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This paper presents a sliding mode filter that effectively removes impulsive noise and high-frequency noise with
producing much smaller phase lag than linear filters. It is less prone to overshoot than previous sliding mode
filters and it does not produce chattering. In addition, it is computationally inexpensive, and thus suitable for
realtime applications. The proposed sliding mode filter employs a quadratic surface as its sliding surface, which
is designed so that the output converges to the input in finite time if the input value is constant. Its algorithm is
derived by using the backward Euler discretization, which prevents chattering. The effectiveness of the filter was
shown by experiments by using an ultrasonic sensor and an optical encoder.
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1. Intorduction

In many robotics applications, sensor signals are cor-
rupted by high-frequency noise. The use of a linear filter
is often the first choice for removing such noise because
of its simplicity, but it is also known to have some draw-
backs. One is that a linear filter proportionally transfers
any noise component into the output and thus it cannot
remove high-amplitude impulses such as those considered
as outliers. Another drawback is that it produces a phase
lag in the output and thus the original shape of the input
is distorted. These problems cannot be ignored in such
cases where the noise has high amplitude (i.e., it is impul-
sive) and where the frequency range of the original signal
is slightly below that of the noise signal. For example,
the distance measurement obtained through an ultrasonic
sensor often contains impulsive noise. As another exam-
ple, the velocity signal obtained through the numerical
differentiation of the position reading from an optical en-
coder is corrupted by high-frequency noise, while instan-
taneous velocity information is demanded for injecting
damping into a position-controlled mechatronic system.
Some classes of nonlinear filters have been studied in

order to avoid drawbacks of linear filters. For example,
the median filter [1] is known to be useful for removing
impulsive noise, but its computational cost is high. An
adaptive windowing filter [2], as another example, is used
for removing high-frequency noise caused by numerical
differentiation, but its window size should not be too large
for preventing unacceptable computation cost.
Some researchers study sliding mode observers for fil-

tering. One of the major problems raised in implement-
ing sliding mode techniques is chattering, which is high-
frequency oscillation in the output value. It is known that
sliding mode observers based on the super-twisting algo-
rithm [3] do not produce chattering and do realize finite
time convergence. They are, however, prone to overshoot
during the convergence.
The use of a quadratic sliding surface has also been

studied in the field of filtering [4][5]. One of its advantages
is that, by using it, the output converges to the input
in finite time when the input is constant. In particular,
Emaru and Tsuchiya [5] named their quadratic sliding
mode filter as “ESDS”1 and they used it for removing
impulsive noise. A problem of their filter is that it is prone
to overshoot. Another problem is that the numerical error
caused by their discrete-time implementation [6] produces
chattering, as will be demonstrated in section 2.2.

1According to Emaru and Tsuchiya [5], the full form of ESDS is
“the system which estimate the smoothed value and the differential
value by using sliding mode system”.

 2x

 1x

 0=σ

Sliding surface

Sliding surface

Fig. 1: Quadratic sliding surface (solid curve) and trajectories
of the state (x1, x2) for σ ̸= 0 (dashed curves) in the filter (1)
with u = 0

The rest of this paper is organized as follows. Section 2
discusses previous work on quadratic sliding mode filters
and clarifies their problems. Section 3 presents a new
quadratic sliding mode filter, which performs better than
previous methods. In section 4, experimental results are
shown to demonstrate the advantages of the proposed
filter, and in section 5 conclusions are drawn.

2. Quadratic sliding mode filters

2.1 Continuous-time expression

Let us consider the system described in the following
expression:

ẋ1 = x2 (1a)

ẋ2 = −F sgn(σ) (1b)

σ = 2F (x1 − u) + |x2|x2 (1c)

where u is an input, (x1, x2) is the system state, F is a
positive constant, and

sgn(z)


= 1 if z > 0,

∈ [−1, 1] if z = 0,

= −1 if z < 0.

