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Proxy-Based Sliding Mode Control: A Safer
Extension of PID Position Control

Ryo Kikuuwe, Member, IEEE, Satoshi Yasukouchi, Hideo Fujimoto, and Motoji Yamamoto, Member, IEEE

Abstract—High-gain proportional–integral–derivative (PID)
position control involves some risk of unsafe behaviors in cases
of abnormal events, such as unexpected environment contacts and
temporary power failures. This paper proposes a new position-
control method that is as accurate as conventional PID control
during normal operation, but is capable of slow, overdamped re-
suming motion without overshoots from large positional errors that
result in actuator-force saturation. The proposed method, which
we call proxy-based sliding mode control (PSMC), is an alternative
approximation of a simplest type of sliding mode control (SMC),
and also is an extension of the PID control. The validity of the
proposed method is demonstrated through stability analysis and
experimental results.

Index Terms—Position control, proportional–integral–
derivative (PID) control, safety, saturation, sliding mode control
(SMC).

I. INTRODUCTION

THE DYNAMICS of robotic mechanisms are usually dif-
ficult to model due to the existence of many nonlinear

factors, such as link inertia and joint frictions. To suppress the
influence of such factors and disturbances, stiff position con-
trollers are usually used as the lowest level controller. Low-
level position controllers are necessary even for implicit force
control [2] and admittance control [3]. The decentralized (inde-
pendent joint) proportional–derivative (PD) and proportional–
integral–derivative (PID) control schemes have been extensively
used, especially for industrial robots, although there still remains
theoretical challenge concerning the stability and the conver-
gence property of the PID control [4]–[6].

One drawback of the stiff position control is that it can cause
unsafe behavior when the desired position is far separated from
the actual end-effector position. In such situations, the controller
can produce excessively high speed to resume the desired posi-
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Fig. 1. Physical interpretation of PSMC.

tion, which usually results in overshoots and oscillations. Such
unsafe situations occur in cases of unexpected environment con-
tacts, temporal power failures to the actuators, discontinuous po-
sition commands from a higher level controller, etc. This kind
of behavior is undesirable, especially with a robot that shares a
common workspace with humans.

It is not a straightforward problem to eliminate such unsafe
behaviors from a PID-controlled robot. Simple force limiters
are not enough for this purpose because it does not explicitly
guarantee slow, overdamped motion without overshoots. An-
other imaginable way is to use a very high velocity-feedback
gain to produce a damped response. However, it will magnify
the noise in the velocity measurements and will deteriorate the
accuracy of position control during normal operation. There-
fore, both accurate, responsive position control and slow, over-
damped resuming motion cannot be achieved simultaneously by
the conventional PID control.

This paper1 proposes a proxy-based sliding mode control
(PSMC) scheme that can produce slow, overdamped resuming
motion after actuator-force saturation without sacrificing accu-
rate, responsive tracking capability during normal operations.
A physical interpretation of the scheme can be illustrated, as
shown in Fig. 1. The actual controlled object is connected to a
virtual object, which is referred to as a proxy, through a PID con-
troller. The proxy is also connected to a sliding mode controller
to track the given desired trajectory. The control algorithm of
PSMC is the analytical solution for the differential algebraic
constraints that result from this imaginary dynamical system.
The algorithm can be viewed as an alternative approximation of
conventional continuous-time sliding mode control (SMC), and
also as an extension of PID control. The advantage of PSMC
over the conventional PD and PID control is that the response
to a large positional error, which results from actuator-force

1This paper extends the authors’ previous conference paper [1]. The authors
have already published some papers [7]–[9] using the technique presented in
this paper. This paper includes new concepts on continuous-time representations
of the new controller, stability analysis, and new experimental results.
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saturation, can be designed independently from the response to
a small positional error that can be recovered without actuator-
force saturation. In PSMC, the small-scale response can be set
as fast as conventional PID or PD control, while the large-scale
response can be set arbitrarily slow to ensure safety.

The rest of this paper is organized as follows. Section II pre-
pares mathematical preliminaries, and Section III overviews the
problem of conventional control laws, which also includes PD,
PID, and SMC. The main contribution of this paper is presented
in Section IV, in which the new control scheme is proposed.
Section V describes stability analysis concerning the proposed
control scheme applied to nonlinear robotic systems. Section VI
presents experimental results. Section VII provides concluding
remarks.

II. MATHEMATICAL PRELIMINARIES

In the rest of this paper, R denotes the set of all real numbers,
and D

n denotes the set of all n × n diagonal matrices whose
diagonal elements are all strictly positive. The symbol 0 denotes
the zero vector or the zero matrix of appropriate dimensions. The
symbol ‖ · ‖p denotes the p-norm of the enclosed vector, while
‖ · ‖ denotes the vector two-norm or the corresponding induced-
matrix norm. The ith element of a vector z is denoted by zi . The
ith diagonal element of a diagonal matrix Z is denoted by Zi .

Section IV will use the functions sgn : R → R (signum func-
tion) and sat : R → R (unit saturation function), respectively,
which are defined as follows:

sgn(z)
{

= z/|z|, if z �= 0

∈ [−1, 1], if z = 0
(1)

sat(z) ∆=
z

max(1, |z|) . (2)

The set-valued form (1) is sometimes used in the literature,
e.g., [10] and [11]. Although sgn is not a single-valued function,
the equation-like expression y = sgn(z) is interpreted to be
equivalent to the following logical expression:(

y =
z

|z| ∧ z �= 0
)
∨ (|y| ≤ 1 ∧ z = 0). (3)

The derivation in Section IV intensively uses the following
analytical relation between sgn and sat:

y = sgn(z − y) ⇐⇒ y = sat(z) ∀y ∈ R ∀z ∈ R. (4)

The proof of the relation is as follows:

y = sgn(z − y)

⇐⇒ (y = 1 ∧ z − y > 0) ∨ (y = −1 ∧ z − y < 0)

∨ (y ∈ [−1, 1] ∧ z − y = 0)

⇐⇒ (y = 1 ∧ z > 1) ∨ (y = −1 ∧ z < −1)

∨ (y = z ∧ z ∈ [−1, 1])

⇐⇒ y = sat(z). (5)

The relation (4) can be illustrated as a pair of two equivalent
block diagrams, as shown in Fig. 2. It implies that if the dis-
continuous function sgn is enclosed within a closed loop with-

Fig. 2. Block-diagram representation of (4).

Fig. 3. Functions defined in Section II.

out latency, it can be removed with the use of the continuous
function sat, which has no mathematical difficulty. As a direct
consequence of (4), the following relations are convenient in the
upcoming derivations:

y = Zsgn(Y (z − y)) ⇐⇒ y = Zsat
(

z

Z

)
(6)

y + Xw = Y sgn(z − Zy)

⇐⇒ y = −Xw + Y sat
(

(z/Z + Xw)
Y

)
(7)

where X,Y,Z > 0, and w, y, z ∈ R. These relations hold true
because of sgn(Zz) = sgn(z) for all Z > 0 and z ∈ R.

