Proceedings of the 2003 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
Las Vegas, Nevada - October 2003

Recognizing Cylindrical Surface Using Impedance Perception

Ryo Kikuuwe
Department of Mechanical Engineering
Nagoya Institute of Technology
Nagoya 466-8555, Japan
kikuuwe @ieee.org

Abstract— In a previous paper, we proposed the impedance
perception technique, by which the stiffness matrix that con-
strains the motion-force relation of the robot’s end-effector
is estimated on-line, and the uncertainties of the estimates
are evaluated. Based on this technique, this paper proposes
a method of extracting information on local properties of
a cylindrical curved surface, including normal direction,
primary directions, curvature, and stiffness and friction
coefficients, from the stiffness matrix obtained under the
situation where the end-effector is slid on the surface. This
technique can be implemented as an encapsulated perception
function independent from control strategies, and thus it can
be used for both autonomous and remote-controlled robots,
and for direct monitoring of human manipulations. Results
of preliminary experiments are presented.

I. INTRODUCTION

Recognizing shapes and properties of environments and
objects are dispensable ability for adaptive robots. When
the robot is directly in contact with the environment,
the sensor data of position and force are important to
perceive dynamic and local properties of the environment.
Comparing to active probing strategies[1], passive moni-
toring of the sensor data without using any specialized
control methods[2, 3] is less efficient but allows for easy
implementation. Hence it has a potential to be used
not only for autonomous robots but also for manually
controlled robots and, moreover, for direct monitoring
of human manipulations[4]. Researches on this kind of
schemes are limited to non-deformable environments by
using geometric constraint among objects. Tactile sensors
can be used for the same purpose[3, 6], but those still need
improvement in some aspects, and can not easily deal with
the situation where the robot indirectly interacts with the
environment through a tool.

The authors proposed the impedance perception tech-
nique in a previous paper[7], which is for identifying
constraint conditions based on passive monitoring of posi-
tion and force sensor data. Using this method, mechanical
impedance parameters that constrain the motion of the
robot’s end-effector are estimated on-line in all directions
at one time, and the uncertainties of the estimates are
evaluated. Subsequently, the authors proposed a method
to estimate the normal direction and the stiffness and
friction coefficients of a flat surface, based on the stiffness
matrix provided by the impedance perception, under the
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situation where the end-effector is slid on the surface[8].
Further enhancement has been required for this method
since it cannot deal with curved surfaces. As an early
effort in this direction, this paper proposes a new method
to deal with cylindrical surfaces. In this method, the
normal and primary directions, curvature, stiffness coeffi-
cient, and friction coefficient are estimated. Our everyday
circumstances include many cylindrical objects such as
pipes, bottles, and cans. Hence it is important to recognize
information on this kind of objects by random and brief
contacts, especially in order to instantaneously decide
grasping strategies. For this method, the only required
condition is a kinetic friction state on the surface, thus
no autonomous action-generating function is required, and
easy implementation for a broad range of application is
expected.

In the rest of this paper, section II gives a brief
review on the method to obtain a stiffness matrix using
the impedance perception. Section III proposes the new
method for estimating the properties of a cylindrical
surface. Section IV presents the experimental results.
Conclusion is provided in section V.

II. STIFFNESS MATRIX PROVIDED BY THE IMPEDANCE
PERCEPTION

In the impedance perception technique [7], the position
of the robot’s end-effector, p(t) € R3, and the force
applied to the end-effector from the environment, f(t) €
R3, are fitted to a linear dynamic equation. The recursive
least squares method with forgetting factor is employed
for estimating the coefficients. The uncertainties of the
estimates are determined based on the residual fitting error
and distribution of the explanatory vectors, i.e., p(t), p(t),
and p(t).

The fitting equation is given as follows;

f(t) = c+ Kp(t) + Bp(t) + Mp(t), (D

where K, B and M € R3*3 are the matrices of stiffness,
viscosity and inertia respectively that the robot perceives.
Those matrices are dependent on the dynamic properties
of the end-effector and the environment, and the contact
configuration between them. ¢ € R? is a constant vector
which corresponds to the equilibrium point of the stiff-
ness, a force bias resulting from the gravitation, and etc.



Using Laplace transform and the bilinear transform, (1)’s
discrete-time approximation is written as follows;
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where T is the sampling period and the subscript k£ denotes
the value of the variable at time instant k7.
At time instant k7, the weighted sum-of-products ma-
trix of the residual fitting errors is written as;
A
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where {wy;}i,<i<r denotes the weighting sequence at
time instant k7', iy is the time instant at which the
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weighting is designed dependent on the speed of the

movement, so that the estimate is updated more rapidly

during high-speed motion of the end-effector.

