
A Modular Software Architecture for Simulating Mechanical Systems

Involving Coulomb Friction Integrable by the Runge-Kutta Method

Ryo Kikuuwe and Motoji Yamamoto

Abstract— This paper presents a modular architecture of sim-
ulation software that is capable of properly capturing Coulomb
friction in mechanical systems. The presented architecture is
built upon Kikuuwe et al.’s discrete-time friction model, which
is based on the implicit Euler method. The paper reformulates
the model into a form that can be integrable through the
standard fourth order Runge-Kutta method. Some examples
based on the presented architecture are presented.

I. INTRODUCTION

Almost all mechanical systems contain frictional contacts

among objects. Most simple representation of friction is the

Coulomb friction model, which is described as follows:

f = Fv/|v| (1)

where f is the friction force, v is the relative velocity, and

F > 0 is the magnitude of the kinetic friction force. In

this model, the force is discontinuous with respect to the

velocity v, and the force balances to external forces at zero

velocity so as to maintain zero velocity. A classical approach

to treat this discontinuity is to use a non-physical, artificial

threshold below which the velocity is considered zero [1]. As

is well known, this approach produces either of chattering

due to repeated zero-velocity crossing or unbounded drift

below the threshold velocity. Some modern friction models

[2]–[4] employ differential equations to describe continuous

transitions from static friction to kinetic friction. These

models are difficult to be used in multidimensional space

or exhibit unbounded drift even when the applied force is

below the static friction level.

Recently, Kikuuwe et al. [5] proposed a discrete-time

friction model that is free from the undesirable properties

mentioned above. The idea behind the model is that the

troublesome discontinuous dynamics described as (1) is

coupled with a viscoelastic dynamics through a massless

object, as illustrated in Fig. 1. Such a physical representation

is indeed common among some of modern friction models,

but Kikuuwe et al.’s model is different in its mathematical

formulation; in their model, the system of Fig. 1 is described

as the following set of differential algebraic constraints:

f = F (v − ė)/|v − ė| (2a)

f = Ke + Bė. (2b)

Here, K > 0 and B > 0 are stiffness and viscosity, respec-

tively, of the viscoelastic dynamics, and e is the displacement

of the viscoelastic element. In [5], the analytical solution for

The authors are with Kyushu University, Fukuoka 819-0395, Japan. E-
mail: kikuuwe@ieee.org

the constraint (2) is derived based on the implicit (backward)

Euler scheme, and it is formulated as an algorithm that

accepts velocity input v and produces force output f . The

model does not exhibit drift, and does not exhibit chattering

as long as K and B are appropriately chosen. Moreover, rate-

dependent friction laws such as viscous and Stribeck effects

can also be included, as detailed in [5]. A more detailed

literature review supporting this friction model can be found

in [5]. The model is straightforward to be used in forward-

Euler simulations. Thus, the model is useful for physics-

based animation and haptic rendering, in which the accuracy

is less counted than visual/haptic realism.

This paper aims to broaden the application of the

previously-proposed Kikuuwe et al.’s friction model toward

the field of general physical simulation in which the accuracy

is of more importance. In such applications, the fourth order

Runge-Kutta method (RK4) is much more preferred than the

Euler methods. A technical problem arising here is that RK4

requires the system to be described in a differential equation

in continuous time, but Kikuuwe et al.’s model is described

in the form of difference (recurrence) equation in discrete

time. Moreover, RK4 requires “trial” computations of the

derivatives, which do not update the state vector. Thus, some

modifications are required for Kikuuwe et al.’s friction model

to allow its use in the RK4 framework.

Another problem in using Kikuuwe et al.’s model with

RK4 is that the model is a modular model although RK4

can be viewed as a holistic method. Kikuuwe et al.’s fric-

tion model is originally formulated as an impedance-type

(motion-in, force-out) software component, which is meant

to be used in a modular software architecture composed

of impedance and admittance (force-in, motion-out) compo-

nents. The use of RK4 in a modular software architecture is

not straightforward because RK4 usually requires the whole

system to be described as a single differential equation.

The rest of this paper is organized as follows. Section II

prepares a modular architecture of a mechanical system

simulator that can be integrated through RK4, which can be

velocity v

friction force f
B

K
emassless 

object

Fig. 1. The physical model upon which Kikuuwe et al.’s friction model
[5] is built. The novelty of their friction model lies in the mathematical
formulation of this physical model, not in this physical model itself.

