平成 20 年度 線形代数学演習 II

水曜1・2 時限,総合科学部 K203 プリント No.2 (10月8日配付)

問題 1. 次のそれぞれについて1次従属となるための条件を求めよ。

$$(1) \quad \begin{pmatrix} 1 \\ a \\ a \\ a \end{pmatrix}, \begin{pmatrix} a \\ 1 \\ a \\ a \end{pmatrix}, \begin{pmatrix} a \\ a \\ 1 \\ a \end{pmatrix}. \quad (2) \quad \begin{pmatrix} 1 \\ 2 \\ 0 \\ a \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ b \\ 2 \end{pmatrix}.$$

問題 2. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ は 1 次独立であるとする。次のそれぞれについて 1 次独立であるであるか判定し、その理由を述べよ。

- (1) $r \ge 3$ であるとき $\mathbf{a}_1 + \mathbf{a}_2$, $\mathbf{a}_2 + \mathbf{a}_3$, $\mathbf{a}_3 + \mathbf{a}_1$.
- (2) $r \ge 4$ であるとき $\mathbf{a}_1 + \mathbf{a}_2$, $\mathbf{a}_2 + \mathbf{a}_3$, $\mathbf{a}_3 + \mathbf{a}_4$, $\mathbf{a}_4 + \mathbf{a}_1$.
- (3) $\mathbf{a}_1, \mathbf{a}_1 + \mathbf{a}_2, \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3, \dots, \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_r$

記号の再確認: $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \rangle := \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ の1 次結合全体

問題 3.
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{a}_5 = \begin{pmatrix} -1 \\ 4 \\ -5 \end{pmatrix}$ とする。

- (1) 行列 $(\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5)$ を標準階段行列に行基本変形せよ。
- (2) 上で求めた標準階段行列を $(\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{b}_4 \ \mathbf{b}_5)$ とする。 $\mathbf{b}_1, \mathbf{b}_3$ は 1 次独立であり $\langle \mathbf{b}_1, \mathbf{b}_2 \rangle = \langle \mathbf{b}_1 \rangle, \langle \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_5 \rangle = \langle \mathbf{b}_1, \mathbf{b}_3 \rangle$ が成り立つことを確かめよ。
- (3) \mathbf{a}_1 , \mathbf{a}_3 の 1 次独立性 $\langle \mathbf{a}_1, \mathbf{a}_2 \rangle = \langle \mathbf{a}_1 \rangle$, $\langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5 \rangle = \langle \mathbf{a}_1, \mathbf{a}_3 \rangle$ の成立を確かめよ。

問題 4. (問題3の発展問題) $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ が以下で与えられたとする。

(1)
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$

(2)
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 4 \\ -2 \\ 2 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 5 \\ -7 \\ 6 \\ 3 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 7 \\ 1 \\ 2 \\ 7 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 6 \\ 9 \\ -4 \\ 8 \end{pmatrix}$, $\mathbf{a}_5 = \begin{pmatrix} 2 \\ -1 \\ 4 \\ 2 \end{pmatrix}$

それぞれについて番号 $i(1) < i(2) < \cdots < i(s) \le r$ を選び出して $\mathbf{a}_{i(1)}, \mathbf{a}_{i(2)}, \ldots, \mathbf{a}_{i(s)}$ が 1 次独立であり、 $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \rangle = \langle \mathbf{a}_{i(1)}, \ldots, \mathbf{a}_{i(s)} \rangle$ が成り立つように構成せよ。

問題 5. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ とする。 $B \in M(m, n, \mathbb{R})$ に対して次を示せ。

- (1) $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ が 1 次従属ならば $B\mathbf{a}_1, B\mathbf{a}_2, \ldots, B\mathbf{a}_r$ も 1 次従属である。
- (2) m=n かつ B は正則行列であるとする。このとき $\mathbf{a}_1, \, \mathbf{a}_2, \, \ldots, \, \mathbf{a}_r$ の 1 次独立性と $B\mathbf{a}_1, \, B\mathbf{a}_2, \, \ldots, \, B\mathbf{a}_r$ の 1 次独立性は同値である。

定理 $1. \ \mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_r \in \mathbb{R}^n$ と行列 $(\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_r)$ について以下の同値性が成り立つ。

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$$
 1 次従属 $\Leftrightarrow \operatorname{rank}(\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_r) < r$

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$$
 1 次独立 $\Leftrightarrow \operatorname{rank}(\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_r) = r$

問題 6. 定理1を証明せよ。ヒント:基本変形と問題5(2)

