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Abstract— High-gain PID position control, which is widely used
with robots having complex dynamics, involves some risks in cases
of abnormal events, such as unexpected environment contacts,
temporal power failures, and wrong position commands from
a higher-level controller. We previously proposed a proxy-based
sliding mode control (PSMC) scheme, which is an extension of
PID control that ensures slow, moderate, overdamped recovery
from a large positional error at abnormal events without sacrific-
ing tracking accuracy during normal operation. Its weakness is
that the velocity is not bounded. This paper proposes a velocity-
bounding PSMC (VB-PSMC) scheme, which is an extension of
PSMC to impose an arbitrary magnitude limit on the velocity.
The VB-PSMC method can be used as a lowest-level position
servo that is safer than PSMC and much safer than conventional
PID control. The advantage of VB-PSMC was demonstrated
through implementation experiments.

I. INTRODUCTION

The dynamics of industrial robots are usually difficult to
be modeled due to the existence of many nonlinear elements,
such as joint frictions. To suppress the influence of unmodeled
dynamics, an industrial robot usually requires a stiff position
controller as the lowest level controller. Low-level position
controllers are necessary even for implicit force control [1]
and admittance control [2]. The PD (proportional-derivative)
and PID (proportional-integral-derivative) control schemes are
among the most widely used methods for position control.

One drawback of conventional stiff position control is diffi-
culty in ensuring safety. It is not safe when the desired position
determined by a higher-level controller is far separated from
the actual end-effector position. This unsafe situation occurs
in cases of unexpected environment contacts, temporal power
failures to the actuators, wrong position commands from the
higher-level controller, and so on. In such cases, the actuator
force, determined by the position controller, increases as the
error between the desired and actual positions increases. This
can cause damage to the environment and the robot, and
can cause excessive speed and overshoots during recovery
to the desired position. A high velocity-feedback gain (D-
gain) will prevent excessive speed and overshoots, but it will
deteriorate the tracking accuracy during normal operations and
will magnify the noise in the velocity signal.

In a previous paper [3], we proposed an extension of
PID control, which we call proxy-based sliding mode control
(PSMC). This method can also be interpreted as a modified
version of sliding mode control (SMC). Tracking accuracy of
PSMC during normal operation is the same as the conven-
tional PID control. However, it is capable of exhibiting slow,
overdamped motions during recovering from large positional

errors. This property prevents overshoots after recovery from
abnormal events. The time constant of this recovering motion
can be set as an arbitrary user parameter.

In the PSMC scheme, the system state (that consists of
position and velocity) is attracted to a linear sliding manifold
in the state space, which is illustrated in Fig. 1(a). This linear
manifold corresponds to a first order differential equation with
respect to position, which represents overdamped convergent
dynamics toward the desired position. One imaginable risk in
using PSMC is that there is no limit on the velocity during
recovering motions. When the distance between the actual
and desired positions are large, the robot produces a constant
force until the system state reaches the sliding manifold.
Therefore, when the error is too large, the velocity can become
excessively large before it reaches the sliding manifold.

This paper proposes a modification of PSMC to enable users
to set an arbitrary magnitude limit on the velocity. We term the
proposed method as the velocity-bounding proxy-based sliding
mode control (VB-PSMC). Basic idea is simple; we use a
sliding manifold illustrated in Fig. 1(b), on which the velocity
is saturated. We present a multidimensional expression of
this sliding manifold and derive a discrete-time control law
based on this sliding manifold. The new method allows users
to impose an arbitrary magnitude limit on velocity without
sacrificing tracking accuracy below this limit. As an advantage
inherited from the previous PSMC, the VB-PSMC scheme
also has the capability of overdamped recovering motion from
large positional errors. Thus, VB-PSMC can be used as a
low-level position controller safer than PSMC and much safer
than conventional PID control. The literature includes some
control schemes for imposing state (position and/or velocity)
constraints [4], [5] based on passivity-based energy shaping
scheme [6], but control accuracy during normal operation
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has not been investigated. Rate constraints using time-scale
transformations, such as used in [7], are not suitable for low-
level position controllers that accept unpredictable position
commands from upper level controllers.

