)}{k}.$$

# Main theorem

Recall that the monodromy action of  $\pi_1(\mathcal{U}, u)$  on  $R(X_u)$  factors through a surjection  $\pi_1(\mathcal{U}, u) \rightarrow W(R(X_u))$ , and hence its action on  $\overline{\Delta}(X_u)$  factors through a surjection

$$\pi_1(\mathcal{U}, u) \rightarrow \overline{W}(R(X_u)) = W(R(X_u))/\langle \pm 1 \rangle.$$

Our main theorem is as follows:

## Theorem

Let  $\Sigma$  and  $\Sigma'$  be two choices of  $k$  special tangent conics of  $C_t$  corresponding to

$$s, s' \in \binom{\overline{\Delta}(X_u)}{k}.$$

Then  $D(\Sigma)$  and  $D(\Sigma')$  have the same embedding topology into  $\mathbb{P}^2$  if and only if  $s$  and  $s'$  are in the same orbit under the action of  $\overline{W}(R(X_u))$ .

## A rough idea of the proof

The homemorphism type of  $(\mathbb{P}^2, D(\Sigma))$  determines the lattice theoretic data of the corresponding point  $s$  up to the action of the  $\text{Aut}$  of lattice structure (that is,  $W(E_8)$ ). Essentially, the lattice theoretic data is the homology of the double plane of  $\mathbb{P}^2$  branched along  $C_t$  and the classes of pull-backs of its special tangent conics.

Conversely, if  $s$  and  $s'$  have the same lattice theoretic data, then they are connected by a geometric monodromy, because of the surjectivity of

$$\pi_1(\mathcal{U}) \rightarrow W(E_8).$$

It is obvious that if  $s$  and  $s'$  are connected by geometric monodromy, then  $(\mathbb{P}^2, D(\Sigma))$  and  $(\mathbb{P}^2, D(\Sigma'))$  are homeomorphic, because  $D(\Sigma)$  can be deformed continuously to  $D(\Sigma')$  in  $\mathbb{P}^2$ . □

Therefore we can classify the curves  $D(\Sigma)$  of type  $\sigma_k$  by their embedding topology by means of purely lattice-theoretic computation, namely, by calculating the orbit decomposition of

$$\binom{\{\text{the roots of the } E_8\text{-lattice}\}/\langle \pm 1 \rangle}{k}$$

under the action of  $W(E_8)/\langle \pm 1 \rangle$ , which is of order 348,364,800.

### Theorem

*For each integer  $k$  satisfying  $1 < k < 119$ , there is a Zariski  $N(k)$ -tuple consisting of plane curves of degree  $7 + 2k$ , where*

$$N(k) \geq \frac{1}{348364800} \binom{120}{k}.$$

The values of  $N(k) = N(120 - k)$  for small  $k$  are as follows:

|        |   |   |   |    |    |     |      |      |       |
|--------|---|---|---|----|----|-----|------|------|-------|
| $k$    | 1 | 2 | 3 | 4  | 5  | 6   | 7    | 8    | 9     |
| $N(k)$ | 1 | 2 | 5 | 15 | 48 | 212 | 1116 | 7388 | 56946 |

We have

$$N(60) > 2.77 \times 10^{26}.$$

**A preprint is available from arXiv:2507.15210**

**Thank you very much for listening!**