The analysis given in Section V will use the functions dzn :
R → R (dead-zone function) and dsg : R → R (dead-banded
signum function), respectively, which are defined as follows:

dzn(z) ∆= z − sat(z) (8)

dsg(z) ∆=
{

z/|z|, if|z| > 1

0, if |z| ≤ 1.
(9)

They satisfy d|dzn(z)|/dz = dsg(z).
Fig. 3 illustrates the functions that are defined in this section.

Besides, the element-wise vector versions of these functions are
defined as follows:

Sgn(z) ∆= [ sgn(z1) · · · sgn(zn ) ]T ∈ R
n

Sat(z) ∆= [ sat(z1) · · · sat(zn ) ]T ∈ R
n

Dzn(z) ∆= [ dzn(z1) · · · dzn(zn ) ]T ∈ R
n

Dsg(z) ∆= [ dsg(z1) · · · dsg(zn ) ]T ∈ R
n

where z ∈ R
n .
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III. CONVENTIONAL CONTROL LAWS

This paper considers n-degrees-of-freedom (DOF) rigid robot
manipulators that can be described in the following form:

M(p)p̈ + C(p, ṗ)ṗ + Dṗ = f + h (10)

where p ∈ R
n denotes the vector of joint variables (angles for

revolute joints and displacements for prismatic joints, respec-
tively), f ∈ R

n denotes the generalized force (torques for revo-
lute joints and forces for prismatic joints) produced by the joint
actuators, M(p) ∈ R

n×n denotes a symmetric positive-definite
matrix that represents the inertia, C(p, ṗ)ṗ ∈ R

n denotes the
centrifugal and Coriolis torques, and D ∈ D

n denotes the coef-
ficients of the viscous friction in the joints. The generalized force
h ∈ R

n denotes the sum of forces from all the external sources.
It has been known that M(p) and C(p, ṗ) ∈ R

n×n are related
by Ṁ(p) = C(p, ṗ) + C(p, ṗ)T [12], [13]. The eigenvalues of
M(p) are upper and lower bounded.

Most of the current industrial robots are actuated through
high-ratio gear reducers to increase the available torque from
actuators. The gear reducers also reduce the cross-coupling ef-
fects among the link inertias while preserving the effect of the
rotor inertias. As a result, the contributions of the nondiagonal
elements of M(p) and the vector C(p, ṗ)ṗ, which are given in
(10), become insignificant. Therefore, the dynamics of such a
robotic system can be approximated by the following form:

Mp̈ + Dṗ = f + h (11)

where p denotes the actuator angles, f denotes the torque pro-
duced by the actuators, and M ∈ D

n is a constant diagonal
positive-definite matrix. This means that the system is decom-
posed into n independent angle-control systems. The theoretical
development in the paper will be mostly based on (11), although
the analysis given in Section V will take into account the non-
linearity in (10).

A. Proportional–Derivative and Proportional–Integral–
Derivative Control

For position control of robotic systems (10) or (11), PD con-
trol and PID control are the most popular methods because
of their simplicity and robustness. As previously mentioned in
Section I, they are not suited for the realization of both slow
response against large positional error and accurate position
control in normal operation. Low gains or low force limits are
not suited for this purpose because they sacrifice accuracy and
do not produce overdamped motion.

From a theoretical point of view, decentralized PD control
with constant gains is proven to be useful for set-point con-
trol [14] of the system (10) with which global asymptotic sta-
bility is proven. The decentralized PD control is also useful for
trajectory tracking, in which the desired position is not constant
[15]–[17]. The addition of an integral term to a PD controller is
a widely accepted way to eliminate steady-state offsets caused
by gravity, Coulomb friction, and all other unmodelable forces.
Stability of PID set-point control [6] and PID trajectory-tracking
control [4], [5], [18], [19] has been shown under some inequal-
ity conditions, and the stability results are only local due to

the nonlinear term C(p, ṗ)ṗ. Nevertheless, the influence of the
nonlinear term is insignificant in geared robotic systems that
can be approximated by (11). The effectiveness of PID control
for the linear system (11) plus joint Coulomb friction has been
theoretically supported, at least when there is no stiction (static
friction being higher than kinetic friction) [20].

Many modifications have been proposed for PD and PID
control schemes. Some of the saturated PID controllers are in-
tended to guarantee global stability [12, Sec. 3.2] or semiglobal
stability [21], [22]. Another class of modifications is for the
prevention of abrupt behavior after discontinuous changes in
the desired position command. Some researchers employ I-PD
control [23], [24], in which the proportional and derivative feed-
forward of the desired position command are removed. To en-
sure slow response, I-PD control sacrifices the responsiveness,
which is necessary to maintain the tracking accuracy, even when
the actuator forces are not saturated.

B. High-Gain Proportional–Derivative Control and Sliding
Mode Control

It has been pointed out that a decentralized PD controller
with very high gains decomposes the robotic system of the form
(10) into two first-order subsystems: one being slow and the
other being fast [25]. Specifically, let us consider the following
control law:

f = K(pd − p) + KH(ṗd − ṗ) (12)

where pd ∈ R
n is the desired position vector, which is provided

to the controller and K,H ∈ D
n . As the proportional gains

(the diagonal elements of K) increase, the dynamics of the
robot (10), under the control law (12), becomes more closely
approximated by the following first-order dynamics:

pd − p + H(ṗd − ṗ) = 0 (13)

which can be obtained by substituting (10) by (12) and mul-
tiplying its both sides by K−1 (which is close to 0) from the
left-hand side. Equation (13) represents the slow subsystem.
The fast subsystem, on the other hand, acts to drive the state
[pT , ṗT ]T toward the manifold (13), as detailed in [25] in the
light of singular perturbation analysis. This means that, even if
the initial positional error (pd − p) is large, (13) becomes sat-
isfied after a short transient period, and after this, the system
is governed by the dynamics (13), which exhibits overdamped
convergence to the desired position pd with the time constant
H .

It has also been indicated that the high-gain feedback control
has a close connection with SMC [25]–[27]. By considering
limits on the magnitude of actuator forces and setting the pro-
portional gains infinitely high, the control law (12) becomes
equivalent to the following:

f = F Sgn(pd − p + H(ṗd − ṗ)) (14)

where F ∈ D
n is a diagonal matrix, whose diagonal elements

are the magnitude limit of the ith actuator force, i.e., |fi | ≤ Fi .
This control law is a simple example of SMC that is presented
in, e.g., [28, Sect. 6], although the controller in [28] includes
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additional dynamics-compensating terms to ensure the global
asymptotic stability. If F is set sufficiently high and if the non-
linear term in (10) is negligible, then the system state [pT , ṗT ]T

is attracted to the sliding manifold (13), as explained in [28]. Af-
ter the manifold is reached, the system state develops according
to the differential equation (13).