(2)

This system can act as a filter with the input u and the
output x1. Han and Wang [4] used this filter for removing
white noise contained in u, and Emaru and Tsuchiya [5]
used it to remove impulsive noise contained in u. The slid-
ing surface of the filter (1) is a quadratic surface, which is
the set of states (x1, x2) that satisfy the quadratic equa-
tion 2F (x1 − u) + |x2|x2 = 0, as illustrated by the solid
curve in Fig. 1.
In the filter (1), when σ ̸= 0, i.e., in reaching mode,

ẋ2 takes the value of either −F or F . In this period, the
state (x1, x2) moves along a quadratic curve in the state
space, as illustrated by dashed curves in Fig. 1. When
σ = 0 ∧ σ̇ = 0, we have

2F (x2 − u̇) + 2|x2|ẋ2 = 0. (3)
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Fig. 2: Analytical solution of (1) with a step change in u hat
is temporarily corrupted by a disturbance (F = 200)

In this case, because of |ẋ2| ≤ F , u̇ satisfies the following
condition:

min(2x2, 0) ≤ u̇ ≤ max(2x2, 0) (4)

and ẋ2 takes the following value:

ẋ2 = −F sgn(x2)(1− u̇/x2). (5)

Also in this case, x2 = 0 means u̇ = 0, and thus ẋ2 takes
a value between −F and F . When σ = 0 and u̇ does not
satisfy (4), ẋ2 takes either −F or F . In conclusion, ẋ2 of
the filter (1) satisfies

ẋ2


= F if σ < 0 ∨ (σ = 0 ∧ u̇ > max(2x2, 0)),

= −F if σ > 0 ∨ (σ = 0 ∧ u̇ < min(2x2, 0)),

∈ [−F, F ] if σ = 0 ∧ x2 = 0 ∧ u̇ = 0,

= −F sgn(x2)(1− u̇/x2) otherwise.
(6)

It is worth noting that, when σ ̸= 0 ∨ (σ = 0 ∧ (u̇ >
max(2x2, 0) ∨ u̇ < min(2x2, 0) ∨ (x2 ̸= 0 ∧ u̇ = 0)), ẋ2

takes either −F or F , according to (6). The effect of such
using extreme values is equivalent to that of a bang-bang
control [7], which drives the state (x1, x2) from arbitrary
initial states to the target state (u, 0) in the minimum
time under the constraint |ẋ2| ≤ F .
A problem of the filter (1) is that it is prone to over-

shoot. Fig. 2 shows the analytical solution of (1) with a
step change in u that is temporarily corrupted by a dis-
turbance. As the black curve shown in Fig. 2(b), the state
(x1, x2) deviates from the sliding surface σ = 0 ∧ x2 > 0
into the region σ > 0 ∧ x2 > 0 by the influence of the
disturbance. After the disturbance disappears, the devi-
ated state moves in parallel to the sliding surface. This
is because, in the region σ > 0 ∧ x2 > 0, ẋ2 takes
the same value with that takes on the sliding surface
σ = 0 ∧ x2 > 0 (i.e., ẋ2 = −F ). Thus, the state re-
turns to the sliding surface after an overshoot, i.e., after
crossing the line x1 = u. As a whole, if the state is in the
region σx2 > 0, it cannot reach the sliding surface before
crossing the line x1 = u.

2.2 Discrete-time algorithm

According to Emaru et al. [6], they originally im-
plemented the filter (1) by using 4th-order Runge-
Kutta method as the discrete-time integrator. To make
the computation fast, they further proposed another
integration method, which they call “fast calculating
method (FCM)” [6]. As to the authors’ knowledge, these
two are only available discrete-time algorithms of the fil-
ter (1) in the literature. A problem of FCM is that
the state (x1, x2) cannot exactly reach the sliding surface
σ = 0 due to numerical errors, and thus there occurs chat-
tering. Fig. 3 shows the numerical solution of (1) with a
step change in u obtained by FCM. We can observe that
the state (x1, x2) slightly crosses the sliding surface and
thus there occurs small overshoot, as shown in Fig. 3(c)
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Fig. 3: Numerical solution of (1) with a step change in u
obtained by FCM (F = 200, T = 0.001 s)

and Fig. 3(d). Because the state (x1, x2) never exactly
reaches the sliding surface, chattering continues around
x1 = u, as shown in Fig. 3(e) and Fig. 3(f).