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 2277



built up from admittance and impedance components. The

main contribution of the paper is described in section III,

which presents a modification of Kikuuwe et al.’s friction

model as an impedance component integrable through RK4,

preserving its original advantages. Section IV presents ex-

ample applications of the presented technique. Section V

provides the concluding remarks.

II. MODULAR REPRESENTATION OF DYNAMIC SYSTEMS

INTEGRABLE BY RK4

A. Fourth Order Runge-Kutta Method

Consider a dynamic system described as follows:

ẋ = F(x, t) (3)

where x ∈ R
n is the system’s state vector, t ∈ R is the

time, F is a function from R
n×R to R

n, and ẋ = dx/dt ∈
R

n. Let x(k) be the value of x at time t = kT where k
is an integer index and T is the timestep size. The most

straightforward method to obtain x(k + 1) is the forward

Euler approach, which is described as follows:

x(k + 1) = x(k) + TF(x(k), kT ). (4)

This scheme usually provides inaccurate results and thus is

not used for simulation purposes except in cases where the

speed of computation is of the primary importance.

The RK4, which is described below, provides a more

accurate result:

For r = 1, 2, 3, 4 (5a)

ξr = F(x(k) + Tr−1ξr−1, kT + Tr−1) (5b)

End For (5c)

x(k + 1) = x(k) + (T/6)(ξ1 + 2ξ2 + 2ξ3 + ξ4) (5d)

where {T0, T1, T2, T3} = {0, T/2, T/2, T }. For brevity of

notation, we define ξ0 = o. This technique requires four

computations of the function F to increment the time for

one timestep size. Here, we should be aware that all state

variables in the system must be included in the vector x and

that an analytical expression of function F must be derived

before the software is written.

B. Modular Architecture

For extensible, reusable software architecture, a mechan-

ical system should be described as a network of various

software components, each of which has a particular physical

counterpart in the simulated mechanical system. In such soft-

ware architecture, it is convenient to use two types of com-

ponents: the admittance and impedance types. An admittance

component is a component that accepts force as the input and

produces position and velocity as the output. An impedance

component is a component that accepts position input and

produces force output. Yoshikawa and Ueda [6] have also

presented a similar architecture, in which admittance and

impedance components are termed as ‘dynamics modules’

and ‘interaction modules,’ respectively.

In software of a modular architecture, a component up-

dates its own state variables according to some inputs. In the

RK4 scheme described in (5), however, all the state variables

of the whole system are included in a single vector x, and the

analytical expression of the whole system should be given in

a single differential equation. Thus, a care should be taken for

the basic architecture of the software to combine a modular

architecture and the RK4 integration.

A possible solution follows. A general expression of an

admittance component can be described as follows:

ẋ = A(x, û). (6)

Here, x is the state vector of the component, which consists

of the information of generalized position/velocity, and û is

the input to the component, which consists of the information

of generalized force. Eq. (6) implies that how x, which

represents the position and velocity, changes is determined

by the force input û. One simple example is a point mass

M > 0 accepting a translational force f ∈ R
3, which can

be described as follows:
[

ṗ

v̇

]

= Amass

([

p

v

]

, f

)

=

[

v

f/M

]

(7)

where p ∈ R
3 and v ∈ R

3 are the position and velocity,

respectively, of the mass point. Another example is an n-

DOF robotic system, of which the equation of motion is

given in the form of τ = H(θ)ω̇ + c(θ, ω) where θ ∈ R
n

is the vector consisting of the joint angles, τ ∈ R
n is the

vector consisting of the joint torques, H ∈ R
n×n is the

inertia matrix, c ∈ R
n is Coriolis and centrifugal forces,

and ω = θ̇. This robotic system can be described as an

admittance component as follows:
[

θ̇

ω̇

]

=Arob

([

θ

ω

]

, τ

)

=

[

ω

H(θ)−1 (τ − c(θ, ω))

]

(8)

Recent techniques on efficient computation of forward dy-

namics of robotic systems, e.g., [7], can be embedded in this

framework as a function Arob.