The aforementioned discussion implies that the high-gain PD
control and the SMC are, in theory, capable of accurate tracking
and slow overdamped response, which is the response charac-
teristic aimed in this paper. It is, however, impossible to realize
because the aforementioned theory depends on unrealistic as-
sumptions of infinitely short sampling period, infinitely high
gain, infinitely fast switching of the discontinuity in (14), and
noiseless position and velocity measurements. Specifically, for
the production of the aforementioned response characteristic,
the proportional gains (the diagonal elements of K) should be
set as high as possible, and the time constants (those of H)
should be as large as, e.g., 0.1–1 s. Then, the derivative gain KH
can become so high so as to magnify the noise in the velocity
measurement. Although there are some filtering techniques to
attenuate the discretization errors [29], there are inherent limits
on the velocity feedback gain in practice. Moreover, high-gain
velocity feedback will produce a slow response even to small
positional errors, which deteriorate the tracking accuracy in nor-
mal operation.

The use of boundary layers around the discontinuity in the
discontinuous function Sgn, given in (14), is a widely used
remedy to attenuate chattering, which is a well-known drawback
of the SMC. As discussed in [25], it makes the control law
equivalent to the conventional PD controller with finite gains
and force saturation.

Some researchers [30], [31] propose methods that combine
PID control and SMC. In the Parra-Vega et al. [30] method,
the integral of a discontinuous signum-type function of the po-
sitional error is used, and a reference position is exponentially
moved toward the desired trajectory. In Lu’s [31] method, the
sliding manifold is also moved according to the integral of the
positional error, but if the actuator force is saturated, it is expo-
nentially moved without being influenced by the external forces.
One shortcoming of such methods is that they do not consider
the existence of unexpected external forces.

C. Antiwindup and Reference Governor

One possible problem caused by the actuator-force satura-
tion is the inconsistency between controller state variables and
the controller output (i.e., the actuator forces). Such situations
can result in unfavorable behaviors, which is referred to as
“windup” problems, and techniques to prevent them are known
as antiwindup techniques. There have been some frameworks
of antiwindup techniques that can be applied to linear con-
trollers [32]–[35]. In these frameworks, state variables in the
controllers are modified so that they are kept consistent with
the outputs, even when they are saturated. Another similar ap-
proach is reference governors [36], [37], with which the input
to the controller is modified so that the system state and the
controller output satisfy predetermined conditions.

There have been some antiwindup techniques specifically
for PID controllers [38], [39]. These techniques are mainly for
the reduction of the discrepancy between the saturated actuator
force and the integrator in the PID controller. Such techniques
do not provide direct solutions of the problem that is considered
in this paper. This is because the undesirable behaviors of the
PID-controlled robots, which are discussed in this paper, are not
only attributed to the integrator windup; a robot can be unsafe
even with PD control after a large positional error.

IV. PROXY-BASED SLIDING MODE CONTROL

This section presents the new control algorithm that we named
as PSMC. For simplicity, this section restricts itself to the 1-
dimensional (1-D) case. The control algorithm is intended for
the application as a joint-angle controller in decentralized posi-
tion control, which are valid, at least, for robotic systems that
are approximately linear and decoupled in the form of (11). The
effect of nonlinearity, which appears in (10), will be analyzed
in Section V.

This section starts with the derivation of the continuous-time
representation of PSMC, which can be described by state and
output equations. The continuous-time representation is useful
for various analyses; however, it is not suitable for implementa-
tion. The actual control algorithm for implementation is derived
on the basis of the backward (implicit) Euler discretization,
which results in equations of different appearance.

As this section limits its scope to 1-D problems, all mathe-
matical symbols in this section, such as f and K, are treated as
scalars instead of vectors or matrices.

A. Continuous-Time Proxy-Based Sliding Mode Control

The idea of PSMC can be understood with the use of the
physical model illustrated in Fig. 1. In this model, the controlled
object is connected to a virtual object (referred to as a proxy)
through a virtual spring-like element (a virtual coupling) that
performs a PID-type control action to maintain its length to be
zero. The terms “proxy” and “virtual coupling” are borrowed
from the area of haptic rendering [40]–[43]. The force exerted
by the virtual coupling is sent to the actual actuator as a force
command. The proxy accepts forces from the virtual coupling
and from the another controller that performs a simple version
of SMC to follow a desired position.

Let p ∈ R and q ∈ R denote the position of the controlled
object and the proxy, respectively, and pd ∈ R denote a desired
position for the controlled object. Then, the force fPID ∈ R

produced by the PID-type virtual coupling can be written as
follows:

fPID = La + Kȧ + Bä (15)

where

a
∆=

∫
(q − p)dt (16)

and L, K, and B are positive real numbers, which represent the
integral, proportional, and derivative gains, respectively. These
parameters should be appropriately chosen so that p is controlled
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Fig. 4. Block diagrams of PSMC. Diagrams (a) and (b) are mutually
equivalent.

to follow q. On the other hand, the force fSMC ∈ R from the
controller on the other side is defined as follows:

fSMC = F sgn (pd − q + H(ṗd − q̇)) (17)

where F > 0. The control law (17) is a simple SMC law, which
appeared in (14) in Section III-B as an extreme case of PD
control. Letting m be the proxy mass, mq̈ = fSMC − fPID is
satisfied. Fig. 4(a) shows the block diagram of the controller
including m.

The proxy mass is set to be zero. Then, f = fPID = fSMC
is satisfied, and (15) and (17) can be rewritten in the following
form:

σ = pd − p + H(ṗd − ṗ) (18a)

0 = La + Kȧ + Bä − F sgn (σ − ȧ − Hä) (18b)

f = La + Kȧ + Bä. (18c)

This is the continuous-time state-space representation of PSMC.
Equation (18b) can be viewed as an implicit state equation con-
cerning the state vector [a, ȧ]T . Equation (18c) is the output
equation that provides the actuator force f , which should be
commanded to the actuator. It must be noted that Fig. 1 is not
guaranteed to be a unique interpretation of (18).

Fig. 4(b) is a block-diagram representation of (18), although
the causality between f and ä is reversed in the expression. In
Fig. 4, the sgn operator is enclosed within a closed loop in the
controller. This can be rolled out as a sat function by using the
rule of Fig. 2.

By the application of (7), ä can be taken out of the discontin-
uous function sgn. Then, (18) can be rewritten as follows:

σ = pd − p + H(ṗd − ṗ) (19a)

ä = −Kȧ + La

B
+

F

B
sat

(
B

F

(
σ − ȧ

H
+

Kȧ + La

B

))
(19b)

f = F sat
(

B

F

(
σ − ȧ

H
+

Kȧ + La

B

))
. (19c)

Note that (18) and (19) are algebraically equivalent. The equiv-
alency implies that (18) is, in fact, a saturated controller, which
does not include discontinuity and can have an explicit state
equation. The discontinuous function in (18) does not produce
discontinuity. This is the essential difference of PSMC (18), (19)
from the sliding mode controller (14), which includes disconti-
nuity that cannot be removed without approximation.