3. Proposed Filter

3.1 Continuous-time expression

This paper presents the following sliding mode filter,
which is less prone to overshoot than previous methods:

ẋ1 = x2 (7a)

ẋ2 = −Fgsgn(gsgn(−α, x2,−1), σ, gsgn(1, x2, α)) (7b)

σ = 2F (x1 − u) + |x2|x2 (7c)

where α > 1 is a constant, F is a positive constant. In
addition, gsgn is a generalized signum function, which is
defined as follows:

gsgn(A, z,B) =


B if z > 0,

[min(A),max(B)] if z = 0,

A if z < 0

(8)

where A ⊂ R and B ⊂ R are closed intervals, z ∈ R,
min(A) ≤ max(B). Fig. 4(a) shows the relation between
x1, x2 and ẋ2. Note that ẋ2 takes either −αF or αF in
the region σx2 > 0.
Fig. 5 shows the analysis solution of (7) with a step

change in u that is temporarily corrupted by a distur-
bance. We can observe that the state (x1, x2) deviates
from the sliding surface into the region σx2 > 0 by the in-
fluence of the disturbance. According to (7), the value of
|ẋ2| of (7) is larger than that of (1) in this region. Thus in
this case, differently from (1), the deviated state returns
to the sliding surface before passing the line x1 = u, and
there is no overshoot.

3.2 Discrete-time algorithm

In this subsection, we derive the discrete-time algo-
rithm of the filter (7) by using the backward Euler dis-
cretization, which prevents chattering.
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Relation between x1(k − 1), x2(k − 1) and x2(k)− x2(k − 1)
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Fig. 5: Analytical solution of (7) with a step change in u that
is temporarily corrupted by a disturbance (F = 200, α = 2)

Based on the backward Euler discretization, (7) can be
approximated as follows:

x2(k)− x2(k − 1) = −gsgn(m1(k), σ(k),m2(k)) (9a)

σ(k)= |x2(k)|x2(k) + 2F (Tx2(k) + x1(k−1)−u(k)) (9b)

where m1(k) and m2(k) are determined as:

m1(k) = gsgn(−αTF, x2(k),−TF ) (10)

m2(k) = gsgn(TF, x2(k), αTF ) (11)

In (9), the unknown x2(k) should be determined so that
it satisfies (9). The solution of (9) with respect to x2(k)
can be obtained through the following procedures.
By setting σ(k) = 0, we can obtain x∗

2(k), which is the
value of x2(k) that satisfies σ(k) = 0, as follows:

x∗
2(k) = sgn(x1(k − 1)− u(k))(FT

−
√
F 2T 2 + 2F |x1(k − 1)− u(k)|). (12)

Because σ(k) is a monotonously increasing function with
respect to x2(k), by using (12), (9) can be rewritten as
follows:

x2(k)− x2(k − 1) = −gsgn(m1(k), x2(k)− x∗
2(k),m2(k))(13)

In order to move out unknown x2(k) from the right-hand
side of (13), we apply the following equivalent relation
between two equations [8]:

z − y = gsgn(gsgn(a,−z, b), x− z, gsgn(c,−z, d)) ⇔
z − y = gsat(gsat(a,−y, b), x− y, gsat(c,−y, d)) (14)

where a ≤ b ≤ c ≤ d, and gsat is a generalized saturation
function [8], which is defined as follows:

gsat(a, z, b) =


b if z > b,

z if z ∈ [a, b],

a if z < a,

(15)

given a ≤ b. Then, we can obtain

x2(k)− x2(k − 1) = −gsat(n1(k), n0(k), n2(k)) (16)
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Fig. 6: Numerical solution of the proposed filter with a step
change in u (F = 200, α = 2, T = 0.001 s)

where n0(k), n1(k) and n2(k) are determined as:

n0(k) = x2(k − 1)− x∗
2(k) (17)

n1(k) = gsat(−αTF, x2(k − 1),−TF ) (18)

n2(k) = gsat(TF, x2(k − 1), αTF ). (19)