問題 7. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ は 1 次独立であるとする。

- (1) $r \geq 2$ のとき $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_{r-1}$ も 1 次独立であることを示せ。
- (2) σ を r 文字の置換であるとする。 $\mathbf{a}_{\sigma(1)}, \mathbf{a}_{\sigma(2)}, \ldots, \mathbf{a}_{\sigma(r)}$ も 1 次独立であることを示せ。

問題 $8. \ \mathbf{a}_1, \ \mathbf{a}_2, \ \ldots, \ \mathbf{a}_r \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^n$ とする。このとき次が成り立つことを示せ。

$$\mathbf{b} \in \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle \Leftrightarrow \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r, \mathbf{b} \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle$$

定理 2. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ とする。このとき以下の $1^\circ \sim 3^\circ$ は互いに同値である。

 1° $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ は 1 次独立

$$2^{\circ} \forall i \ \mathbf{a}_i \notin \langle \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots \rangle$$

$$3^{\circ} \ \forall i \ \langle \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots \rangle \neq \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle$$

問題 9. 定理 2 を証明せよ。ヒント: $1^{\circ} \Leftrightarrow 2^{\circ}$ については対偶、即ち次の方が考えやすい。

$$\exists i \ \mathbf{a}_i \in \langle \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots \rangle \Leftrightarrow \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \ 1$$
 次従属

問題 10. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n, C \in M(r, s, \mathbb{R})$ とする。 $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ を次で定める。

$$\mathbf{b}_1 := \sum_{i=1}^r c_{i1} \mathbf{a}_i, \mathbf{b}_2 := \sum_{i=1}^r c_{i2} \mathbf{a}_i, \dots, \mathbf{b}_s := \sum_{i=1}^r c_{is} \mathbf{a}_i$$
 ここで c_{ij} は行列 C の (i,j) 成分

- (1) $\mathbf{x} = {}^{\mathbf{t}}(x_1 \ x_2 \ \dots \ x_s)$ は $C\mathbf{x} = \mathbf{o}$ をみたすとする。このとき x_1, x_2, \dots, x_s を係数とする $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s$ の 1 次結合は \mathbf{o} に等しいことを示せ。
- (2) $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s$ は 1 次独立であると仮定する。C を係数行列とする同次連立 1 次方程式は自明解のみを持つことを示せ。
- (3) $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s$ が 1 次独立であるなら s < r であることを示せ。

注 1. 問題 10 の設定において次の関係が成り立つ。

$$(\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_r)C = (\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_s)$$

問題10を使って次の定理が証明できる。

定理 3. $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n, \mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s \in \mathbb{R}^n$ とする。このとき次が成り立つ。

$$\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s$$
 1 次独立, $\forall i \ \mathbf{b}_i \in \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle \Rightarrow s \leq r$

問題 11. 第i 成分だけが1 で他の成分は0 であるようなn 項列ベクトルを \mathbf{e}_i と書く。このとき $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ は1 次独立であり、 $\langle \mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n \rangle = \mathbb{R}^n$ を満たすことを示せ。

問題 12. (定理 3 の応用) $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in \mathbb{R}^n$ とする。

- (1) $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ が 1 次独立なら r < n が成り立つことを示せ。
- (2) $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle = \mathbb{R}^n$ なら $n \leq r$ が成り立つことを示せ。

定義 1. \mathbb{R}^n の部分空間 V の基底とは次の 2 条件を満たす組 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in V$ をいう。

$$1^{\circ}$$
 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ は 1 次独立

$$2^{\circ} \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle = V$$

問題 13. $\mathfrak{U}(1)$ は \mathbb{R}^3 の基底であり、 $\mathfrak{U}(2)$ は \mathbb{R}^4 の基底であることを示せ。

$$(1) \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad (2) \quad \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 4 \end{pmatrix}$$

問題 14. 次の 2 組についてそれぞれが \mathbb{R}^3 の基底であるための条件を求めよ。

$$(1) \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad (2) \quad \begin{pmatrix} 1 \\ a \\ a^2 \end{pmatrix}, \begin{pmatrix} 1 \\ b \\ b^2 \end{pmatrix}, \begin{pmatrix} 1 \\ c \\ c^2 \end{pmatrix}$$

問題 15. (問題 3 の発展問題) それぞれについて番号 $i(1) < i(2) < \cdots < i(s) \le r$ を選び出して $\mathbf{a}_{i(1)}, \mathbf{a}_{i(2)}, \ldots, \mathbf{a}_{i(s)}$ が $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \rangle$ の基底となるように構成せよ。

(1)
$$r = 5$$
, $\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\mathbf{a}_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} -3 \\ 3 \\ 0 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $\mathbf{a}_5 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

(2)
$$r = 4$$
, $\mathbf{a}_1 = \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{a}_2 = \begin{pmatrix} 1 \\ -3 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$, $\mathbf{a}_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -3 \end{pmatrix}$.