B. Behavior of Proxy-Based Sliding Mode Control

An important feature of PSMC (18), or equivalently (19),
is that it is an approximation of a sliding mode controller. By
setting â = Ka and L̂ = L/K, (18) can be rewritten as follows:

σ = pd − p + H(ṗd − ṗ) (20a)

0 = L̂â + ˙̂a +
B¨̂a
K

− F sgn

(
σ −

˙̂a + H ¨̂a
K

)
(20b)

f = L̂â + ˙̂a +
B¨̂a
K

(20c)

and by setting K → ∞, (20) degenerates to

σ = pd − p + H(ṗd − ṗ) (21a)

˙̂a = −L̂â + F sgn (σ) (21b)

f = F sgn (σ) . (21c)

Equation (21b) can be ignored because â has no effect on the
controller output f . Thus, as K → ∞, the PSMC of (18) and
(19) degenerates to (14), which is the simplest form of SMC, as
discussed in Section III-B.

The controller (19) of PSMC can also be viewed as an ex-
tension of conventional control laws. By setting H = B/K and
L = 0, (19) degenerates to

σ = pd − p + H(ṗd − ṗ) (22a)

ä = − ȧ

H
+

F

KH
sat

(
Kσ

F

)
(22b)

f = F sat
(

Kσ

F

)
, (22c)

of which (22b) can be ignored because the state variable a has
no effect on the controller output f . Thus, the controller (22)
becomes equivalent to

f ∗ = K(pd − p) + B(ṗd − ṗ) (23a)

f = F sat
(

f ∗

F

)
(23b)

or equivalently

σ = pd − p + H(ṗd − ṗ) (24a)

f =
{

Kσ, if |σ| ≤ F/K

F sgn(σ), if |σ| > F/K.
(24b)

Equation (23) can be seen as the PD control with force sat-
uration, while (24) can be seen as the SMC with a boundary
layer [44], [45]. The equivalency of these two methods has been
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pointed out in [46]. We can see that the PSMC of (18) and (19)
is an extension of these conventional control schemes.

The behavior of a system under the PSMC of (18) and (19)
can be understood by using q = p + ȧ, which can be interpreted
as the proxy position that appears in Fig. 1. The position p of
the controlled object always follows the proxy position q as the
effect of the PID position controller (18c). When |f | < F , (18)
implies 0 = σ − ȧ − Hä because, if not, |f | = F is necessary
due to (18b) and (18c). By considering the definitions of σ and
q, this is equivalent to

pd − q + H(ṗd − q̇) = 0, (25)

which is the sliding surface incorporated in the sliding mode
controller (17). From (25), if |f | < F is satisfied for all t ≥ t0 ,

q = pd + e−(t−t0 )/H
(
(q − pd)|t=t0

)
(26)

is satisfied for all t ≥ t0 , This means that, as long as |f | < F , the
proxy position q exponentially approaches the desired position
pd with a time constant of H , without being influenced by any
external disturbances. When |f | = F , on the other hand, the
proxy is not on the sliding surface (25). This situation occurs,
for example, when the robot yields to a large external force due
to an actuator-force saturation.

Slow resuming motions from large positional errors are real-
ized by setting H to be appropriately large. On the other hand,
accurate trajectory tracking in normal operation is achieved by
appropriate selection of the PID control gains K, B, and L.
In other words, an advantage of PSMC over conventional PID
control is that the response against large positional errors and
against small positional errors are independently designed. As
PSMC is equivalent to PID control during |f | < F , the gain
parameters K, B, and L are tuned with the use of existing tech-
niques, such as Ziegler–Nichols ultimate sensitivity method [47]
and others [19]. The force limit F should be chosen by consid-
ering the tradeoff between the control performance (such as
load-carrying capacity) and the safety. The time constant H
can be chosen arbitrarily, and it only influences behaviors after
saturation periods.

C. Implementation: Discrete-Time Proxy-Based
Sliding Mode Control

One important feature of the PSMC of (18) and (19) is that
when |f | < F , q = p + ȧ evolves according to (25), which is not
influenced by physical disturbances that are propagated through
p. For the implementation of PSMC to digital controllers, the
state-space representation of (18) and (19) must be approxi-
mated by a discrete-time representation while strictly preserv-
ing this feature. The direct use of the explicit form (19) via
a forward-Euler discretization is problematic because, in the
forward-Euler implementation of (19b), ä is computed accord-
ing to ȧ of a timestep ago, and this results in (25) not strictly
holding at each timestep.

One possible remedy is the use of backward (implicit) Euler
discretization, with which (18) is rewritten as follows:

σ(k) = pd(k) − p(k) + H

(
∇pd(k)

T
− ∇p(k)

T

)
(27a)

0 = La(k) +
K∇a(k)

T
+

B∇2a(k)
T 2

− F sgn
(

σ(k) − ∇a(k)
T

− H∇2a(k)
T 2

)
(27b)

f(k) = La(k) +
K∇a(k)

T
+

B∇2a(k)
T 2 (27c)

where k is an integer that denotes a discrete-time index,
T > 0 is the time-step size, and ∇ denotes the backward-
difference operator, which is defined as ∇z(k) = z(k) −
z(k − 1). It satisfies ∇2z(k) = ∇z(k) −∇z(k − 1) = z(k) −
2z(k − 1) + z(k − 2). Note that (27b) is an algebraic equation
with respect to the unknown variable a(k). To solve this, it is
easier to replace the unknown a(k) by f(k) by using the fol-
lowing relation:

a(k) =
(2B + KT )a(k − 1) − Ba(k − 2) + T 2f(k)

B + KT + LT 2 , (28)

which is obtained from (27c). Then, (27b) can be rewritten as
follows:

0 = f(k) − F sgn
(

H + T

B + KT + LT 2 (f ∗(k) − f(k))
)

(29)

where

f ∗(k) =
B + KT + LT 2

H + T
σ(k)

+
KH − B + LT (2H + T )

(H + T )T
a(k − 1)

− KH − B + LTH

(H + T )T
a(k − 2). (30)

Because of (6), (29) is equivalent to

f(k) = F sat
(

f ∗(k)
F

)
. (31)

Thus, f(k) is obtained as (31), and a(k) is subsequently
obtained by using (28). In conclusion, the algebraic equations
(27) can be solved with the use of the following computational
procedure:

σ(k) = pd(k) − p(k) + H

(
∇pd(k)

T
− ∇p(k)

T

)
(32a)

f ∗(k) =
B + KT + LT 2

H + T
σ(k)

+
KH − B + LT (2H + T )

(H + T )T
a(k − 1)

− KH − B + LTH

(H + T )T
a(k − 2) (32b)

f(k) = F sat
(

f ∗(k)
F

)
(32c)

a(k) =
(2B + KT )a(k − 1)−Ba(k − 2)+T 2f(k)

B + KT + LT 2 . (32d)
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Fig. 5. Block diagram of (34). Another equivalent representation of PSMC.