The rest of this paper is organized as follows. Section II
presents a new VB-PSMC scheme that incorporates the sliding
manifold illustrated in Fig. 1(b). Section III presents the
results of implementation experiments. Section IV provides
the concluding remarks.

II. VELOCITY-BOUNDING PROXY-BASED SLIDING MODE
CONTROL

This section provides the new control law, VB-PSMC,
which is an extension of the previously-proposed PSMC
method [3]. In the following discussions, lower- and upper-
case symbols in boldface denote n-dimensional vectors and
matrices, respectively. Plain symbols denote scalars. The sym-
bol o denotes the n-dimensional zero vector.

A. Mathematical Preparation

We prepare two n-dimensional functions: sgn(·) and sat(·).
The function sgn(·) denotes the normalization function, which
is the map from Rn into Rn that is defined by

sgn(x)
{

= x/‖x‖ if x �= o
∈ {e ∈ Rn | ‖e‖ ≤ 1} if x = o,

(1)

where x is an arbitrary n-dimensional vector. This function
can be considered as the n-dimensional version of signum
function. Under the definition (1), the statement y = sgn(x)
is equivalent to

(y = x/‖x‖ ∧ x �= o) ∨ (‖y‖ ≤ 1 ∧ x = o) . (2)

The function sat(·), on the other hand, denotes the unit
saturation function, which is the map from Rn into Rn that
is defined by

sat(x) =
{

x/‖x‖ if ‖x‖ > 1
x if ‖x‖ ≤ 1.

(3)

The functions sgn(·) and sat(·) are related by the following
theorem and corollary:

Theorem 1. With two n-dimensional vectors x and y, the
following statement holds true:

y = sgn(x − y) ⇐⇒ y = sat(x). (4)

Proof. From the definition of sgn(·) function, we have

y = sgn(x − y)

⇐⇒
(

y =
x − y

‖x− y‖ ∧ x �= y

)
∨ (y = x ∧ ‖y‖ ≤ 1) . (5)

Assume that y = (x − y)/‖x − y‖ and x �= y are satisfied.
Letting r = ‖x−y‖ > 0, we have (1+r)y = x. This implies
‖x‖ = 1+r because of ‖y‖ = 1. This indicates ‖x‖ > 1, and
substituting ‖x‖ = 1+r into (1+r)y = x yields y = x/‖x‖.
Therefore, we have(

y =
x − y

‖x− y‖ ∧ x �= y

)
⇒ (y = x/‖x‖ ∧ ‖x‖ > 1) . (6)

+
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Fig. 2. Block-diagram representation of Theorem 1.

The converse of the above statement is trivial. It is also trivial
that (y = x ∧ ‖y‖ ≤ 1) is equivalent to (y = x ∧ ‖x‖ ≤ 1).
Therefore, we have

y = sgn(x − y)
⇐⇒ (y = x/‖x‖ ∧ ‖x‖ > 1) ∨ (y = x ∧ ‖x‖ ≤ 1)
⇐⇒ y = sat(x). (7)

Thus, the proof is complete.

Corollary 1. With two n-dimensional vectors x and y and
two positive real numbers X and Y , the following statement
holds true:

y = Xsgn(Y (x − y)) ⇐⇒ y = Xsat(x/X). (8)

Proof. Because sgn(Zz) = sgn(z) for all Z > 0 and z ∈
Rn, (8) can be rewritten as

y/X = sgn(x/X − y/X) ⇐⇒ y/X = sat(x/X). (9)

The above holds true because of Theorem 1.

Fig. 2 shows a block-diagram representation of Theorem 1.
Theorem 1 is a multidimensional extension of the theorem in-
troduced in the previous paper [3]. Theorem 1 and Corollary 1
imply that if the discontinuous function sgn(·) is enclosed
within a closed loop without time delay, it can be removed by
using the continuous function sat(·).
B. Continuous-Time Representation

Let us consider a position control system in n-dimensional
Cartesian space. Let pd and p denote the desired and actual
positions of a controlled object, respectively. Let vd and v
denote the time derivatives of pd and p, respectively. The
controller accepts pd and p as inputs and determines an
actuator force f as an output. The force f is applied to
the controlled object. We use multidimensional representations
to allow the extensibility of discussion. When n = 1, the
following discussion can be applied to angle control in each
of the joints of general manipulators.