When R;.fl exists, (6) is transformed as follows;
Jr(©®) = (0-0,)"R,L(O—-0))+S) (7
O, £ R.'Q, eR1P ®)
Sy 2 Fr—Q.) R,'Q, €eR¥™. (9

Since Ry, is positive definite, J(®) = Jk((:)k) =S is
satisfied for any ® (X > Y means that X —Y is positive
semi-definite). Therefore, @k is adopted as the estimate
of ® at time instant k7T’

Since Ji(®) = Sk, Sk is the minimum of J(®) in
the partial order relation “<”. Normalizing J(®) with
respect to its minimum S, a generalized distance measure
from @, to a given © can be defined by

Do (@)=t (5, (7,(0) - 51) 5, %)
=cs[@ — ©,]7(S '@ Ry) cs[© — O],

where ® denotes the Kronecker Product operator and
cs[ - ] denotes the vectorization operator that stacks the
columns of the argument matrix. The uncertainty ellipsoid
of ©; can be defined as a set of ©’s which satisfy
D@’k((’)) <1

If p(t) in (1) is substituted by the true position measured
by the sensors, the estimated impedance can become
very unstable in rigid (or nearly rigid) contact situations.
This problem is avoided by implementing a computer-
simulated virutal soft cover around the real end-effector.
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The displacement of the virtual soft finger(hereinafter,
VSF), Ap,(t), is simulated by solving the dynamic equa-
tion f(t) = K Ap,(t) + ByAp,(t), where K, and
B, are design parameters which represent the stiffness
and viscosity coefficients of the VSF, and f(¢) is the
force observed by the sensor. The position of the VSF is
determined by p(t) = p,(t)+Ap, (t), where p,(t) denotes
the real position observed by the sensors. Substituting
p(t) in (1) with the virtual position, the estimates are
stabilized even in rigid contact states. The impedance
estimated through the VSF is that of the serial-coupled
system of the VSF and the real environment. In passive
environments, the theoretical upper bound of stiffness
coefficients estimated through the VSF is K.

According to the relation (5), the estimate of the stiff-
ness matrix K is obtained by K k 2 @kTT where T
(€ R19%3) is a certain constant matrix. Multiplying

vec {(@ - (:)k)T} vec [(G) - (:)k)T} <R '@ Sy,

which is equivalent to Dg 1 (®) < 1, by I3 ®T from the
right and I's ® T from the left yields

vec [K—K'k}vec [K—Kk]T =< I, (10
where IT;, 2 P, ® Sy, Py 2 TTR;,~'T, and I; stands
for a 3 x 3 identity matrix. This represents the uncertainty
ellipsoid of K, and is denoted as €. A generalized
distance from K to a given K can be defined by

Di(K) B vec [K—K@Tnkflvec [K—f{k} . an

ITII. RECOGNIZING CYLINDRICAL SURFACE

This section provides a method to estimate properties
of a cylindrical surface under the situation where the
robot’s end-effector is in kinetic friction on the surface.
An analytical derivation shows that the stiffness matrix
under this situation belongs to a certain class. Therefore, a
new stiffness matrix has to be found which belongs to this
class and which is sufficiently close from K. Moreover,
an uncertainty ellipsoid accompanied by this new estimate
must be defined. Normal direction and primary directions
are obtained from them.

In this section, the position of the end-effector is
substituted by the virtual position p(t), not by the real
position p,(t). The subscripts to denote time index (e.g.
k and %) are dropped unless required for clarity.

A. Stiffness Matrix in Sliding on a Cylindrical Surface

Let p denote the gravity center of positions that the
impedance perception has used to provide K. Then, K
can be viewed as the stiffness matrix at position p. When
the end-effector is slid on an object, p is usually located
below the surface. As shown in Fig.1(a), let p;; denote the
projection of p onto the surface. And let n, ¢, and v be
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Fig. 1. Sliding on a cylindrical surface

orthonormal vectors which represent the normal direction,
the primary direction with the minimum and maximum
curvature, at p, respectively. Let Xy be the coordinate
system with axes {n,¢,v} and origin p;;. The attitude of
Yy is expressed by a 3 x 3 rotation matrix U 2 [n,t,v].