An impedance component, on the other hand, can be

described in the following general form:
[

u

ẏ

]

= I(x̂, y) (9)

where x̂ is the generalized position/velocity input from

external sources, u is the generalized force produced by the

component. The component may or may not hold some state

variables, which are included in y if any. A spring-damper

element can be described as an impedance component as

follows:

f = Isd

([

p

v

])

= Kp + Bv (10)

where p and v are displacement and relative velocity,

respectively, K > 0 and B > 0 are the stiffness and

viscosity coefficients, respectively, and f is the force. Some

modern models of friction are also described as this class of

components. Dahl model [2] describes the friction as follows
[

f
ė

]

= I fricD (v, e) =

[

Ke
v − |v|Ke/F

]

(11)

2278



x̂
1

u
1

x̂
2

u
2

x̂
N
I

u
N
I

û
1

û
NA

û
2©

x
1

x
2

x
NA

y
N
I

_yN
I

s

ª y
2

y
1

y
2

y
1

_

_
I
2

I
1

I
N
I

I
N
I

A
2

A
1

A
NA

x1

x
2

x
NA

_

_

_
___

___

Fig. 2. A mechanical system composed of multiple impedance and
admittance components.

where v is the relative velocity, f is the friction force, F >
0 is the magnitude of the kinetic friction force, K is the

initial elasticity in the static friction state, and e is the state

variable that can be interpreted as the elastic displacement.

LuGre model [3], which is a generalization of Dahl model,

is describes as follows:
[

f
ė

]

=I fricL (v, e)=

[

Ke+B(v−|v|e/g(v))+Dv
v − |v|e/g(v)

]

(12)

where B > 0, D > 0, and g(v) > 0 is a function that

allows the dependence of the friction force on the relative

velocity (for more detail, see [3]). As is discussed in detail

in [5], these friction models suffer from unbounded drift or

difficulty in multidimensional extensions.

Let us consider a system consisting of NI impedance

components and NA admittance components. The output

(generalized force) produced by the impedance components

are provided to the admittance components. The state vec-

tors (generalized position/velocity) of the admittance and

impedance components are integrated through RK4. Based

on the basic procedure (5) of RK4, the state vectors of the

components can be updated through the following procedure:

For r = 1, · · · , 4 (13a)

For i = 1, · · · , NI ; yi = yi(k) + Tr−1ηi,r−1 (13b)

For j = 1, · · · , NA; xj = xj(k) + Tr−1ξj,r−1 (13c)






x̂1

...

x̂NI






= Ψ













x1

...

xNA












(13d)

For i = 1, · · · , NI ;

[

ui

ηi,r

]

= Ii (x̂i, yi) (13e)







û1

...

ûNA






= Φ













u1

...

uNI












(13f)

For j = 1, · · · , NA; ξj,r = Aj(xj , ûj) (13g)

End For (13h)

For i = 1, · · · , NI ; (13i)

yi(k + 1)=yi(k)+
T

6
(ηi,1+2ηi,2+2ηi,3+ηi,4) (13j)

For j = 1, · · · , NA; (13k)

xj(k + 1)=xj(k)+
T

6
(ξj,1+2ξj,2+2ξj,3+ξj,4) (13l)

Here, the functions Φ and Ψ represent some computations

such as coordinate transformations. For example, the input

to a spring-damper element Isd, which is displacement, can

be computed by taking the difference between the outputs,

which are positions, of two masses Amass.

Fig. 2 schematically illustrates the architecture (13). This

structure is suited for parallel computation as the computa-

tions within each “For” loop in (13) are order insensitive.

III. INCORPORATING FRICTION

A. Kikuuwe et al.’s Friction Model

Now we are in position to discuss the problem of im-

plementing Kikuuwe et al.’s friction model [5] in the RK4-

integrable modular architecture (13). The friction model has

the following structure:1

f (k) = gsat(F, (B + TK)v(k) + Ke(k − 1)) (14a)

e(k) = (Be(k − 1) + Tf(k))/(B + TK) (14b)

Here, K > 0, B > 0, F > 0, v is the input velocity, and f

is the output force. The variable e is the state variable. The

function gsat : R × R
n → R is defined as

gsat(X, x) =

{

x if ‖x‖ ≤ X
Xx/‖x‖ if ‖x‖ > X,

(15)

which imposes a saturation at the level of X to the argument

variable. The expression (14) is algebraically equivalent to

the following equation2:

f(k) = F sgn(v(k) − (e(k) − e(k − 1))/T ) (16a)

f(k) = Ke(k) + B(e(k) − e(k − 1))/T, (16b)

which is the backward-Euler discretization of

f = F sgn(v − ė), f = Ke + Bė. (17)

Here, the function sgn is the multidimensional version of

the signum function, which is defined as

sgn(x)

{

= x/‖x‖ if ‖x‖ �= 0
∈ {e ∈ R

n | ‖e‖ ≤ 1} if ‖x‖ = 0.
(18)

Thus, (14) can be physically interpreted as Fig. 1.