This procedure is the discrete-time control law of PSMC,
which can be directly implemented in digital, discrete-time
controllers.

Setting L = 0 with (32) results in a simpler procedure:

σ(k) = pd(k) − p(k) + H

(
∇pd(k)

T
−∇p(k)

T

)
(33a)

f ∗(k) =
B + KT

H + T
σ(k) +

KH − B

H + T
b(k − 1) (33b)

f(k) = F sat
(

f ∗(k)
F

)
(33c)

b(k) =
Bb(k − 1) + Tf(k)

B + KT
. (33d)

Here, b(k) corresponds to ∇a(k)/T . The controller (33) can
be viewed as the PD-version of PSMC. Although the controller
(32) can be used even if L = 0, the controller (33) is preferred
in this case to prevent numerical overflow in a(k).

The discrete-time PSMC algorithm (32) can be viewed as
a combination of a reference governor and a conditioned PID
controller, which can be illustrated as Fig. 5. In fact, a tedious,
but straightforward derivation shows that (32) is equivalent to
the following algorithm:

q∗(k) = pd(k) +
H

H + T
(q(k − 1) − pd(k − 1)) (34a)

a∗(k) = T (q∗(k) − p(k)) + a(k − 1) (34b)

f ∗(k) = B
a∗(k) − 2a(k − 1) + a(k − 2)

T 2

+ K
a∗(k) − a(k − 1)

T
+ La∗(k) (34c)

f(k) = F sat
(

f ∗(k)
F

)
(34d)

a(k) =
(2B + KT )a(k − 1)−Ba(k − 2)+T 2f(k)

B + KT + LT 2 (34e)

q(k) = p(k) +
∇a(k)

T
. (34f)

Step (34a) can be viewed as a reference governor, which modi-
fies the desired position pd(k) to a new interim position q∗(k).
The position q∗(k) is achieved by the proxy if there is no force
saturation. Steps (34b)–(34f) constitute the conditioned PID
controller to track the desired position q∗(k) as long as the
force f ∗(k) does not exceed F . If it does exceed F , a modified
proxy position q(k) is chosen by using (34e) and (34f) so that
it produces the force of the marginal level F by satisfying the
standard PID control law (27c) in a similar manner as the con-

ditioning techniques in [32] and [33]. The value q(k) is chosen
equal to q∗(k) if |f ∗(k)| ≤ F . The new proxy position q(k) is
sent to the reference governor (34a) in the next timestep.

By setting H = 0, the PSMC algorithm (32) becomes equiv-
alent to the algorithm (34b)–(34f) with q∗(k) being replaced by
pd(k). This means that, by setting H = 0, PSMC degenerates
to a force-bounded PID controller with a particular kind of sat-
uration behavior. If the initial positional error pd − p is large,
then the force f is kept saturated until p becomes close to pd ,
while the internal variable a is kept consistent with f .

V. ANALYSIS

This section provides a theoretical justification for the ap-
plication of PSMC to independent joint-angle control of the
robotic systems (10) and (11). As shown in Section IV, PSMC
is an implicit combination of a PID controller and a sliding mode
controller. This structure is motivated by the empirical fact that
a well-tuned PID controller is effective for trajectory tracking.
However, there is no standard ways to exhibit the theoretical va-
lidity of PID trajectory-tracking control. Thus, this section will
introduce a conjecture that a well-tuned PID-controlled robot is
strictly passive as long as the magnitude of the nonlinear term
in (10) is low enough. Under this conjecture, it will be shown
that the joint angles converge to the neighborhood of the desired
values.

In this section, variables such as f and K can be vectors and
matrices, as defined in Section III and as will be defined in this
section.

A. Dynamics of Robot and Controller

This section considers the robotic system (10) and its lin-
ear approximation (11). Let pd ∈ R

n be the vector of desired
joint angles, and e ∈ R

n be the joint-variable error vector that

is defined as e
∆= pd − p. For the convenience of upcoming

derivations, let us define the following vectors:

x
∆= [ eT xe

T ]T ∈ R
4n (35)

xe
∆= [ ėT ȧT aT ]T ∈ R

3n . (36)

Let us assume that ‖p̈d‖, ‖ṗd‖, and ‖h‖ are upper bounded.
Substituting (10) by p = pd − e yields the following:

M(p)ë + (C(p, ṗ) + D)ė = −f + φ (37)

where

φ
∆= M(p)p̈d + (C(p, ṗ) + D)ṗd − h ∈ R

n , (38)

which is the error-coordinate representation of the nonlinear
robotic dynamics (10). Then, ‖φ‖ satisfies

‖φ‖ < α0 + γv‖C(p, ṗ)‖ (39)

where α0 is a positive scalar, and γv is the upper bound of
‖ṗd‖. For the linear approximation (11), ‖φ‖ is bounded by α0
because ‖C(p, ṗ)‖ = 0.

The multidimensional version of PSMC (18) applied to each
joint of the robot (37) can be described by the following
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state-space representation:

s = e − ȧ + H(ė − ä) (40a)

0 = La + Kȧ + Bä − F Sgn(s) (40b)

f = La + Kȧ + Bä (40c)

where f, a, e ∈ R
n , and K,B,L, F,H ∈ D

n . For the sake of
brevity, let us define the following symbols:

Λ ∆= H−1 , K̂
∆= KB−1 , L̂

∆= LK−1 . (41)

By considering (7), (40) can be rewritten as follows:

σ̂ = ė + Λ(e − ȧ) + K̂(ȧ + L̂a) (42a)

ä = −K̂(ȧ + L̂a) + B−1F Sat(F−1Bσ̂) (42b)

f = F Sat(F−1Bσ̂), (42c)

which is a multidimensional version of (19).
The whole robotic system is said to be in sliding mode if and

only if s = 0 is satisfied. From (42c), this condition is satisfied
if x is included in the following set:

S ∆=
{

x ∈ R
4n

∣∣∣∣ |σ̂i | ≤
Fi

Bi
∀i

}
. (43)

Hereafter, we refer to S as the sliding region. As long as x ∈ S,
the vector x evolves according to the differential equation s = 0,
which is rewritten as follows:

q̇ = − q

H
+ ṗd +

pd

H
(44)

where we used q − pd = −(e − ȧ). From this, one can see that
the proxy position q is not influenced by any disturbances prop-
agated through p as long as x ∈ S. This property is inherited
from the original concept of continuous-time SMC; it is lost in
conventional discrete-time SMC, such as those using boundary
layers.

