固体物理学 I 講義ノート

井野明洋 ino@hiroshima-u.ac.jp

広島大学

2017年10月17日

第3章

比熱と格子振動

― 破綻する等分配則

古典論の限界は、固体比熱の温度依存性を説明できないことで表面化する。 そこで、格子 振動を量子化して、フォノンを導入する。 その成功は、固体理論の方向性を指し示すこと になる。

3.1 導入

■ 自由度と比熱

等分配則 (low of equipartition) —
運動の自由度ひとつあたり
$$\frac{k_{\rm B}T}{2}$$
のエネルギーが配分される。 (3.1)

ただし、T は絶対温度、 $k_{\rm B}$ はボルツマン定数を表す。 単純明快な法則で、古典統計力学 の金字塔だ。 自由度の数を $N_{\rm f}$ とおくと、内部エネルギーが $U = \frac{N_{\rm f}k_{\rm B}T}{2}$ になるので、定 積熱容量 は $C_v \stackrel{\rm def.}{=} \frac{dU}{dT} = \frac{N_{\rm f}k_{\rm B}}{2}$ (3.2)

で与えられる。 つまり、自由度ひとつあたりの熱容量は $\frac{k_B}{2}$ になる。 等分配則に従えば、 比熱の測定は 自由度を数えている ことになる。

■ 気体の比熱

単原子の気体の自由度は p_x 、 p_y 、 p_z で、原子あたり3つ。分子の数をNとすると、自 由度の数は $N_f = 3N$ で、定積比熱は $\frac{C_v}{Nk_B} = 1.5$ と予想される。二原子分子の気体の自 由度は p_x 、 p_y 、 p_z 、 ℓ_{θ} 、 ℓ_{φ} で、分子あたり5つ。従って、 $N_f = 5N$ より、定積比熱は $\frac{C_v}{Nk_B} = 2.5$ と予想される。図 3.1の実験値は、単原子気体の定圧比熱がほぼ $\frac{C_p}{Nk_B} = 2.5$ 、 二原子分子気体の軽元素側で $\frac{C_p}{Nk_B} \simeq 3.5$ を示している。気体は膨張するときに仕事をす るので、マイヤーの関係式 $C_p = C_v + Nk_B$

が成り立つことに注意すると、等分配則に従う実験結果になる。等分配則が予想する熱容量は、気体分子の種類や質量に依存せず、自由度の数 N_f だけで決まる。

図 3.1 気体の比熱。 室温 (25°C) における定圧比熱 C_p/Nk_B の実験値 [1,2]。 気体では $C_p = C_v + Nk_B$ に注意せよ。

■ 固体の比熱

次に、固体の比熱の実験値を、図 3.2 に示す。 さまざまな単元素固体の室温比熱^{*1}を見 渡すと、かなり値がばらついているものの、大部分が $\frac{C}{Nk_{\rm B}}$ =3 付近に集中している。 こ

^{*1} データの入手性から、定圧比熱を採用した。 ただし、固体の熱膨張は気体に比べて格段に小さいため、 定圧比熱と定積比熱の違いは、室温で数 % 程度である。

の傾向は、デュロン=プティ則 (Dulong-Petit law) と呼ばれ、早くも 1819 年に発見さ れている。 これが 等分配則で理解できる ことが、1871 年、ボルツマンによって示され た。 図 3.3 のように、それぞれの原子が、ポテンシャル $V(\mathbf{r}_i) \simeq \frac{K}{2} \mathbf{r}_i^2$ によって結晶の格子 点に束縛され、調和振動していると考える。 $\mathbf{r}_i = (x_i, y_i, z_i)$ は *i* 番目の原子の変位ベクト ルを表す。 原子の数を N とすると、系の全エネルギーは

$$U = \sum_{i=1}^{N} \left[\frac{p_{xi}^2 + p_{yi}^2 + p_{zi}^2}{2M} + \frac{K\left(x_i^2 + y_i^2 + z_i^2\right)}{2} \right]$$
(3.3)

で与えられる。 $\mathbf{p}_i = (p_{xi}, p_{yi}, p_{zi})$ は *i* 番目の原子の運動量ベクトルを表す。 等分配則によ れば、比熱は、原子の質量 *M* やばね定数 *K* によらず、自由度の数だけで決まる。 原子あ たりの自由度が p_x 、 p_y 、 p_z 、*x*、*y*、*z*の6つなので、 $\frac{C_v}{Nk_B} = 3$ が導出される。