For simulating friction between two rigid bodies, the stiff-

ness coefficient K should be chosen as high as permitted by

the stability of the simulated system, which is influenced by

the timestep size T . The viscosity coefficient B also should

be chosen high to reduce the oscillation. For simulating

friction between soft objects, the parameters K and B can

be chosen according to the lateral stiffness and viscosity of

the simulated objects.

1For the simplicity of discussion, this paper ignores rate-dependent
friction phenomena such as viscous and Stribeck effects. It is however
possible to include such phenomena as detailed in section III.F of [5].

2The equivalence between (14) and (16) can be proven by using the
relation y = Xsgn(x − y) ⇐⇒ y = gsat(X, x), X > 0, of which
the details is explained in some of previous papers [8].

2279



B. Modification for RK4 Integration

In order to use the friction model (14) in the framework

of (13), the model should be rewritten in the form of the

function I in (9). Because the right-hand side of (9) contains

the derivative of the state variable, ẏ, (14) should be modified

to compute some values associated with the derivative of e.

One solution is to use the function of the following definition:

Function I fricK (v, e; τ) (19a)

f = gsat(F, (B + τK)v + Ke) (19b)

ε = (f − Ke)/(B + τK) (19c)

Return [fT , εT ]T (19d)

End Function (19e)

By using this function, (14) can be rewritten as follows:
[

f (k)
ε(k)

]

= I fricK (v(k), e(k − 1); T ) (20a)

e(k) = e(k − 1) + Tε(k). (20b)

It is important to be aware that the function I fricK takes

the timestep size τ as an argument. This fact leads to a need

to slightly generalize RK4 (5) as follows:

For r = 1, 2, 3, 4 (21a)

ξr = F(x(k) + Tr−1ξr−1, kT + Tr−1; Tr) (21b)

End For (21c)

x(k + 1) = x(k) + (T/6)(ξ1 + 2ξ2 + 2ξ3 + ξ4) (21d)

where {T0, T1, T2, T3, T4} = {0, T/2, T/2, T, T }. Accord-

ingly, in the algorithm (13), (13e) should be replaced by

For i = 1, · · · , NI ;

[

ui

ηi,r

]

= I i (x̂i, yi; Tr) . (22)

The function I fricK of (19) guarantees ε = v as long as

‖(B + τK)v + Ke‖ < F . This implies that, as long as

‖(B + τK)v + Ke‖ < F is satisfied in the four iterations

of the RK4, the “massless object” in Fig. 1 stays at a fixed

position because
∫

(ε−v)dt = p− e remains constant. Due

to this characteristic, this algorithm is able to capture static

friction without exhibiting drift.

The function I fricK does not include the influence of the

normal force. Based on (14), Coulomb friction on a flat

surface can be easily derived as follows:

fz(k) =

{

Kpz(k) + Bvz(k) if pz(k) < 0
0 if pz(k) ≥ 0

(23a)

f∗

xy(k) = (B + TK)

[

vx(k)
vy(k)

]

+ Ke(k − 1) (23b)

fxy(k) =

[

fx(k)
fy(k)

]

= gsat(−µfz(k), f∗

xy(k)) (23c)

e(k) = (Be(k − 1) + Tfxy(k))/(B + TK) (23d)

where µ > 0 is the friction coefficient, f = [fx, fy, fz]
T ,

v = [vx, vy, vz]
T , and e ∈ R

2. The flat surface is assumed to

include the origin and to be normal to z axis. The algorithm

(23) can be easily rewritten in the following form:
[

f(k)
ε(k)

]

= I fricKN

([

pz(k)
v(k)

]

, e(k − 1); T

)

(24a)

e(k) = e(k − 1) + Tε(k) (24b)

with the function I fricKN : R
4 × R

2 × R → R
5 of an

appropriate definition.

IV. EXAMPLES

A. Simulation I: A Rolling Sphere With Slip

As an example for dynamics systems involving friction,

we consider a rigid spherical object rolling or slipping on a

fixed flat surface, as illustrated in Fig. 4. This system can

be described as a combination of one admittance component

and one impedance component. The admittance component

represents the dynamics of the spherical object, while the

impedance component represents the frictional contact be-

tween the object and the fixed surface.