The concept of PSMC [3] can be schematically illustrated
as Fig. 3. The block diagram of this system is shown in
Fig. 4. This system includes a massless virtual object, called a
proxy, whose position is denoted by ps. The actual controlled
object and proxy are connected with a stiff virtual spring-
like element, which is often called a virtual coupling [8]. As
apparent from Fig. 3, the proxy receives forces from the virtual
coupling and a (virtual) sliding mode controller. Because the
proxy is massless, these two forces balance each other. Both
of them are denoted by f in Fig. 3 and Fig. 4. The same
force f is produced by the real actuator and applied to the
real controlled object.



The virtual coupling is assumed to produce a force based
on a PID control action to maintain its length to be zero. It is
represented in Fig. 4 as the block L/s + K + Bs, where L,
K , and B are the integral, proportional, and derivative gains,
respectively. This means that the output of the virtual coupling,
f , satisfies the following equation:

f = L
∫

(ps − p) dt + K (ps − p) + B (vs − v) . (10)

Meanwhile, the sliding mode controller in Fig. 3 and Fig. 4
is assumed to produce the force f based on a SMC law. The
previous method [3] employed the following control law:

f = F sgn(σs) (11a)
σs = pd − ps + H(vd − vs). (11b)

Here, F and H are positive real numbers. This control law
can be illustrated as the block shown in Fig. 5. In the 2n-
dimensional state space of the proxy ({ps, vs}), the manifold
σs = o is an n-dimensional subspace, as illustrated in
Fig. 1(a). This manifold is called the sliding manifold, and
the control law (11) acts to attract the proxy’s state {ps, vs}
toward the sliding manifold.

One potential risk of using the control law (11) is that it
can produce excessive speed before the proxy’s state reaches
the sliding manifold. In stead of the control law (11), we here
propose to use the following SMC law:

f = F sgn(ss) (12a)
ss = V sat ((Aσs + vs)/V ) − vs (12b)
σs = pd − ps + H(vd − vs). (12c)

Here, V and A are positive real numbers.
The set ss = o is an n-dimensional manifold in the

2n-dimensional state space {ps, vs}, which is schematically
illustrated in Fig. 6. Equation (12b) shows that ss = o implies
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Fig. 3. A proxy-based implementation of a sliding mode control law.
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‖vs‖ ≤ V because the norm of the first term in the right-hand
side of (12b) is always smaller than V . This means that the
magnitude of the proxy’s velocity is equal to or smaller than V
as long as the proxy’s state is on the manifold ss = o. When
ss = o and ‖vs‖ < V , ‖(Aσs+vs)/V ‖ is smaller than 1 and
as a result, Aσs + vs − vs = o is satisfied. This means that
σs = o is satisfied if ss = o and ‖vs‖ < V . Therefore, as
long as ‖Aσs+vs‖ ≤ V is satisfied, (12) is equivalent to (11).
Notice that the parameter A does not influence the manifold
ss = o. Fig. 7 shows the block diagram of the control law (12).

As a whole, the controller represented by Fig. 4 and Fig. 7
satisfies the following equations:

f = L
∫
(ps − p)dt + K(ps − p) + B(vs − v) (13a)

f = F sgn (ss) (13b)
ss = V sgn ((Aσs + vs)/V ) − vs (13c)
σs = pd − ps + H(vd − vs). (13d)

Note that f satisfies both of (13a) and (13b).

C. Discrete-Time Representation

Based on the Euler approximation, we have the discrete-
time representation of (13) as follows:

f(k) = La(k) + K∇a(k)/T + B∇2a(k)/T 2 (14a)
f(k) = F sgn (ss(k)) (14b)
ss(k) = V sat ((Aσs(k) + vs(k))/V ) − vs(k) (14c)
σs(k) = pd(k) − ps(k) + H(vd(k) − vs(k)) (14d)
∇a(k) = T (ps(k) − p(k)). (14e)