図 3.2 単元素固体の比熱。 室温 (25°C) における定圧比熱 C_p/Nk_B の実験値^{*1} [1,2]。 固体では $C_p \simeq C_v$ に注意せよ。

模型	自由度 N _f	定積比熱 <i>C_v/Nk</i> B	定圧比熱 <i>C_p/Nk</i> B
単原子の気体	3N	1.5	2.5
二原子分子の気体	5N	2.5	3.5
デュロン=プティ	6N	3	<i>≃</i> 3.0

表 3.1 等分配則で予想される比熱。

図 3.4 固体の定積比熱*2の温度変化 C_v(T)。 鉛 [3,4]、銅 [5]、ダイアモンド [6,7] の実験値。

■ エネルギー等分配則の破れ

しかし、デュロン=プティ則を基準に図 3.2 の実験値を見直してみると、軽元素領域で、 比熱の異常に小さい物質 が目立つ。 そこで、軽元素のダイヤモンド C、中間の銅 Cu、重 元素の鉛 Pb の3つを選び、比熱の温度依存性を見てみよう。 図 3.4 に、実験で得られた 定積比熱 C_v/Nk_B の温度変化を示す^{*2}。 高温側の極限 $T \to \infty$ では、いずれの比熱もデュ ロン=プティ則 $\frac{C_v}{Nk_B}$ =3 に漸近する。 しかし、温度が下がると比熱は低下し、低温側の 極限 $T \to 0$ では、いずれの比熱もゼロになる $C_v \to 0$ 。 これは、エネルギー等分配則の 破綻、もしくは 運動自由度の凍結 を示している。 一方、比熱が下がり始める温度は、物

^{*2} 膨張係数とその温度依存性を考慮して、実験で得られた定圧比熱 C_p を、定積比熱 c_v に換算した値。

質によって異なっている。 鉛だと、比熱が落ち込むのは数十 K の低温領域だけだが、ダ イヤモンドだと、1000 K でもまだデュロン=プティ則に届かない。 図 3.2 のように室温 比熱に注目すると、ダイヤモンドだけが異常に見えるが、極低温では、すべての物質で **等** 分配則が破綻 する。

■ 課題

等分配則の限界を見極めて、固体の比熱を理解する。

■ 等分配則の前提条件

1. エネルギーが $U = \sum_{i=1}^{N_f} \alpha_i \xi_i^2$ の形で連続的。

2. 古典統計、マックスウェル=ボルツマン (Maxwell-Boltzmann) 分布。

$$f_{\rm MB}(E) = e^{-(E-\mu)/k_{\rm B}T}$$
(3.4)

量子論によれば、束縛された状態は、エネルギーが離散化される。 また、同種粒子が互い に区別できないために、古典統計ではなく、量子統計に従う。 すると前提条件が成り立た たないため、**量子論を用いて、比熱の理論を書き換える** 必要がある。

■ 方針

固体原子の振動を量子化して、量子統計を適用する。 Einstein 模型、Debye 模型。

3.2 アインシュタイン模型

■ 調和振動子の量子化

まず、図 3.3 のように、それぞれの原子が、各格子点で **互いに独立に調和振動する** と 考え、量子化を行う。 (3.3) 式から、*x_i* 成分の運動方程式が

$$M \frac{d^2 x_i}{dt^2} = -K x_i$$

となり、固有周波数

$$\omega_{\rm E} = \sqrt{\frac{K}{M}} \tag{3.5}$$

で振動する。 量子論によれば、調和振動子は、エネルギーが ħω を単位に離散化*3され、 その素励起は **ボース粒子** として振る舞う。

$$E_n = \hbar \omega_{\rm E} \left(n + \frac{1}{2} \right) \qquad (n = 0, 1, 2, \cdots)$$
 (3.6)

y成分やz成分も同様なので、3N 個の調和振動子はすべて同じ固有周波数 $\omega_{\rm E}$ をもち、量子状態のエネルギー分布、すなはち **状態密度** は