Firstly, the force-position relation in the neighborhood
of p is formulated. Let Up = [*p,'p,"p]T denote the
position of the end-effector and Vf = [ f, ¢ f,? f]T denote
the force applied to the surface from the end-effector, both
relative to Xyy. The position p and the force f, which are
relative to the reference coordinate system, are related to
Upand Vf by p = py+U(Yp) and f = U(YF)+ f weign-
where figne 18 the gravitational force on the end-effector
and the grasped object. The position p relative to Xy is
written by Yp = ["p,0,0]7. As shown in Fig.1, let 6 be
the angle between the surface normal at p and that at p;;,
N be the normal force applied to the surface at p, R be
the curvature radius, and  be the stiffness of the surface.
Then, since p is at the depth of N/x from the surface, "p
and Vp are written by

"p | | R(1—cos#)+ N/kcosb
Up | T Rsinf — N/ksinf

Let o be the angle between the friction direction and ¢-
direction at position p as shown in Fig.1, and let i be the
friction coefficient of the surface. Then, since the friction
force magnitude is N, Uf can be written by

12)

nf N (cosf + psinasin 6)

tf | = Nycosa (13)

vf N (—sinf + psinacos6)
Eliminating # and N from (12) and (13) yields

"fo= K ((R-"p)+ ("p)usina) (14)

tf = Kpcosay/(R—"p)2 + (vp)? (15)

'f = K ((R-"Tpusina — ("p)) (16)

WSk (R/VER=TPP PP 1)

The stiffness matrix at position p;; is derived as K =

UKy UT, YKy 2 (8Vf/0%p) |Up:Uﬁ’ where VK
is given by

k0 kpsina("p)/(R—"p)
UKy=| kpcosa 0 0 (17)

rpsinee 0 —k("p)/(R —"p)
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Fig. 2. Inclusive relationship among subsets of { K € R3*3}

Let the elements of YKy = UTKU be denoted by
A (B nTKn), "\ (2 nTKt), and so on. Then, it is
shown that, since (17), a stiffness matrix obtained in this
situation satisfies the following conditions;

nt/\:tt/\:vt)\:tv)\zo (18)

With a given rotation matrix U, let £(U) denote the
set of K’s which satisfy (18), and M(U) denote the
subset of £(U) which is defined by (19). Moreover, let
F be the union of all L(U)’s, and G be the union of
all M(U)’s (Fig.2). Thus it is shown that a stiffness
matrix consistent with kinetic friction state on a cylindrical
surface is included by G.

B. New Estimate € ,;(U) with Respect to a Given U

Since K is generally not included by G, an element
of G which is close from K has to be sought. For
this purpose, this subsection provides a method to obtain
an element of M(U) which is close from K. In the
discussion below, (U) is omitted unless required for
clarity.

Firstly, the element of £ that minimizes D(K), here-
inafter K, is derived. Let L 2 [ neU | v ® [n,v] ]
(E R9><5) and \ é [rm)\’ tn)\’ vn/\’ nv/\’ vv/\]T (E R5)
Then, under the condition K € L, vec [K] = LA holds
and D(K) can be written by

DIK) = A=A)"VL 'A=AL)+ DL (20)
D, 2 Bm A Lo Q1)
AL 2 Vi LTIk (22)
v, & @™o '), (23)

where T 2 P® S and k 2 es[K]. A corresponds
to K, in the sense that CS[KL] = L. (Fig.2(b)), and
D 1, is the generalized distance between K 1 and K. Note
that Dy, V, and Ay, are functions of U. By expressing
an element of £ by A, the generalized distance from A
to X is defined by Dp(A) 2 (A — A)TVL ' (A — Ap)
based on the crosssection hyper-ellipsoid of € with L.
Next, an element of M that is close from K L, denoted
K, has to be found. Letting m(\) £ (" A)("UA) 4+



("A)(™A), this can be written in the form of m(A) =
ATPX where P is a symmetrix 5 x 5 matrix. In the
neighborhood of Ay, m(A) can be linearly approximated
by

m(A)

M) 2ul (A= AL) + A, TPAL (24)
u (

mA)/ONy_ 5 = 2PAp. (25

One can find that under the condition m(A) = 0, A
which minimizes Dy () can be expressed by A = A;, +
xVLPS\L where x is a certain real number. Hence, A M
is defined as a A which can be expressed in this form and
satisfies m(X) = 0. This is found by solving the second
order equation m(S\L +xVLP5\L) = 0 with respect to x.

>

By this means A and cs[KM] 2 L\, are obtained.