B. Convergence

The convergence property of the proposed control scheme
is now analyzed. To represent the empirical fact that the PID
control is useful for trajectory tracking of robotic systems, we
set the following conjecture.

Conjecture 1 (Local Passivity of the Well-Tuned PID Control):
Let us consider the system composed of the robot (37) and a PID

controller (40c) that accepts an input u
∆= q̇ − ṗd = ä − ė ∈ R

n .
Then, there exists a triplet of gain matrices B, K, and L ∈ D

n

that allows the existence of a function Vp : R
3n × R

n×n → R,
a constant matrix Ξ ∈ R

n×3n , and positive numbers ζ, δ, ρx ,
and ρu with which

Vp(xe,M(p)) ≥ δ‖xe‖2 (45)

holds for all xe and p, and

V̇p(xe,M(p)) ≤ fT u + φT Ξxe − ρx‖xe‖2 − ρu‖u‖2 (46)

holds as long as ‖C(p, ṗ)‖ < ζ is satisfied.
As it is seen by setting u = φ = 0, this conjecture is a suf-

ficient condition for the local asymptotic stability of PID set-
point control, which has already been proven in the literature,

Fig. 6. Two-port network representation of a PID position-controlled robot
and its interconnection with a sliding mode controller. (Because f and q̇ are
related by a feed-through term, the causality between them can be reversed.)

e.g., [13] and [18]. The conjecture states that if the gains are
appropriately chosen, the two-port network representation of
the PID-controlled system illustrated in Fig. 6 is strictly passive
and output-strictly passive [48] in a local sense. If the robot
is strictly linear, as described in (11) (i.e., ‖C(p, ṗ)‖ = 0), the
system is implied to be globally passive.

Some of the Lyapunov functions for PID set-point control in
the literature are candidates for the function Vp , but only strict
Lyapunov functions, of which the time derivatives are strictly
negative definite, may be used as Vp . Because such functions
tend to be very complicated, as in, e.g., [18], we leave the
validation of the conjecture outside the scope of this paper.
The dependence of Vp on p is set to be only through M(p) so
that the dependence of V̇p on ṗ is only through C(p, ṗ) for the
convenience of the analysis. This characteristic of Vp is shared
with many Lyapunov functions of the PID-controlled robots in
the literature, e.g., [6], [18], and [19].

The use of Ξ is to retain the generality of the conjecture,
which is being inspired by the use of the output ṗ − αȧ (where
α is a positive constant) in the passivity analyses given by
Arimoto [12, Sec. 3.2]. The condition ‖C(p, ṗ)‖ < ζ is in-
troduced because the local nature of the stability of a PID-
controlled robot is attributed to the nonlinear term C(p, ṗ) [13].

Based on Conjecture 1, the stability of PSMC is shown as
follows.

Theorem 1 (Stability of PSMC): Let us consider the system
composed of (37) and (40) and assume that Conjecture 1 holds
true. Also assume that the gain matrices K, B, and L are chosen
as indicated in Conjecture 1, and that the diagonal elements of
F are set sufficiently high. Then, there exists a closed set E
including the origin with which x → E is achieved as t → ∞ if
there exists t0 > 0 with which ‖C(p, ṗ)‖ < ζ is satisfied for all
t > t0 .

Proof: The system composed of (37) and (40) can be modeled
as an interconnection of the PID-controlled system and a sliding
mode controller, as illustrated in Fig. 6. Let us define

V (x,M(p)) ∆= Vp(xe,M(p)) + ‖F (e − ȧ)‖1 (47)

where x is the one that has been defined in (35). Then, because
of (46), the following is satisfied:

V̇ (x,M(p)) = V̇p(xe,M(p)) + (ė − ä)T F Sgn(e − ȧ)

< −(ė − ä)T (f − F Sgn(e − ȧ))

+ φT Ξxe − ρx‖xe‖2 − ρu‖u‖2

≤ φT Ξxe − ρx‖xe‖2 − ρu‖u‖2

≤ γφ‖Ξ‖‖xe‖ − ρx‖xe‖2 − ρu‖u‖2 (48)
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if ‖C(p, ṗ)‖ < ζ, where

γφ
∆= α0 + ζγv . (49)

Here, we used the fact f = F Sgn(e − ȧ + H(ė − ä)) and the
following property of Sgn function:

yT X( Sgn(z + y) − Sgn(z)) ≥ 0 ∀z, y ∈ R
n ∀X ∈ D

n .

We have also considered the bound of φ in (39).
Because ä is a function of x, as defined in (42b), we can

define the following set in the state space:

E ∆= {x ∈ R
4n | γφ‖Ξ‖‖xe‖− ρx‖xe‖2− ρu‖u‖2 ≥ 0}. (50)

Here, u = ä − ė is a function of both xe and e in x ∈ S. There-
fore, if the diagonal elements of F are set sufficiently high, E is
a closed set that satisfies 0 ∈ E ⊂ S. Because V̇ ≤ 0 is satisfied
outside the region E as long as ‖C(p, ṗ)‖ < ζ, x → E is satis-
fied as t → ∞ if there exists t0 > 0 with which ‖C(p, ṗ)‖ < ζ
is satisfied for all t > t0 . �

When PSMC is used for the set-point control and there is no
disturbance (i.e., when γφ = α0 = γv = 0), the set E shrinks to
the origin (E = {0}). This means that the origin x = 0 is locally
asymptotically stable in this case. Global asymptotic stability is
obtained for the strictly linear system (11), in which M(p) is a
constant, and thus, C(p, ṗ) is zero. For a nonlinear system (10),
the stability is guaranteed only locally, and the system behaviors
during the violation of the condition ‖C(p, ṗ)‖ < ζ cannot be
predicted through the presented analysis. Determination of the
region of attraction in this case is left outside the scope of this
paper. Nonetheless, for any given x, the condition ‖C(p, ṗ)‖ <
ζ can be satisfied by an appropriate design of pd and ṗd because
C(p, ṗ) depends only on x, pd , and ṗd .

C. Existence of the Sliding Mode

The existence of the sliding mode at the sliding region S is
now investigated. This property is necessary to achieve slow,
overdamped resuming motion, which is characterized by the
time-constant matrix H .