$$D(E) = 3N \cdot \delta(E - \hbar \omega_{\rm E}) \tag{3.7}$$

となる。これを、アインシュタイン模型と呼ぶ。

■ ボース=アインシュタイン統計

一般に、温度が T、化学ポテンシャルが µ のときに、エネルギー E の状態を占有する ボース粒子の数は、

で与えられる。 ただし、調和振動子の場合は、量子の生成・消滅に制限が無いため μ=0

*3 生成演算子
$$\hat{a}^{\dagger} = \sqrt{\frac{M\omega_{\rm E}}{2\hbar}} \left(\hat{x} + \frac{i}{M\omega_{\rm E}} \hat{p}_x \right)$$
と、消滅演算子 $\hat{a} = \sqrt{\frac{M\omega_{\rm E}}{2\hbar}} \left(\hat{x} - \frac{i}{M\omega_{\rm E}} \hat{p}_x \right)$ を導入すると、
 $[\hat{a}, \hat{a}^{\dagger}] = 1$ より、 $\hat{n} \stackrel{\text{def.}}{=} \hat{a} \hat{a}^{\dagger}$ が粒子数を表す演算子になり、 $\hat{\mathcal{H}} = \hbar\omega_{\rm E} \left(\hat{n} + \frac{1}{2} \right)$ となる。

である。 導出には、いくつかの方法があるが、省略する*4。

■ ボーズ粒子系の比熱

状態密度 D(E) と分布関数 $f_{BE}(E)$ が決まれば、以下の積分で、全エネルギーを算出で きる。 $U(T) = \int_0^\infty E \cdot D(E) f_{BE}(E) dE + E_0$

ただし、E0 は零点振動のエネルギーを表す。これを温度で微分すれば、定積比熱になる。

$$C_v \stackrel{\text{def.}}{=} \frac{\partial U}{\partial T} = \int_0^\infty E \cdot D(E) \frac{d f_{\text{BE}}}{dT} dE$$
(3.9)

逆温度 $\beta = \frac{1}{k_{\rm B}T}$ を用いると、 $\frac{d\beta}{dT} = -\frac{1}{k_{\rm B}T^2} = -k_{\rm B}\beta^2$ と (3.8) 式より

$$E \cdot \frac{df_{\rm BE}}{dT} = E \cdot \frac{d\beta}{dT} \frac{df_{\rm BE}}{d\beta} = E \cdot (-k_{\rm B}\beta^2) \frac{-E e^{\beta E}}{(e^{\beta E} - 1)^2} = \frac{k_{\rm B} (\beta E)^2}{(e^{\beta E} - 1)(1 - e^{-\beta E})}$$

となる。 これを、(3.9) 式に代入し、アインシュタインの比熱関数 を、

$$F_{\rm E}(x) = \frac{x^2}{(e^x - 1)(1 - e^{-x})} \sim \begin{cases} 1 & (x \to 0 \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}) \\ x^2 e^{-x} & (x \to +\infty \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}) \end{cases}$$
(3.10)

とおくと、比熱の一般式が得られる。

$$C_v = k_{\rm B} \int_0^\infty D(E) F_{\rm E}(\beta E) dE$$
(3.11)

■ アインシュタイン模型の比熱

(3.7) 式の状態密度を (3.11) 式に代入し、アインシュタイン温度を $T_{\rm E} = \frac{\hbar\omega_{\rm E}}{k_{\rm B}}$ とおくと、 アインシュタイン比熱 の式が得られる。

$$C_{v} = 3Nk_{\rm B} \cdot F_{\rm E}(\beta \hbar \omega_{\rm E}) = 3Nk_{\rm B} \cdot F_{\rm E}\left(\frac{T_{\rm E}}{T}\right)$$
(3.12)

*4 手っ取り早いのは、一粒子の大正準分配関数 $\Xi_i = 1 + e^{-\beta(\epsilon_i - \mu)} + e^{-2\beta(\epsilon_i - \mu)} + e^{-3\beta(\epsilon_i - \mu)} + \cdots = \frac{1}{1 - e^{-\beta(\epsilon_i - \mu)}}$ から、 $\langle n_i \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \Xi_i = \frac{1}{e^{\beta(\epsilon_i - \mu)} - 1}$ により、平均粒子数を導出する。 その背景や、他のやり方については、統計力学を参照せよ。

グラフの形を図 3.5 に示す。 (3.10) 式の漸近形から、高温極限 $\frac{T}{T_{\rm E}} \rightarrow +\infty$ で、 $C_v \sim 3Nk_{\rm B}$