The state vector of the admittance component is

x =
[

pT vT qT ωT
]

T ∈ R
13. (25)

Here, p ∈ R
3 and v ∈ R

3 are the position and the velocity,

respectively, of the gravity center of the object. The vector

ω ∈ R
3 is the angular velocity and q is the unit-quaternion

representation (detailed in, e.g., [9]) of the attitude of the

object. The function A for this object can be obtained based

on the basic Newton and Euler’s equations of motion, which

is written as follows:

ẋ = Arigid

(

x,

[

f

τ

])

=









v

f/M
Q(ω, q)

J−1(τ − ω × Jω)









(26)

Here, f ∈ R
3 and τ ∈ R

3 are the translational force

and the moment applied to the object, and M = 0.3 kg

and J ∈ R
3×3 are the mass value and the inertia matrix,

respectively, of the object. The function Q : R
3 ×R

4 → R
4

denotes the function that transforms the angular velocity into

the quaternion rate; q̇ = Q(ω, q). Let fF be the force acting

from the flat surface to the contact point. Then, f and τ

in (26) satisfy f = fF + Mg and τ = az × fF where

az = [0, 0,−R]T , R = 0.2 m is the radius of the object,

and g = [0, 0, 9.8]T m/s2 is the gravitational acceleration.

The force fF can be obtained through the impedance

component I fricKN, which is used in (24) and defined

through (23). The input into I fricKN is the velocity of the

contact point, which is given by vc = v + ω × az . The

parameters for I fricKN were set to be K = 107 N/m, B = 10
Ns/m, and µ = 0.1.

Then, the algorithm in one timestep is written as follows:

For r = 1, 2, 3, 4 (27a)

e = e(k) + εr−1Tr−1 (27b)

x = x(k) + ξr−1Tr−1 (27c)
[

fF

εr

]

= I fricKN

([

pz − R
v + ω × az

]

, e; Tr

)

(27d)

ξr = Arigid

(

x,

[

fF + Mg

az × fF

])

(27e)

End For (27f)

2280



Fig. 3. Simulation I: A spherical object on a frictional flat surface.

0
0.4
0.8
1.2
1.6

2

v
el

o
ci

ty
[m

/s
]

0
0.01
0.02
0.03
0.04
0.05

h
e

ig
h
t

[m
]

0 0.2 0.4 0.6 0.8 1

time [s]

vel. of center
vel. of contact pnt
height

Fig. 4. Results of simulation I.

e(k + 1) = e(k) + (T/6)(ε1 + 2ε2 + 2ε3 + ε4) (27g)

x(k + 1) = x(k) + (T/6)(ξ1 + 2ξ2 + 2ξ3 + ξ4)(27h)

The timestep size was set to be T = 10−4 s.

At t = 0, the state of the object were set to be v =
[2, 0, 0]T m/s and p = [0, 0, 1.01R]T . The result is shown in

Fig. 4, in which the horizontal velocity of the gravity center,

the horizontal velocity of the contact point, and the height

of the object. The velocity of the contact point reaches zero

at t = 0.58 s, which implies that the sphere reaches the

pure rolling state without slipping. These results indicate the

validity of the representation I fricKN in RK4 framework.

B. Simulation II: Rigid Link Mechanism: Constraint-Based

Formulation

As a second example, we consider a two-link serial

mechanism illustrated in Fig. 5. Both of the two joints

are assumed to be subject to Coulomb friction and be

actuated. This system can be described as a combination of

one admittance component and two impedance components.

The admittance component represents the dynamics of the

link mechanism, and each of the impedance components

represents the Coulomb friction in each joint.

The admittance component representing the link mecha-

nism can be formulated as Arob in (8), in which the vectors θ

and ω are defined as θ = [θ0, θ1]
T and ω = [ω0, ω1]

T where

θi and ωi are the angle and the angular velocity, respectively,

of the i-th joint. The input to Arob is τ = [τ0, τ1]
T where τi

is the torque applied to the i-th joint, which are sum of the

friction torque and the actuator torque. The friction torque

for the i-th joint, τF,i, can be obtained by the function I fricK

in (19) with the input being ωi, where K = 5000 Nm/rad,

B = 1 Nms/rad, and F = 0.5 Nm.

In the simulation, the i-th joint (i ∈ {0.1}) was actuated

by the time-varying torque τM,i that is illustrated in Fig. 6.