Here, symbols in the parentheses, such as k, denote discrete-
time indices. The operator ∇ denotes the backward difference
operator, which is defined by ∇x(k) = x(k) − x(k − 1)
and satisfies ∇2x(k) = ∇x(k) − ∇x(k − 1) = x(k) −
2x(k) + x(k − 2). We assume v(k) = ∇p(k)/T , vs(k) =
∇ps(k)/T , and vd(k) = ∇pd(k)/T . Notice that (14) cannot



be considered as a computational procedure, but as a set of
algebraic constraints that must be satisfied. The inputs to the
system are pd(k) and p(k) and their derivatives, and thus they
can be treated as known variables. Once they are provided,
the actuator force f(k) and the state variable a(k) (or its
time difference ∇a(k)) must be determined so that (14) is
satisfied.

The block diagrams of Fig. 4 and Fig. 7 show that the
discontinuous sgn(·) element is surrounded by a feedback
loop without time delay within the controller software. There-
fore, due to Corollary 1, the function sgn(·) in (14b) can be
removed and an analytical solution for (14) can be obtained at
least if the first term of the right-hand side of (14c) is known.
Because A is an arbitrary positive value, we can choose A
for the convenience of analytical derivations. Specifically, we
choose A so that

u∗(k) = Aσs(k) + vs(k) (15)

(which appears in (14c)) is independent from unknown vari-
ables. We can write vs(k) and σs(k) as follows:

vs(k) = v(k) + ∇a(k)/T 2 −∇a(k − 1)/T 2 (16)
σs(k) = pd(k) − p(k) −∇a(k)/T + H(vd(k) − v(k)

−(∇a(k) −∇a(k − 1))/T 2)
= pd(k) − p(k) + H(vd(k) − v(k))

−(H + T )∇a(k)/T 2 + H∇a(k − 1)/T 2. (17)

Here, note that ∇a(k) is unknown. By setting

A = 1/(T + H), (18)

we can make u∗(k) independent from ∇a(k), as follows:

u∗(k)=
pd(k)−p(k)+Hvd(k)+Tv(k)−∇a(k−1)/T

H + T
. (19)

This means that setting A = 1/(T + H) allows us to treat
u∗(k) as a known variable.

Letting

u(k) = V sat(u∗(k)/V ), (20)

we can simply rewrite (14b) as follows:

f(k) = F sgn(u(k) − vs(k)). (21)

Here, vs(k) depends on the unknown variable f(k). From
(14a), we have

∇a(k) =
T 2f(k) − LT 2a(k − 1) + B∇a(k − 1)

LT 2 + KT + B
. (22)

Substituting the above into (16) yields

vs(k) = v(k) − LTa(k − 1) + (LT + K)∇a(k − 1)
T (LT 2 + KT + B)

+
f(k)

LT 2 + KT + B
. (23)

Therefore, by using

f∗(k) :=La(k − 1) + (LT + K)∇a(k − 1)/T

+(LT 2 + KT + B)(u(k) − v(k)), (24)

we obtain

u(k) − vs(k) = (f∗(k) − f (k))/(LT 2 + KT + B).(25)

Substituting the above into (21) yields

f(k) = F sgn
(

f∗(k) − f(k)
LT 2 + KT + B

)
. (26)

By using Corollary 1, we have

f(k) = F sgn (f∗(k)/F ) , (27)

which provides the solution for f(k). Once f (k) is obtained,
the other unknown a(k) can be calculated by using (14a).

In conclusion, the control law of VB-PSMC, i.e., the com-
putational procedure to calculate f (k) and a(k) that satisfy
(14), is obtained as follows:

u∗(k) :=
pd(k)−p(k)+Hvd(k)+Tv(k)−∇a(k−1)/T

H + T
(28a)

u(k) :=V sat(u∗(k)/V ) (28b)
f∗(k) :=La(k − 1) + (LT + K)∇a(k − 1)/T

+(LT 2 + KT + B)(u(k) − v(k)) (28c)
f(k) :=F sat(f∗(k)/F ) (28d)

a(k) :=
(KT +B)a(k − 1)+B∇a(k − 1) + T 2f(k)

LT 2 + KT + B
. (28e)