定理 4. V を \mathbb{R}^n の部分空間、 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in V$ とする。このとき組 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ が V の基底であることは次が成り立つことと同値である。

任意の $\mathbf{x} \in V$ は $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ の1次結合で表され、しかも表し方は一意的である。

定義 2. V を \mathbb{R}^n の部分空間、組 \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_r をその基底とする。このとき各 $\mathbf{x} \in V$ に対して一意的に決定される 1 次結合の係数 c_1 , c_2 , ..., c_r を並べてできる列ベクトルを \mathbf{x} の基底 \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_r に関する座標という。

問題 16. (1) 次の 2 組は共に \mathbb{R}^3 の基底であることを示せ。

$$\mathbf{a}_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \mathbf{a}_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \succeq \mathbf{b}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \mathbf{b}_3 = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$$

(2) 基底 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 に関する座標と基底 \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 に関する座標の関係を求めよ。

問題 17. $\mathbf{a}_1,\,\mathbf{a}_2,\,\ldots,\,\mathbf{a}_r\in\mathbb{R}^n,\,\mathbf{b}\in\mathbb{R}^n$ とする。このとき次が成り立つことを示せ。

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$$
 1 次独立, $\mathbf{b} \notin \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle \Rightarrow \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r, \mathbf{b}$ 1 次独立

定理 5. V を \mathbb{R}^n の部分空間であり、 $V \neq \{\mathbf{o}\}$ であるものとする。

- (i) V の基底が存在する。
- (ii) V の基底の一つを $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ とする。このとき $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s \in V$ に対して
 - 1° $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ が 1 次独立なら $s \leq r$ が成り立つ
 - $2^{\circ} \langle \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s \rangle = V$ なら r < s が成り立つ
- (iii) 組 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ と組 $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ がともにV の基底であるならr = s が成り立つ。

定理 $\mathbf{6.}\ V$ を \mathbb{R}^n の部分空間、 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in V$ とする。このとき $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ が 1 次独立なら、いくつか V の元 $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ を付加して組 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r, \mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ が V の基底であるようにすることができる。

定理 7. V を \mathbb{R}^n の部分空間、 $\mathbf{a}_1, \, \mathbf{a}_2, \, \ldots, \, \mathbf{a}_r \in V$ とする。このとき $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \rangle = V$ であるなら、番号 $i(1) < i(2) < \cdots < i(s) \le r$ を選び出して $\mathbf{a}_{i(1)}, \, \mathbf{a}_{i(2)}, \, \ldots, \, \mathbf{a}_{i(s)}$ が V の基底であるようにすることができる。

- 注 2. (i) 定理 6 において、組 \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_r がすでに V の基底である場合は、付加する必要はない。この場合は s=0 であると解釈する。
- (ii) 定理 7 において、組 \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_r がすでに V の基底である場合は、選び出す必要はない。この場合は s=r であると解釈する。

問題 18. 定理 5 を証明せよ。(i) のヒント:問題 17 と問題 12(i). (ii) のヒント:定理 3

問題 19. 定理 6 を証明せよ。ヒント:定理 5(i) の証明を再検討せよ。

問題 20. 定理7を証明せよ。ヒント:定理2

定義 3. (i) V を $\{o\}$ でない \mathbb{R}^n の部分空間とする。定理 5(i), (iii) により、V の基底を構成する元の個数が確定する。これを V の次元といい、記号 $\dim V$ によって表す。

(ii) $\{\mathbf{o}\}$ も \mathbb{R}^n の部分空間であるが、その次元は 0 と約束する。即ち $\dim\{\mathbf{o}\}=0$ である。

問題 21. 以下のそれぞれを係数行列とする同次連立 1 次方程式について、解空間の次元 および (次元が 0 でないときには) 解空間の基底を一組求めよ。

$$\begin{pmatrix}
1 & -1 & 2 & -1 \\
2 & -2 & 3 & -4 \\
1 & -1 & 4 & 3
\end{pmatrix}$$
(2)
$$\begin{pmatrix}
1 - a & 1 & 1 \\
1 & 1 - a & 1 \\
1 & 1 & 1 - a
\end{pmatrix}$$
 (場合分け必要)