As shown in (43), the sliding region S is defined by using
the state-dependent vector σ̂, which is defined in (42a). Its time
derivative can be written as follows:

˙̂σ = M(p)−1φ − M(p)−1f + (K̂ − Λ)B−1f

+ (Λ − M(p)−1(C(p, ṗ) + D))ė

− (K̂ − Λ − L̂)K̂ȧ − (K̂ − Λ)K̂L̂a

=−(M(p)−1 +ΛB−1)f−K̂(σ̂−B−1f)+ξ (51)

where

ξ(x, φ,M(p), C(p, ṗ)) ∆= M(p)−1(φ + (C(p, ṗ) + D)ė)

+ Λ(−ė + K̂(e + L̂a)) + K̂(ė + L̂ȧ) ∈ R
n . (52)

By substituting (51) by (42c) and considering that Dzn(z) =
z − Sat(z) for all z ∈ R

n , we obtain

˙̂σ = −(M(p)−1 + ΛB−1)F Sat
(
BF−1 σ̂

)
− K̂B−1F Dzn

(
BF−1 σ̂

)
+ ξ. (53)

Now, let us define the function U : R
n → R as follows:

U(σ̂) ∆= ‖F 2B−1 Dzn(BF−1 σ̂)‖1 , (54)

with which U(σ̂(x)) = 0 is equivalent to x ∈ S. Because

∂‖X Dzn(z)‖1

∂zT
= X Dsg(z) ∀X ∈ D

n ∀z ∈ R
n , (55)

the time derivative of U(σ̂) can be written as follows:

U̇(σ̂) = Dsg(BF−1 σ̂)T F ˙̂σ

< −Dsg(BF−1 σ̂)T F
(
WF Sat

(
BF−1 σ̂

)
+ K̂FB−1 Dzn

(
BF−1 σ̂

)
− ξ

)
< −

n∑
i=1

|ci(x)|Fi

(
WiFi − ci(x)ξi

)
(56)

where

ci(x) ∆= dsg
(

σ̂i(x)
Fi/Bi

)
∈ R (57)

W
∆= M−1

max + ΛB−1 ∈ D
n (58)

and Mmax ∈D
n is a positive-definite diagonal matrix with

which Mmax −M(p) is positive definite for all p∈R
n . Here,

we used the facts that dsg(z)= |dsg(z)|dsg(z), dsg(z)sat(z)=
|dsg(z)|, and dsg(z)dzn(z)= |dzn(z)| for all z ∈ R.

From (56), U̇ ≤ 0 is satisfied on the set D that is defined as
follows:

D(φ,M(p), C(p, ṗ)) ∆=
{

x ∈ R
4n |‖ξ(x, φ,M(p), C(p, ṗ))‖

< min
i∈{1,...,n}

WiFi

}
. (59)

Now, we are in position to show the existence of the sliding
mode.

Theorem 2 (Existence of the Sliding Mode): Let us consider
the system composed of (37) and (40), and assume that Conjec-
ture 1 holds true. Assume that the gain matrices K, B, and L
are chosen as indicated in Conjecture 1, and that Fi are set suffi-
ciently high. In addition, assume that ‖C(p, ṗ)‖ < ζ is satisfied
for all t > 0. Then, there exist td > 0 and ts > td with which
x ∈ D ∩ S ∀t ∈ (td , ts) and x ∈ D ∩ S ∀t ∈ (ts ,∞), where
the bar denotes the complementary set.

Proof: From the definition of ξ in (52) and the assumption
‖C(p, ṗ)‖ < ζ, it is clear that E ⊂ D is satisfied if Fi are chosen
sufficiently high. Therefore, Theorem 1 implies that there exists
td > 0 with which x ∈ D ∀t ∈ (td ,∞), if Conjecture 1 is cor-
rect. After realizing x ∈ D at t > td , considering that U̇ < 0 if
x ∈ D ∩ S and U̇ = 0 if x ∈ S, there exists ts > td with which
x �∈ S ∀t < ts and x ∈ S ∀t > ts . �

Theorem 2 means that the sliding mode occurs in S after
x ∈ D is achieved.

The conclusion drawn from the analysis in this section is that
PSMC (40), of which the discrete-time representation is given
in (32), drives the nonlinear robotic system (10) to E , which is
the neighborhood of the origin, at which q = p = pd , ṗ = ṗd ,
and a = 0, if the parameters (K, B, L, and F ) are appropriately
chosen, if p̈d , ṗd , and h are bounded, and if ‖C(p, ṗ)‖ is always
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Fig. 7. Six degree-of-freedom manipulator used in the experiments. (a)
Configuration A ([0, −70, 0]◦). (b) Configuration B ([−60, −40, 30]◦). (c)
Configuration C ([−30, −10, −30]◦).

TABLE I
CONTROLLER PARAMETERS FOR THE JOINTS

small enough. Before reaching the neighborhood of the origin,
the system reaches a set D including E , and following this, the
system is attracted to the sliding region S. During the sliding
mode, the proxy position q exponentially moves toward the
desired position pd without being influenced by disturbances.

VI. EXPERIMENTS

The presented technique was experimentally tested by using
the 6-DOF industrial manipulator MOTOMAN-UPJ (Yaskawa
Electric Corporation) shown in Fig. 7, which was controlled
through a PC running the ART-Linux operating system. This
manipulator had six actuators, which were AC servomotors inte-
grated with harmonic-drive gearings and optical encoders. Each
joint was controlled with the use of PSMC [(32) or (33)], PID
control with a simple torque limiter, or PID control with anti-
windup compensation presented in [35]. In the experiment, only
the first three joints (from the base) were used, and the other
joints were controlled to maintain a constant angle with the use
of the controller (32). The gear ratios of the first three joints
were 100, 192, and 120.

The time-step size (sampling interval) of the controllers was
T = 0.001 s. The time constant H of PSMC was assigned some
different values in the experiments. The other parameters for
PSMC were chosen as shown in Table I. The PID gains (K, L,
and B) were chosen by trial and error to realize as accurate and
stiff angle control as possible. This trial-and-error gain tuning
was performed in the same manner as that for the conventional
PID control because PSMC is equivalent to the conventional
PID control when the actuators are not saturated. The torque
limits F were also chosen by trial and error so that the actuators
do not saturate during the tracking of smooth desired trajectories
given in the experiment.

We did not attempt to relate the chosen parameters to the
stability analysis given in Section V because the analysis

depends on an unproven property of PID-controlled robots, and
it provides no explicit guidelines for the choice of parameters.
It would be difficult to check whether the manipulator inertia
matrix and the gains matrices satisfy the conditions that were
described in Conjecture 1. It would require an appropriate
expression of the function Vp to be found, and even if it is
found, it would be very complicated. Such an analysis is
concerned with the conventional PID control, and thus falls
outside the scope of this paper.

No attempts were made to include the original SMC law
(without a boundary layer) into the comparison because it is
known to be unpractical due to its tendency to exhibit chattering.
No comparisons were either made to control schemes aiming
for better control performance, such as adaptive controllers,
because the main purpose of PSMC is to ensure safety while
maintaining the accuracy of PID control. I-PD control was not
compared because it is known to have lower tracking capability
than PID control.