となり、デュロン=プティ則を再現する。 低温極限 $\frac{T}{T_{
m E}}
ightarrow 0$ では、 $C_v \longrightarrow 0$

となり、比熱の低下を再現する。 振動のエネルギーが量子化されているために、 $k_{\rm B}T \leq \hbar\omega_{\rm E}$ では、熱励起の自由度が抑制される。 物質による違いは、温度定数 $T_{\rm E}$ によって決まる。 (3.5) 式より、重くて柔らかい固体の $T_{\rm E}$ は低く、軽くて硬い固体の $T_{\rm E}$ は高くなる。

■ 実験との比較

(3.12) 式の $T_{\rm E}$ を調節して、アインシュタイン比熱関数を実験にあてはめた結果を、図 3.6 に示す。 全体的な傾向が良く再現されているが、低温側 $T \leq T_{\rm E}/3$ での比熱の落ちか たが、実験より速い。 図 3.6(b) の両対数表示で見ると、低温極限 $T \to 0$ の漸近形が、明 らかに異なっている。

図 3.6 アインシュタイン比熱と実験値 [3-7]の比較。 (a) 線形表示。 (a) 両対数表示。

3.3 結晶格子の振動

■ 一次元の原子鎖ばね模型

図 3.7 原子鎖ばね模型。

それぞれの原子の振動を 完全に独立 とみなすアインシュタイン模型は、単純に過ぎる。 実際の原子に働く力は、隣り合う原子間の距離に依存するはずだ。 そこで、図 3.7 のよう に、原子が鎖のようにばねでつながれた模型を考え、格子振動のエネルギーを

$$U = \sum_{n=1}^{N} \frac{p_n^2}{2M} + \sum_{n=1}^{N} \frac{K}{2} (x_n - x_{n-1})^2$$
(3.13)

と表す。 ただし、n 番目の原子の変位 x_n について周期的境界条件 $x_{n+N} = x_n$ を課し、自由度の数を N として有限にする。 (3.13) より、運動方程式は、

$$M\frac{d^{2}x_{n}}{dt^{2}} = -K(x_{n} - x_{n-1}) - K(x_{n} - x_{n+1})$$

となる。この微分方程式を解くには、

$$x_n = A \, \exp[i(kna - \omega t)] \tag{3.14}$$

とおいて、フーリエ変換すると良い。 これを運動方程式に代入すると、

$$-M\omega^{2} = -K\left(2 - e^{-ika} - e^{ika}\right)$$
$$\omega^{2} = \frac{2K}{M}\left(1 - \cos ka\right) = -\frac{4K}{M}\sin^{2}\frac{ka}{2}$$
$$\omega = \sqrt{\frac{4K}{M}}\left|\sin\frac{ka}{2}\right|$$
(3.15)

となり、**固有振動 (normal mode)**の周波数が得られる。 グラフの概形を図 3.8 に示す。 原子間の結合を考慮すると、フォノンのエネルギー ħω に波数依存性が生じることがわか る。 このような格子振動を量子化したものを、**フォノン (phonon)** と呼ぶ。

■ 波数の定義域

(3.14) 式における n は整数なので、

$$\exp\left\{i\left[\left(k+\frac{2\pi}{a}\right)na-\omega t\right]\right\} = \exp\left[i\left(kna-\omega t\right)\right]$$

より、波数 $k + \frac{2\pi}{a}$ のフォノンは、波数 kのフォノンと 完全に等価 である。 例として、波数 $k = \frac{1.8\pi}{a}$ と波数 $k = -\frac{0.2\pi}{a}$ の状態が同じことを、図 3.9 に示す。 必然的に、エネルギーも同じになるはずで、実際に、(3.15)式は $\omega\left(k + \frac{2\pi}{a}\right) = \omega(k)$ を満たす。 従って、フォノンの波数として意味のある範囲は

$$-\frac{\pi}{a} < k \le \frac{\pi}{a} \tag{3.16}$$

に限定される。 また、周期的境界条件 $x_{n+N} = x_n$ と (3.14) 式より、

$$e^{ikNa} = 1$$

 $k = \frac{2\pi}{Na}n$ (n は整数)

となる。 従って、固有振動は、(3.16) 式が示す幅 $\frac{2\pi}{a}$ の波数領域に、 $\frac{2\pi}{Na}$ おきの等間隔で並んでおり、固有振動の数は N で、自由度の数と一致する。