定義 4. 同次連立1次方程式を一つ固定する。その解空間の次元を解の自由度という。解の自由度が0でないとき解空間の基底を基本解ともいう。

定理 8. A を係数行列とする同次連立1次方程式について次の関係が成り立つ。

A の列の数 = A の階数 + 解の自由度

問題 22. V を $\dim V = r \neq 0$ であるような \mathbb{R}^n の部分空間、 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \in V$ とする。

- (1) $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r$ が 1 次独立なら $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_r \rangle = V$ が成り立つことを示せ。
- (2) $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle = V$ なら $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r$ は 1 次独立であることを示せ。
- (1) のヒント:問題17.(2)のヒント:定理2

定理 9. $A \in M(n, r, \mathbb{R})$ に対してそのブロック分けを $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_r)$ とする。

- (i) $\operatorname{rank} A = \dim \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \rangle$ が成り立つ。
- (ii) r = n とする。このときが成り立つ。

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$$
 1 次独立 $\Leftrightarrow \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \rangle = \mathbb{R}^n \Leftrightarrow \operatorname{rank} A = n \Leftrightarrow \det A \neq 0$

問題 23. 定理 9 を証明せよ。(i) のヒント:基本変形と問題 5(2)

問題 24. 次のそれぞれについて1次独立になるための条件を求めよ。

$$(1) \quad \begin{pmatrix} 1 \\ bc \\ a \end{pmatrix}, \begin{pmatrix} 1 \\ ac \\ b \end{pmatrix}, \begin{pmatrix} 1 \\ ab \\ c \end{pmatrix}. \quad (2) \quad \begin{pmatrix} a \\ 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ a \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ a \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ a \end{pmatrix}.$$

列ベクトル空間 \mathbb{R}^n 以外にも、和とスカラー倍という演算が自然に備わり、通常の計算ルール(結合則、分配則など)が適用できる対象が多くある。それを抽象化(公理化)したものが線形空間である。ここでは典型的な例を挙げるにとどめる。

- 例 1. 区間 I = [a, b] 上で定義された実数値関数の全体を F と書く。
 - $1^{\circ} f, g \in F$ に対し (f+g)(x) := f(x) + g(x) によって和 f+g を定義する。
 - 2° $f \in F$ と $c \in \mathbb{R}$ に対し (cf)(x) := cf(x) によってスカラー倍 cf を定義する。
- 例 2. 実数列の全体を S と書く。
 - $1^{\circ} \{a_n\}, \{b_n\} \in S$ に対し $\{a_n\} + \{b_n\} := \{a_n + b_n\}$ によって和 $\{a_n\} + \{b_n\}$ を定義する。
 - 2° $\{a_n\} \in S$ と $c \in \mathbb{R}$ に対し $c\{a_n\} := \{ca_n\}$ によってスカラー倍 $c\{a_n\}$ を定義する。

例 3. x の実係数多項式の全体は $\mathbb{R}[x]$ という記号で表されることが多い。多項式としての和とスカラー倍により演算を定義する。

問題 25. \mathbb{R} 上で定義された実数値関数の全体がなす線形空間 F において、次の部分集合は部分空間であるか判定せよ。

- (1) 奇関数の全体
- (2) 有界な連続関数の全体
- (3) $\forall x \ f(x) > 0$ をみたす関数全体

問題 26. 実数列全体がなす線形空間 S において、次は部分空間であるか判定せよ。

- (1) 等差数列全体
- (2) 等比数列全体
- (3) 有限個を除き、残りすべての項が () であるような実数列の全体
- (4) 漸化式 $x_{n+2} + \alpha x_{n+1} + \beta x_n = 0$ を満たす実数列の全体

問題 27. V を線形空間、その零元を o とする。

- (1) ある $o' \in V$ が $\forall v \in V$ v + o' = v を満たすなら、それは零元 o であることを示せ。零元の一意性
- (2) $v \in V$ とする。ある $u \in V$ が v + u = o を満たすなら、それは v の逆元 -v であることを示せ。v の逆元の一意性

問題 28. V を線形空間、その零元を o とする。

- (1) $v \in V$ とする。0v = o であることを示せ。
- (2) $c \in \mathbb{R}$ とする。 co = o であることを示せ。
- (3) $v \in V$ とする。(-1)v = -v であることを示せ。ここで (-1)v は v の -1 倍であり、-v は v の逆元である。区別せよ。