A. Set-Point Control

A set of experiments were performed to show the resuming
motion from large positional (angular) errors, which can be
produced when discontinuous desired angles are provided as in
set-point control and when there are large external forces. The
desired angles were changed among the three configurations
shown in Fig. 7. To be specific, the initial angles of the first
three joints were chosen as configuration A in Fig. 7. The desired
angles were discontinuously changed to configuration B at t =
1 s, then to configuration C at t = 4 s, and finally, again to
configuration A at t = 7 s. Each joint was controlled by using
the control law (32). Three trials were performed with different
H values: H = 0.1, 0.2, and 0.4 s.

The angle and torque profiles from joint 2 under the three
values of H are shown in Fig. 8. The results indicate that the
joints properly exhibit overdamped, exponential resuming mo-
tion toward desired angles. In practical situations, this property
can be considered beneficial for safety. Different H values were
used to demonstrate their effects on the speed of the convergent
behavior. As the H value decreases, the speed of the motion
increases, which results in longer periods of saturation in the
actuator torques.

Another set of trials were performed to compare PSMC to two
conventional variants of PID control: PID control with simple
torque limits and antiwindup PID control shown by [35, eq. (7)]
(with γ = 0.5). The gains and the torque limits for the conven-
tional controllers were chosen as Table I. With torque-limited
PID control, the desired angle commands used in Fig. 8 pro-
duced emergency stop in the servo amplifier of the AC servo-
motors due to the excessive speed of the joints. Thus, only 15◦

of discontinuities were applied to the joints as desired angle
commands. Data from all joints are shown in Fig. 9. The results
clearly show that PSMC is effective in removing overshoots and
oscillations, which are produced with torque-limited PID con-
trol. It is shown that antiwindup PID control may or may not
succeed in suppressing overshoots and oscillation and that its
resultant motion strongly depends on controlled objects. This
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Fig. 8. Data from joint 2 during set-point control under PSMC with different
H values. The thick gray plot indicates the desired angle pd .

Fig. 9. Data from all joints during set-point control under torque-limited PID
(TL-PID), anti-windup PID (AW-PID), and PSMC with H = 0.2 s. The thick
gray plots indicate the desired angles pd .

feature can prevent a straightforward adjustment of the postsatu-
ration behavior. In contrast, PSMC always produces exponential
motions, of which slowness can be explicitly adjusted by the pa-
rameter H .

B. Trajectory-Tracking Control

Another set of experiments were performed to show the be-
havior of PSMC during trajectory-tracking control. Sinusoidal
desired-angle trajectories with an amplitude of 60◦ and a cycle
of 3 s were provided to the joints. The trajectories start from

Fig. 10. Data from joint 3 during trajectory-tracking control under PSMC
with different H values. The actuator torques were cut off from t = 2 s to 3.4 s,
during which the joint moved due to the gravity. The thick gray plot indicates
the desired angle pd .

the configuration A at t = 1 s and pass through the two other
configurations. In addition, the actuator torques were forced to
be zero from t = 2 to 3.4 s to simulate a temporary power failure
and large positional (angular) errors.

The results obtained from joint 3 are shown in Fig. 10. It
shows that the joint angle exponentially converges to the de-
sired trajectory after the power recovery at t = 3.4 s, and the
speed of the convergence can be adjusted by the value of H . As
mentioned with the results under set-point control, this property
produces safer behavior in such cases as unexpected contacts
with external objects.

A comparison was made with the PID control to compare
the control performance. The aforementioned sinusoidal de-
sired trajectory was also used for conventional PID control with
torque limiter and PSMC with H = 0.2 s. The power cut was
not performed because, under PID control, it produced exces-
sive speed that resulted in an emergency stoppage of the servo
amplifiers. The results, shown in Fig. 11, indicate that the errors
remaining under PSMC are almost of the same level as those
under torque-limited PID control. Differences appear only after
torque saturations. An angular error produced by torque satu-
ration is recovered quickly with PID control; however, it can
produce overshoots and excessive speeds, which are usually
considered unsafe in practical situations.

The effect of the integral action [PID-type PSMC (32) as op-
posed to PD-type PSMC (33)] was tested by performing another
trial by the control law (33). The same sinusoidal input with a
power-cut period was provided to the joints. The parameters for
the PD-type PSMC (33) were chosen as Table I and H = 0.2 s,
except L was not used. Fig. 12 shows the data from this trial and
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Fig. 11. Data from all joints during trajectory-tracking control under (gray)
torque-limited PID control and (black) PSMC with H = 0.2 s.

Fig. 12. Data from all joints during trajectory-tracking control with a temporal
power cut (2–3.4 s) under (black) PID-type PSMC (32) and (gray) PD-type
PSMC (33).

the correspondent trial with PID-type PSMC, a part of which is
already shown in Fig. 10. The results show that PID-type PSMC
is effective to remove steady-state errors, which can be produced
with PD-type PSMC under the gravity and joint friction. This
is, indeed, a well-known advantage of conventional PID control
over conventional PD control. The present results indicate that
this property is also preserved in the framework of PSMC.

VII. CONCLUSION

This paper has proposed PSMC for the position control of
robotic manipulators. The proposed method is an alternative
discrete-time approximation of a class of SMC and is also an
extension of the PID control. The method is safer than and as
accurate as PID position control; PSMC is capable of produc-
ing overdamped resuming motion from large positional errors

without sacrificing tracking accuracy during normal operation.
The method is suited for situations where large positional er-
rors that accompany actuator-force saturation are probable due
to unexpected environment contact and/or nonsmooth position
commands.

It must be noted that the presented stability analysis on a robot
under PSMC depends on a conjecture of the local passivity of a
PID-controlled robot. The validation of the conjecture remains
an important issue for future study.

After Kikuuwe and Fujimoto’s initial disclosure of PSMC in
2006 [1], it has been reported that this scheme was successfully
utilized with pneumatic actuators [49]. Besides, it has been ex-
perimentally shown that the slow resuming motion realized with
PSMC is suited for some classes of human–machine coordina-
tion [8]. The method can be used as a lowest level servo loop for
more sophisticated control schemes, such as admittance control,
which has been used by Kikuuwe et al. [9].

This paper has limited itself to 1-D PSMC, which can be
used for decentralized joint-angle control. Many variants and
extensions are, however, expected to be drawn from PSMC.
One straightforward extension is to combine PSMC with other
compensation terms, such as gravity compensation, as already
demonstrated with pneumatic actuators [49]. Another imagin-
able variation is multidimensional PSMC for task-space position
control, which has been empirically demonstrated [1], [8], [49],
although its theoretical validity has not been fully discussed. In
addition, Kikuuwe et al. have proposed an extension of PSMC
to impose limits on the end-effector Cartesian velocity [7], of
which the stability analysis is left unfinished. From a theoreti-
cal point of view, a more general mathematical framework that
includes PSMC as a special case can be considered as a future
topic of study. In such a framework, conventional sliding mode
controllers might be converted into chattering-free discrete-time
controllers by algebraically combining them with simpler con-
trollers, such as a PID controller.
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