D. Relation to Previous Methods
The control law (28) is an extension of the previously-

proposed PSMC. Removing the velocity limit from the control
law (28) (i.e., setting V → ∞ with (28)) yields the following:

f∗(k) :=
LT 2+KT +B

H + T
(pd(k)−p(k)+H(vd(k)−v(k)))

+La(k − 1) +
(K + LT )H − B

T (H + T )
∇a(k − 1) (29a)

f(k) :=F sat(f∗(k)/F ) (29b)

a(k) :=
(KT +B)a(k − 1)+B∇a(k − 1) + T 2f (k)

LT 2 + KT + B
, (29c)

which is the control law of PSMC based on the linear sliding
manifold (11). It is also important to notice that the VB-PSMC
(28) is equivalent to PSMC (29) as long as ‖u∗(k)‖ ≤ V .

As is stated in the previous paper [3], the PSMC is an
extension of the conventional PID control. Thus, the VB-
PSMC is also an extension of the PID control. Setting F → ∞
makes (29) to be equivalent to the following:

f(k) :=
LT 2+KT +B

H + T
(pd(k)−p(k)+H(vd(k)−v(k)))

+La(k − 1) +
(K + LT )H − B

T (H + T )
∇a(k − 1) (30a)

a(k) :=
(KT +B)a(k − 1)+B∇a(k − 1) + T 2f (k)

LT 2 + KT + B
, (30b)

which is equivalent to

a(k) := a(k − 1) + T (pd(k)−p(k))

+
H

H + T
(∇a(k − 1)−T (pd(k − 1)−p(k − 1)))(31a)

f(k) := La(k) + K∇a(k)/T + B∇2a(k)/T 2. (31b)
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Fig. 8. Experimental setup: a parallel-link manipulator.

Letting
C0 = ∇a(k0)−T (pd(k0)−p(k0)), (32)

we can see that (31) is equivalent to

a(k) := a(k−1)+T (pd(k)−p(k))+C0

(
H

H + T

)k−k0

(33a)

f(k) := La(k) + K∇a(k)/T + B∇2a(k)/T 2, (33b)

which is, as k → ∞, equivalent to the PID control law, i.e.,

a(k) := a(k − 1) + T (pd(k)−p(k)) (34a)
f (k) := La(k) + K∇a(k)/T + B∇2a(k)/T 2. (34b)

The above derivation shows that VB-PSMC (28) is ana-
lytically equivalent to the PID control law (34) as long as
‖u∗(k)‖ ≤ V and ‖f∗(k)‖ ≤ F are satisfied. This means
that the choices of F , V , and H do not affect the tracking
accuracy during normal operation as long as ‖f∗(k)‖ ≤ F and
‖u∗(k)‖ ≤ V . The VB-PSMC can be viewed as an extension
of the conventional PID control law (34) that includes

• an arbitrary magnitude limit F on the actuator force,
• an arbitrary magnitude limit V on the velocity, and
• overdamped recovering motions characterized by an ar-

bitrary time constant H .
VB-PSMC is advantageous over PID control in that the above
3 parameters can be set independently from the PID control
gains K , L, and B. The choices of F and V can be made
according to safety regulations at each site where this control
scheme is used.

III. IMPLEMENTATION EXPERIMENTS

The proposed method was implemented in the 2-DOF planar
parallel link manipulator shown in Fig. 8. This manipulator
had two actuators, which were AC servo motors integrated
with harmonic drive gearings. The manipulator was controlled
using the 2-dimensional version of the proposed control law
(28). The position p of the end-effector in the Cartesian coor-
dinate system was measured by optical encoders attached to
the actuators, and the velocity v was calculated from the time
difference of p. The force f , which should be applied to the
end-effector, was determined by the computational procedure
(28). The joint torque vector that is statically equivalent to f
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Fig. 9. Experimental results (point-to-point reaching).

was commanded to the actuators. The sampling interval T was
set to be T = 0.001 s.

In order to exhibit the difference between VB-PSMC and
PSMC, we investigated the influence of the parameter V . No
attempts were made to test the influence of the parameters
K , B, L, F , or H because they are common parameters for
both VB-PSMC and PSMC, and advantages of PSMC over
conventional PID control have already been demonstrated in
the previous paper [3]. The parameters K , B, L, F , and H
were fixed as K = 80000 N/m, B = 600 Ns/m, L = 100000
N/(ms), F = 80 N, and H = 0.2 s.