The generahzed distance between K and K M s D M= E
D(Ky) = Dy + Dr(Ap). The uncertainty ellipsoid
accompanied by K j; can be given by moving € from
K to Ky, and magnifying it with respect to Dyy. This
ellipsoid, denoted by é M, 1s defined as follows;

vec [K _ KM} vec [K _ KM} T < (1+ Dy (26)
The crosssection of £ 5, with the hyper plane L is
A =A)A=A)T < (1 + D) Vi

The components of A m and V7, are denoted by "”S\M,
nmnnyse o and so on.

27)

C. Feasibility Evaluation of &€ ,;(U)

Equations (18)(19) gives conditions for feasible
K/ (U), but more conditions are required for &€ ,,(U).
For example, (17) implies that "Xy, (U) should be pos-
itive, and that WS\M(U) should be negative. Besides,
the impedance perception usually provides estimates with
small uncertainties in directions in which the position
variance is large. This direction is usually the moving
direction, and must be consistent with the o-value. How-
ever, the analytical (17) and the estimates are consistent
only under limited conditions, because (17) are based on
the derivatives of the non-linear force-position relation
(14)(15)(16), in contrast with the estimates based on
sensor observation distributed in a finite volume of space.

Omitting the detailed derivations for space limitations,
a consistency criterion is given as follows;

PU) = [PuPr®s+ P (28)
(I)tl(U) _ tn;\M(U)Z/(tn;\M(U)Q+v71;\M(U)2)
DpU) = (ko) 'tet)/1+ D))

max (o, (””;\M(U)))
Pi3(U) = =
(1+ Dn(U)) (VL (U))
(I)vl(U) _ vnS\M(U)2/(tn;\M(U)2_|_1m;\M(U)2)
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D,0(U) = (wot)'T ' (vet)/(1+Du))

rnln( ””/\M )2

(1+ Dy (U))(v00v Vi (U))

Here, the ratio between ®;; and ®,; is correspondent to
the value of «, namely, the moving direction. ®4o and (O}
are inverses of the uncertainties of **\,; and )\ s Do
and ®,3 are reliability measures for conditions nn ) m>0
and "Xy < 0 respectively. § is a small positive real
number for rnalntalnlng balance between ®;3 and fI>v3
(since ("p) < R, )y s usually much larger than LD
as seen in (17)). In the experiments in section IV, 3 = 0.1
is used.

By finding U which maximize ®(U), the estimate of
U, Ij, is obtained. A modified version of the steepest
gradient method is employed to obtain U = [n,{,d].
ﬁ)’ £ = f:'M(U), Ao 2
VL(ﬁ), and D¢ E ﬁL(U) are obtained.

(I)UB(U) =

Consequently, K¢ 2K M

A
A(0), Vi =
D. Estimating k, u, and R

The stiffness and friction coefficients, x and pu, and the
curvature, p % 1/R, of the surface are estimated based on
U, Vg and K. .

Firstly, x can be estiamted as & = “YAg, since (17).
This is valid only when the moving direction is almost
along v direction, because otherwise (14) becomes highly
non-linear with respect to "p

Based on (17), p and its uncertainty bound can be
estimated as follows;

Ve + (Ae2 /" Ag] (29)

~ T ~
v, 2 (ﬂ) VF< Oh )(30)
OxGT AT

Finally, again based on (17), p can be estimated as
p=(("0) = 5(")/(""Aa))
letting N be the normal force applied to the environment,
and considering "p = N /k, the following is obtained:

p=(N/w=N/("Aa)) ~

Here one must note that N is the normal force applied
to the surface, and can not be derived from the sensor
observation at that instant. Due to the non-linearity of
(16), (31) holds true only when the variance of “p is
small, and in this case Kk ~ "Ag > 0 may or may not
hold. Therefore, when using (31) to estimate the curvature,
the stiffness of the surface also must be known. The
uncertainty of p can be defined in the same way as (30).

i

(n—p)? <

A

—!. Here, "p is unknown but
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1V. EXPERIMENTS
A. Setup and Method

Preliminary experiments were conducted. The setup is
as shown in Fig.3(a). It consists of a three-joint miniature
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(b) method of experiment (c) surface following actions

Fig. 3. Experiment

robot arm, a 6-axis force-torque sensor (“NANO Sen-
sor”’, BL Autotec, LTD.), and an acrylic sphere (diameter
38[mm], a table tennis ball), which is used as the end-
effector. The position of the end-effector is measured by
the optical encoders attached to the joints. The robot is
moved by the experimenter as shown in Fig.3(b) without
using the joint actuators.