The purpose of this is to test the drift characteristics of

friction models, as demonstrated in [4]. The input to Arob

was determined as τi = τF,i + τM,i. The algorithm in one

timestep is described as follows:

For r = 1, 2, 3, 4 (28a)

t = kT + Tr−1 (28b)

í
0

í1

O

p

p

1

0

Fig. 5. A serial link mechanism used in simulations II and III.

0
0.1
0.2
0.3
0.4
0.5
0.6

0 2 4 6 8
time [s]

to
rq

u
e
 [

N
m

]

joint 0
joint 1
static friction

Fig. 6. Applied torque in simulation II and III.

1.05

1.06

1.07

1.08

1.09

jo
in

t 
0

 [
ra

d
]

2.37

2.38

2.39

2.4

2.41

3 4 5 6 7 8

time [s]

jo
in

t 
1

 [
ra

d
]

LuGre

Kikuuwe et al.'s

Fig. 7. Results of simulation II.

τM,0 =

{

min(0.52, 0.3t) if t < 4
0.336 + 0.144 sin(100t) otherwise

(28c)

τM,1 =

{

min(0.52, 0.3t) if t < 4
0.336 + 0.144 cos(100t) otherwise

(28d)

e0 = e0(k) + ε0,r−1Tr−1 (28e)

e1 = e1(k) + ε1,r−1Tr−1 (28f)

x = x(k) + ξ0,r−1Tr−1 (28g)
[

τF,0

ε0,r

]

= I fricK (ω0, e0; Tr) (28h)

[

τF,1

ε1,r

]

= I fricK (ω1, e1; Tr) (28i)

ξi = Arob

(

x,

[

τM,0 + τF,0

τM,1 + τF,1

])

(28j)

End For (28k)

e0(k + 1) = e0(k)+(T/6)(ε0,1+2ε0,2+2ε0,3+ε0,4) (28l)

e1(k + 1) = e1(k)+(T/6)(ε1,1+2ε1,2+2ε1,3+ε1,4)(28m)

x(k + 1) = x(k) + (T/6)(ξ1 + 2ξ2 + 2ξ3 + ξ4) (28n)

where x = [θT , ωT ]T = [θ0, θ1, ω0, ω1]
T . The timestep size

was set to be T = 10−4 s.

Fig. 7 shows the results. The mechanism stops at around

t = 4.5 s as the actuator torques become smaller than

the static friction level. For comparison, we also performed

another set of simulation using LuGre model, replacing

2281



I fricK in (28) by I fricL in (12). With LuGre model, the link

angles drift; this is a well-known characteristic of LuGre

model. It has been shown in the previous paper [5] that

such spurious behavior does not appear with Kikuuwe et al.’s

model in Euler integration. The present results show that this

property of Kikuuwe et al.’s friction model is preserved even

after the modification described in section III.

C. Simulation III: Rigid Link Mechanism: Penalty-Based

Formulation

The link mechanism of Fig. 5 can be modeled also in a

penalty-based approach. In this approach, each of the links

is modeled as a rigid body, as Arigid in (26), and each

of the joints is modeled as a stiff spring-damper element

that produces forces and moments to penalize the separation

between the links and the bending of the joint axes.

Let xi ∈ R
13 (i = 0, 1) be the state of the link i in

the form of (25). Let xiB (i = 0, 1) be the state (in the

format of (25)) of the base-side articulation point of the

link i, and xiE be that of the tip-side articulation point of

the link i. The vector xiB and xiE are obtained through

a simple coordinate transformation of xi. The joint i can

be modeled as an impedance component, I joint. It accepts

[x(i−1)E
T , xiB

T ]T ∈ R
26 as the input and produces forces

and moments so as to make x(i−1)E to be equal to xiB

except in the rotational DOF around the joint axis. Also,

I joint must take one state variable ei ∈ R for the rotational

friction around the axis. By using such an appropriate func-

tion I joint, the algorithm in one timestep can be described

in the following form:

For r = 1, 2, 3, 4 (29a)

t = kT + Tr−1 (29b)

τM,0 =

{

min(0.52, 0.3t) if t < 4
0.336 + 0.144 sin(100t) otherwise

(29c)

τM,1 =

{

min(0.52, 0.3t) if t < 4
0.336 + 0.144 cos(100t) otherwise

(29d)

e0 = e0(k) + ε0,r−1Tr−1 (29e)

e1 = e1(k) + ε1,r−1Tr−1 (29f)

x0 = x0(k) + ξ0,r−1Tr−1 (29g)

x1 = x1(k) + ξ1,r−1Tr−1 (29h)

x0B = x0B(x0) (29i)

x0E = x0E(x0) (29j)

x1B = x1B(x1) (29k)




f0

τ 0

ε0,r



 = I joint

([

o

x0B

]