■ エネルギー範囲

(3.13) 式より、波長が伸びると、エネルギーが下がる。 長波長極限 $k \to 0$ における (3.15) 式の漸近形は $w = n|k|: n = \frac{a}{2} \sqrt{\frac{4K}{4K}}$ (3.17)

$$\omega = v \left| k \right|; \qquad v = \frac{a}{2} \sqrt{\frac{4K}{M}} \tag{3.17}$$

となる。 (3.17) 式は、光の分散関係と同じ形であり、その傾き v は 音速 を表す。 k = 0で $\omega = 0$ なので、限りなくエネルギーの低いフォノンが存在する。 一方、波長が短くな ると、波数が増え、エネルギーが上がる。 しかし、フォノンの波数に上限 $|k| \leq \frac{\pi}{a}$ があ るため、周波数にも上限 が生じ、

$$\omega \le \sqrt{\frac{4K}{M}}$$

となる。

表 3.2	フォノンとフォトンの比較

和名 英語名	音子 ^a phonon	光子 photon	
量子化の対象	格子の振動	電磁場の振動	
統計性	ボソン	ボソン	
$\lim_{\omega \to 0} \frac{d\omega}{dk}$	音速	光速 c	
<i>ω,k</i> の範囲	有限	無限	

"和訳は、音子、音量子、音響量子の三種類が流通しているようだ。

■ Cu のフォノン構造

中性子散乱実験で観測された Cu のフォノン構造を、図 3.10 に示す。 現実の三次元 結晶の格子振動には、図 3.11 のように、**縦波 (longitudinal wave)** と **横波 (transverse wave)** があり、それぞれのばね定数 K が異なるため、エネルギーが分かれる。 また、結 晶の三次元構造を反映して、波数ベクトルの向きによって波数限界が異なる。 これらに よって、エネルギー状態密度に複雑な構造が出現する。

図 3.10 Cu の格子振動 [8]。 (a) 分散関係。 (b) 状態密度。 (c) 面心立方 (fcc) 構造。 (d) ブリルアン・ゾーン。

■ Si のフォノン構造

もうひとつの例として、実験で観測された Si のフォノン構造を、図 3.12 に示す。 Si は 単位格子に原子が2つあるために、フォノンが 音響モード (acoustic mode) と 光学モー ド (optical mode) に分かれる。 そのしくみについては、演習問題を参照せよ。 単位格子 当たり6つの自由度があり、その内訳は、縦音響に1つ、横音響に2つ、縦光学に1つ、 横光学に2つで帳尻が合う。

図 3.12 Si の格子振動 [10]。 (a) 分散関係。 (b) 状態密度。 (c) ダイヤモンド構造。 (d) ブリルアン・ゾーン。

3.4 デバイ模型

■ 状態密度のデバイ近似

図 3.10 や図 3.12 のように、現実のフォノンの状態密度 D(E) の形はかなり複雑である。 そこで、本質を残した近似関数を設計する。 現実のフォノンが、アインシュタイン模型 (3.7) と決定的に異なるのは、状態密度が E = 0 まで裾を引いている点だ。 そこで、エ ネルギー E 以下の固有振動の数を N(E) とおいて、その冪指数を求める。 (3.17) 式より、 $\omega = 0$ 近傍の分散は、 $E \simeq \hbar v |\mathbf{k}| = \hbar v \sqrt{k_x^2 + k_y^2 + k_z^2}$ 。 このとき、エネルギーが E より低い のは、半径 $k = \frac{1}{\hbar v} E$ の球の内側の状態になる。 固有振動は、波数空間で等間隔に並んで いるので、

$$N(E) \propto \frac{4\pi}{3}k^3 \propto E^3$$

となる。 $D(E) = \frac{N(E)}{dE}$ なので、状態密度のエネルギー依存性を 単純な二次関数 で近似 する。 $D(E) = c E^2$ (3.18)

また、格子振動の周波数には上限があるため、これを ω_D とおき、さらに、全状態数が自 由度の数 3N に一致するように制約をつける。

$$\int_0^{\hbar\omega_{\rm D}} D(E) \, dE = 3N \tag{3.19}$$

これを用いて規格化定数 c を決定すると、簡潔な表式が得られる。

デバイ模型

$$D(E) = \begin{cases} \frac{9N}{\hbar^3 \omega_D^3} E^2 & (E \le \hbar \omega_D \mathcal{O} \succeq \mathfrak{s}) \\ 0 & (E > \hbar \omega_D \mathcal{O} \succeq \mathfrak{s}) \end{cases}$$
(3.20)