Two objects, H and S, were used. Object H is a wooden
cylinder with diameter of 42[mm]. Object S is a soft
cylindrical object with diameter 42[mm], which consists
of a wooden cylinder with diameter of 24[mm] covered
with a soft sponge sheet with thickness of 9[mm]. Three
surface following actions, a, b, and ¢, as shown in Fig.3(c),
were performed on each object. These runs are denoted
like Ha, Sb, and so on.

The computer used is with an Intel Pentium III CPU
(1[GHz]). The sampling period of the impedance per-
ception is 1.5[msec], and that of the surface property
estimation is 15[msec]. K and B, of the VSF are set to
be 700[N/m] and 10[Ns/m] respectively. The weightings
of the measurements (wy,; in (6)) are reduced to a half
after 1.0x10~3[m] of distance or 0.1[sec] of time is moved
or elapsed. § in (28) is set to be 0.1. Those parameters
are designed by trial and error.

The friction coefficients of H and S are about 0.27
and 0.85, and the stiffness coefficient of S is about
320[N/m]. Object H can be regarded as rigid. Apparent
stiffness coefficients of H and S estimated through the
VSF are expected to be about K, = T700[N/m] and
320K, /(K,+320) ~ 220[N/m] respectively. Considering
the radius of the end-effector, the estimates of the curva-
tures are expected to be 2/(43+38[mm])~ 25[m~!] and
2/(42+38[mm])~ 25[m '] respectively.
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B. Result

The results are shown in Fig.4 and Fig.5. Fig.4 shows
the estimated 7, £ and ®, and the actual positions of
the objects represented by the transparent surfaces. Fig.5
shows the estimated ""Xg, friction coefficient p, and
curvature p. Estimated values are represented by black
solid curves and their uncertainties are represented by gray
bands. The time spans in which the end-effector is in touch
with the surfaces are bounded by vertical lines (those
represent the discontinuities detected by the impedance
perception[7]. Those discontinuities agree with the actual
times of contact and separation with the surface. When
the discontinuities are detected, the cumulated data of the
past, Ry, Q, and F', are reset to zero). The estimation
is performed only when the observed force is larger than
a threshold. When the computation does not finish within
the sampling period (15[msec]), estimates are not obtained
and blanks appear in the graphs.

Fig.4 shows that {n,t,v} are properly estimated in
most cases. The estimates are stable and correct especially
on object H, which is non-deformable. Some misestima-
tions follow the collisions, but most of them are limited
in the short time periods between the occurrence and
detection of the discontinuities. However, on object S,
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Fig. 5. Estimated stiffness coefficients ""5\@, curvature p, and friction coefficient

which is deformable, ¢ and v are confused when the
motion is not along primary directions, i.e., in action c.
This may be because the weighting factor 3 in (28) is not
proper. Or more specifically, the criterion ®(U') may need
reconsideration.

"\ is estimated to be close to the correctly value of
£ (7T00[N/m] for H and 220[N/m] for S) under action b,
along the primary direction ¢. The cause of the incorrect
estimations in actions a and c is as explained in III-D.

The friction coefficient y is correctly estimated (0.27 for
H and 0.85 for S) especially under action b. As expected,
the uncertainty is large when the estimate is far from
the true value. However, sometimes large uncertainties are
obtained even when the the estimate is near the true value.
The definition of the uncertainty may have to be improved.

Estimation of p is performed only when i < 0.
As shown in (31), the stiffness « and the normal force
N are required to estimate p. x = 700[N/m] is used for
object H, and ~ 220[N/m] for object S. Due to the
negligible weight of the end-effector, the observed force
is directly used to determine N. p is properly estimated
in action a, which is along the primary direction v, but
surface deformability contributes large uncertainty.

V. CONCLUSION

This paper has proposed a method for extracting in-
formation on properties of a convex cylindrical surface,
using the stiffness matrix provided by the impedance
perception[7], under the situation where the end-effector
is slid on the surface. The normal and primary directions
can be obtained from the stiffness matrix, and, in limited
conditions, the friction and stiffness coefficients also can
be obtained. The curvature also can be estimated by using
the information on the force applied to the surface. The
results of preliminary experiments have been presented.
The proposed method still seems to need improvement,
but it is shown that this approach can be effective for

24

extracting information on various properties of environ-
ment. This method is for passive monitoring of sensor
data without requiring any specialized control strategies.
Therefore, this has a potential to be used not only for
autonomous robots but also for manually controlled robots
and, moreover, direct monitoring of human manipulations.
The future research should be directed toward enhancing
this scheme so that it can deal with general surfaces
and more than two constraint hypersurfaces. Quantitative
evaluation of the accuracy of the estimation will also be
a future topic.
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