Fig. 4(b) shows the relation between x2(k − 1) − x∗
2(k),

x2(k − 1) and x2(k) − x2(k − 1). Then, we can obtain
x2(k) from (16), which yields

x2(k) = x2(k − 1)− gsat(n1(k), n0(k), n2(k)). (20)

In conclusion, the complete discrete-time algorithm of
the proposed filter is obtained as follows:

x∗
2(k) = sgn(x1(k − 1)− u(k))(FT

−
√
F 2T 2 + 2F |x1(k − 1)− u(k)|) (21a)

n0(k) = x2(k − 1)− x∗
2(k) (21b)

n1(k) = gsat(−αTF, x2(k − 1),−TF ) (21c)

n2(k) = gsat(TF, x2(k − 1), αTF ). (21d)

x2(k) = x2(k − 1)− gsat(n1(k), n0(k), n2(k)) (21e)

x1(k) = Tx2(k) + x1(k − 1). (21f)

Fig. 4(c) shows the relation between x1(k− 1), x2(k− 1)
and x2(k) − x2(k − 1), and Fig. 6 shows the numerical
solution of the proposed filter with a step change in u.
Note that there is no chattering in sliding mode. Such a
way of avoiding chattering by using the backward Euler
discretization is also reported in [8].

4. Experiment

The proposed filter was experimentally tested by us-
ing an ultrasonic sensor and an optical encoder. In both
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Fig. 7: Experiment setups
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Fig. 8: Experiment by using an ultrasonic sensor (T = 0.01s)

experiments, the parameter α of the proposed filter was
chosen by try-and-error to realize as effective filtering per-
formance as possible. The filtered output of the proposed
filter was compared with those of the second-order But-
terworth low-pass filter (BWF) and ESDS implemented
with FCM (ESDS-FCM).

4.1 Ultrasonic sensor

In this experiment, an ultrasonic sensor was fixed on a
desk, and the distance between the ultrasonic sensor and
the arc-shaped back of a chair was measured as shown
in Fig. 7(a). First, the chair was in its initial position,
and then the chair was moved toward the desk slowly. If
the receiver did not receive the reflected wave within the
sampling time of T = 0.01 s, the measured distance was
recorded as 0 cm.
Fig. 8(a) shows the obtained distance signal, which

was corrupted by impulsive noise, and Fig. 8(b) shows
the outputs of the three filters. One can observe that
BWF failed in removing impoulsive noise. ESDS-FCM
produced overshoot, and its output was vibratory. Com-
pared with the above two filters, the proposed filter re-
moved impulsive noise.

4.2 Optical Encoder

In this experiment, the joint velocity signal was ob-
tained through the numerical differentiation of the angle
reading from an optical encoder attached to the sixth
joint of a manipulator, as shown in Fig. 7(b).
Fig.9 (a) shows the velocity signal obtained from the

angle signal. One can observe that the velocity signal was
corrupted by high-frequency noise and there was an im-
pulse at t = 1.554 s. Fig. 9(b) shows that BWF smoothed
high-frequency noise but failed in smoothing the impulse.
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Fig. 9: Experiment by using an optical encoder of a manipu-
lator (T = 0.001s)

ESDS-FCM smoothed the impulse but produced vibra-
tion. The proposed filter succeeded in smoothing both
the impulse and high-frequency noise.

5. Conclusion

In this paper, we have presented a quadratic sliding
mode filter that effectively removes impulsive noise and
high-frequency noise. The proposed filter does not pro-
duce chattering, and it is less prone to overshoot than
previous sliding mode filters. In addition, its algorithm is
computationally inexpensive, and thus suitable for real-
time applications. The experimental results showed the
effectiveness the proposed filter than prior methods.
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