これを、デバイ近似と呼ぶ。 物質による違いは、ただひとつの定数 ω_D で表現される。 (3.11) 式の積分を、 $x = \beta E$ で変数変換して

$$C_v = k_{\rm B} \int_0^\infty D\!\left(\frac{x}{\beta}\right) F_E(x) \frac{dx}{\beta}$$

と表し、これに (3.10) 式と (3.20) 式を代入する。

$$C_{v} = \frac{9Nk_{\rm B}}{\hbar^{3}\omega_{\rm D}^{3}} \int_{0}^{\beta\hbar\omega_{\rm D}} \left(\frac{x}{\beta}\right)^{2} \cdot \frac{x^{2}}{(e^{x}-1)(1-e^{-x})} \frac{dx}{\beta}$$
$$= \frac{9Nk_{\rm B}}{(\beta\hbar\omega_{\rm D})^{3}} \int_{0}^{\beta\hbar\omega_{\rm D}} \frac{x^{4}}{(e^{x}-1)(1-e^{-x})} dx$$
$$= 3Nk_{\rm B} \cdot F_{\rm D}(\beta\hbar\omega_{\rm D})$$

ただし、F_D(x) は デバイの比熱関数 で、

$$F_{\rm D}(x) = \frac{3}{x^3} \int_0^x \frac{y^4}{(e^y - 1)(1 - e^{-y})} \, dy \sim \begin{cases} 1 & (x \to 0 \ \mathcal{O} \ge \mathfrak{E}) \\ \frac{4\pi^4}{5} \cdot \frac{1}{x^3} & (x \to +\infty \ \mathcal{O} \ge \mathfrak{E}) \end{cases}$$

と定義される。 $x \to 0$ のときは、 $y \to 0$ なので、 $e^{\pm y} \simeq 1 \pm y$ を代入すると漸近形が得られる。 3 $\int_{-\infty}^{x} 2x$

$$F_{\rm D}(x) \sim \frac{3}{x^3} \int_0^x y^2 \, dy = 1$$
 (x → 0のとき)

また、 $x \to +\infty$ における定積分は、ゼータ関数によって与えられ、 $\int_0^\infty \frac{y^4}{(e^y - 1)(1 - e^{-y})} dy =$

図 3.14 デバイ比熱 $F_D(T/T_D)$ とアインシュタイン比熱 $F_E(T/T_D)$ の比較。 $\frac{C_v(T)}{3Nk_B} = \frac{1}{2}$ となる温度が一致するように、 $T_E = 0.742 T_D$ として比較した。

$$\begin{split} \Gamma(5)\zeta(4) &= 4! \cdot \frac{\pi^4}{90} = \frac{4\pi^4}{15} となる。 従って、 x \to +\infty の漸近形は\\ F_{\rm D}(x) \sim \frac{4\pi^4}{5x^3} \qquad (x \to +\infty \, \mathcal{O} \\ \geq \delta \end{pmatrix} \end{split}$$

となる。 デバイ温度 を $T_{\rm D} = \frac{\hbar\omega_{\rm D}}{k_{\rm B}}$ とおき、 $\beta \hbar \omega_{\rm D} = \frac{T_{\rm D}}{T}$ を用いて デバイの比熱の式 を 整理する。

$$C_{v} = 3Nk_{\rm B} \cdot F_{\rm D}\left(\frac{T_{\rm D}}{T}\right) \sim \begin{cases} 3Nk_{\rm B} & (T \ll T_{\rm D}\mathcal{O} \succeq \mathfrak{E}) \\ 3Nk_{\rm B} \cdot \frac{4\pi^{4}}{5} \left(\frac{T}{T_{\rm D}}\right)^{3} & (T \gg T_{\rm D}\mathcal{O} \succeq \mathfrak{E}) \end{cases}$$
(3.21)

デバイ比熱のグラフを図 3.13 に示す。 また、アインシュタイン比熱とデバイ比熱の比較 を図 3.14 に示す。 高温比熱がデュロン=プティ則に漸近するのは同様だが、低温での比 熱の落ち方が異なっており、デバイ模型の低温比熱は ∝ T³ に従う。