, e0; Tr

)

(29l)





f1

τ 1

ε1,r



 = I joint

([

x0E

x1B

]

, e1; Tr

)

(29m)

ξ0,i =Arigid

(

x0,

[

f0 − f1

τ 0−τ1+s0B×f0−s0E×f1

])

(29n)

ξ1,i =Arigid

(

x1,

[

f1

τ 1 + s1B × f1

])

(29o)

End For (29p)

e0(k + 1) = e0(k)+(T/6)(ε0,1+2ε0,2+2ε0,3+ε0,4) (29q)

e1(k + 1) = e1(k)+(T/6)(ε1,1+2ε1,2+2ε1,3+ε1,4) (29r)

x0(k + 1)=x0(k)+(T/6)(ξ0,1+2ξ0,2+2ξ0,3+ξ0,4) (29s)

x1(k + 1)=x1(k)+(T/6)(ξ1,1+2ξ1,2+2ξ1,3+ξ1,4) (29t)

Here, siB = piB − pi and siE = piE − pi, where piB is a

part of xiB as in (25).

The simulation yielded almost the same result as in Fig. 7

when the stiffness of the joints are set to be high enough.

An advantage of this approach is that it does not require

analytical expressions of the equation of motion of the link

mechanism. A disadvantage of this method is that, in this

approach, the stiffness of the joint should be set high enough

and the timestep size should be set small enough.

V. CONCLUSIONS

This paper has described a modular architecture of simu-

lation software that is capable of capturing Coulomb friction

in mechanical systems. The presented architecture is built

upon Kikuuwe et al.’s discrete-time friction model, which

is originally based on the implicit Euler method. The paper

has modified the model into a form that can be integrated

through the standard fourth order Runge-Kutta method. Some

example implementations have been presented.

Future research will investigate further improvements of

the presented model to capture complicated friction phe-

nomena, such as hysteresis in the static friction and surface

stiction in micro/nano-scale systems. Hysteresis behaviors

will be realized by a combination of multiple friction compo-

nents, as in [10]. The application of the technique for a more

general class of nonsmooth and highly nonlinear phenomena,

such as collision, will also need to be investigated.

REFERENCES

[1] D. Karnopp, “Computer simulation of stick-slip friction in mechanical
dynamic systems,” Trans. of ASME: J. of Dynamic Systems, Measure-

ment, and Control, vol. 107, no. 1, pp. 100–103, 1985.
[2] P. R. Dahl, “A solid friction model,” Aerospace Corporation, Tech.

Rep. TOR-0158(3107-18)-1, 1968.
[3] C. Canudas de Wit et al., “A new model for control of systems with

friction,” IEEE Trans. on Automatic Control, vol. 40, no. 3, 1995.
[4] P. Dupont et al., “Single state elastoplastic friction models,” IEEE

Trans. on Automatic Control, vol. 47, no. 5, pp. 787–792, 2002.
[5] R. Kikuuwe et al., “Admittance and impedance representations of

friction based on implicit Euler integration,” IEEE Trans. on Robotics,
vol. 22, no. 6, pp. 1176–1188, 2006.

[6] T. Yoshikawa and H. Ueda, “Module-based architecture of world
model for haptic virtual reality,” in Experimental Robotics V, Springer-
Verlag, 1997, pp. 155–166.

[7] K. Yamane and Y. Nakamura, “Parallel O(log n) algorithm for
dynamics simulation of humanoid robots,” in Proc. of IEEE-RAS Int.

Conf. on Humanoid Robotics, 2006, pp. 554–559.
[8] R. Kikuuwe et al., “Velocity-bounding stiff position controller,” in

Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006,
pp. 3050–3055.

[9] M. A. Otaduy and M. C. Lin, “A modular haptic rendering algorithm
for stable and transparent 6-DOF manipulation,” IEEE Trans. on

Robotics, vol. 22, no. 4, pp. 751–762, 2006.
[10] W. D. Iwan, “A distributed-element model for hysteresis and its steady-

state dynamic response,” Trans. of ASME: J. of Applied Mechanics,
vol. 33, no. 4, pp. 893–900, 1966.

2282