In a first set of experiments, simple point-to-point reaching
motions were performed. The desired position command pd

was chosen as a step-like function as follows:

pd(t) =

{
[ − 0.2 m, 0 m]T if t < 5s
[0.2 m, 0 m]T if t > 5s.

Three trials were performed with different V values: V = 0.4,
0.8, and ∞ m/s. (Setting V = ∞ means using PSMC (29)
instead of VB-PSMC (28).)

Fig. 9 shows the results of this set of experiments. At
t = 5 s, the end-effector starts to accelerate due to the sudden



-0.1

-0.05

0.

0.05

0.1

time t (s)

position px (m)

V= 1 (PSMC)

V= 0.4 m/s

6. 8. 10. 12. 14.

(a) position in x direction versus time (gray thick curve represents pd).

-0.4

0.

0.4

velocity vx (m/s)

V= 1 (PSMC)

V= 0.4 m/s

6. 8. 10. 12. 14.
time t (s)

(b) velocity in x direction versus time (gray thick curve represents vd).

6. 8. 10. 12. 14.
time t (s)

positional error ||p Ä pd|| (10
Ä3

 m)

V= 1 (PSMC)

V= 0.4 m/s

0

0.2

0.4

0.6

0.8

1

(c) magnitude of positional error versus time.

Fig. 10. Experimental results (tracking).

change in the desired position. With VB-PSMC (with V = 0.4
and 0.8 m/s), the velocity becomes constant at the value of V ,
while the velocity is not limited with PSMC (with V = ∞).
In a latter portion of each motion, the end-effector approaches
to the desired position (px = 0.2 m) exhibiting an asymptotic,
overdamped motion. This overdamped motion is the main
advantage of PSMC (and VB-PSMC) over conventional PID
control.

In a second set of experiments, the desired position com-
mand was given as follows:

pd(t)=


 0.1 cos

(
(4e−

(t−10)2

4 +1)(|t − 10| − π)
)

m

0.1 sin
(
(4e−

(t−10)2

4 +1)(t−10−sgn(t−10)π)
)

m


.

This represents a circular motion with a constant radius (0.1 m)
and a time-dependent frequency; the motion becomes faster
around t = 10 s. Two trials were performed with different V
values: V = 0.4 and ∞ m/s.

The results are shown in Fig. 10. As expected from the
analysis presented in section II-D, Fig. 10 shows that the
tracking accuracy during slow motion (before t = 8 s and
after t = 13 s) is almost the same between VB-PSMC

(V = 0.4 m/s) and PSMC (V = ∞), but VB-PSMC properly
limits the velocity when the desired motion is fast (between
t = 8 s and 13 s). This indicates that VB-PSMC can be safer
even when erroneous position commands are provided from a
higher-level controller.

IV. CONCLUSIONS

This paper has proposed a position controller that is an
extension of PID controller with improved safety. The new
method, velocity-bounded proxy-based sliding mode control
(VB-PSMC), allows users to arbitrarily choose

• a time constant of overdamped recovering motions from
large positional errors and

• a magnitude limit on the velocity
without sacrificing accuracy and responsiveness of position
control during normal operations. It is an extension of
our previously-proposed proxy-based sliding mode control
(PSMC) [3], in which only the time constant of recovering
motions can be arbitrarily designed. The VB-PSMC method
can be used as a low-level position controller for industrial
robots, and it is safer than PSMC and much safer than PID
control. Although the demonstrations were performed only
with a 2-DOF planar manipulator, one-dimensional version
of VB-PSMC can be used for independent joint angle con-
trol. Thus, VB-PSMC can also be used with general robotic
manipulators with which PD or PID control has usually been
used.

Future studies will be addressed to realize arbitrary bounds
on actuator force and velocity vectors. This paper only consid-
ered imposing limits on L2 norms of force and velocity vectors
in Cartesian space, but there will be cases where the limits
should be defined in the joint space of a robotic manipulator.
A complete analysis on the stability will also be an important
topic.
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