■ 実験との比較

(3.21) 式の T_D を調節して、デバイ比熱関数を実験にあてはめた結果を、図 3.15 に示 す。 低温比熱の一致が著しく改善されている。 図 3.15(b) の両対数表示で見ると、低温 比熱の実験値が概ね $\propto T^3$ 則に従っていることがわかる。

図 3.15 デバイ比熱と実験値 [3-7] の比較。 (a) 線形表示。 (a) 両対数表示。

		_				
元素	デバイ温度 T _D (K)	-	元素	デバイ温度 T _D (K)	元素	デバイ温度 T _D (K)
Li	344	-	Cu	347	С	2250 ^a
Na	157		Ag	227	Si	645
Κ	91		Au	152	Ge	373
Rb	57		В	1480	Sn	199
Cs	41		Al	433	Pb	105
Be	1481	-	Ga	325	As	282
Mg	403		In	112	Sb	220
Ca	229		Tl	79	Bi	120
Sr	147				a 22 10	
Ва	111				" ダイヤ-	モント悟道

表 3.3 デバイ温度 T_Dの実験値 [11]。

3.5 まとめ

■ 格子比熱

- 低温比熱の減少は、エネルギーの量子化が原因だった。
- 隣り合う原子間の結合を考慮すると、k~0近傍に光と同じ分散関係が生じるが、
 波数の周期性からエネルギーに上限が生じる。
- デバイ近似 $\begin{cases} D(E) \propto E^2 (E \leq \hbar\omega_D) \\ D(E) = 0 \quad (E > \hbar\omega_D) \end{cases}$ の下で、格子比熱は $\begin{cases} C_v = 3Nk_BT (T \gg T_D) \\ C_v \propto T^3 \quad (T \ll T_D) \end{cases}$ なり、比熱の実験値をおおむね再現する。

■ 残された謎

大きな問題がひとつ残されている。 第2章では、電子の気体 を仮定して、電気伝導や 熱伝導を理解した。 価数1の金属なら、等分配則により $C_v^{el} = \frac{3}{2}Nk_B$ の大きさの電子比熱 が予想される。 しかし、図 3.15 は、実験値と格子比熱の違いが非常に小さいこと を示し ている。 金属中の 伝導電子の自由度 は、一体、どこへ行ってしまったのか?

参考文献

- D. R. Lide (Ed.), "Heat Capacity of the Elements at 25°C", p. 4-135 in CRC Handbook of Chemistry and Physics, Internet Version 2005, (http://www.hbcpnetbase.com), CRC Press, Boca Raton, Florida, (2005).
- [2] J. A. Dean (Ed.), "Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds", pp. 6.81–123 in Lange's Handbook of Chemistry, 15th Edition, McGraw-Hill, (1999).
- [3] P. F. Meads, W. R. Forsythe and W. F. Giauque, "The Heat Capacities and Entropies of Silver and Lead from 15° to 300°K", J. Am. Chem. Soc. 63, 1902 (1941).
- [4] R. Steadman, L. Almqvist, and G. Nilsson, "Phonon-Frequency Distributions and Heat Capacities of Alminum and Lead", *Phys. Rev.* **162**, 549 (1967).
- [5] G. K. White and S. J. Collocott, "Heat Capacity of Reference Materials: Cu and W", J. Phys. Chem. Ref. Data 13, 1251 (1984).
- [6] A. C. Victor, "Heat Capacity of Diamond at High Temperatures", J. Am. Chem. Soc. 36, 1903 (1962).
- [7] J. E. Desnoyers and J. A. Morrison, "The heat capacity of diamond between 12.8° and 277°K", Phil. Mag. 3, 42 (1958).
- [8] R. M. Nicklow, G. Gilat, H. G. Smith, L. J. Raubenheimer, and M. K. Wilkinson, "Phonon Frequencies in Copper at 49 and 298°K", *Phys. Rev.* 164, 922 (1967).
- [9] キッテル, "固体物理学入門(第6版)", 丸善, 第6章, (1986).
- [10] H. イバッハ, H. リュート, "固体物理学", シュプリンガー・フェアラーク東京 (1998).
- [11] G. R. Stewart, 'Measurement of low-temperature specific heat", *Rev. Sci. Instrum.* 54, 1 (1983).