
Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 923679, 13 pages
doi:10.1155/2012/923679

Research Article

Parameter Selection Guidelines for a Parabolic Sliding Mode
Filter Based on Frequency and Time Domain Characteristics

Shanhai Jin, Ryo Kikuuwe, and Motoji Yamamoto

Department of Mechanical Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

Correspondence should be addressed to Shanhai Jin, jin@ctrl.mech.kyushu-u.ac.jp

Received 1 August 2012; Revised 29 October 2012; Accepted 4 November 2012

Academic Editor: Mohamed Zribi

Copyright © 2012 Shanhai Jin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the results of quantitative performance evaluation of an authors’ new parabolic sliding mode filter, which is for
removing noise from signals in robotics and mechatronics applications, based on the frequency and time domain characteristics.
Based on the evaluation results, the paper presents selection guidelines of two parameters of the filter. The evaluation results show
that, in the frequency domain, the noise removing capability of the filter is almost the same as that of the second-order Butterworth
low-pass filter (2-LPF), but its phase lag is smaller (maximum 150 degree) than that of 2-LPF (maximum 180 degree). Moreover,
the filter produces smaller phase lag than a conventional parabolic sliding mode filter with appropriate selection of the parameters.
In the time domain, the filter produces smaller overshoot than 2-LPF and the conventional one, while maintaining short transient
time, by using an appropriately selected parameter. The presented parameter selection guidelines state that the values of the
parameters should be chosen according to some estimated characteristics of the input and some desired characteristics of the
output. The effectiveness of the filter and the presented guidelines is validated through numerical examples and their application
to a closed-loop, force control of a robot manipulator.

1. Introduction

In many robotics and mechatronics applications, filters are
required for removing noise component from measured
signals. Linear filters are widely used for removing noise due
to their simplicity. They, however, proportionally transfer
any noise component into the output. Besides that, strong
attenuation of noise usually results in a large phase lag,
which may lead to instability of closed-loop systems. Such
drawbacks of linear filters may cause undesirable problems
in many applications.

Some nonlinear filters have been used for circumventing
drawbacks of linear filters. For example, the median filter [1]
is known to be useful in removing impulsive noise but it is
computationally expensive, as pointed out in [2]. As another
example, Janabi-Sharifi et al. [3] proposed an adaptive
windowing filter that is designed to optimize the trade-off
between filtering effectiveness and filtering time delay. The
computational cost of their filter, however, depends on

the sampling interval and the input frequency. Stochastic
filters, such as Kalman filter [4–7], can be useful in some
applications. They, however, require a dynamics model of
the source of the signal, which is not always obtained, and
their performance depends on the accuracy of the model.

Some researchers study sliding mode observers as filters
for removing noise from signals (e.g., [8–10]). In sliding
mode observers, the observer state (typically consisting of the
output and its derivative) is forced to reach a predetermined
surface, which is called sliding surface, in the state space.
Once the observer state reaches the sliding surface, the state
is constrained to the sliding surface and it slides along the
surface to a desired state. Thus, the observer state becomes
insensitive to noise. In the last decade, much attention
has been paid to the study of sliding mode observers
based on the super-twisting algorithm (e.g., [11–13]). These
observers theoretically realize finite time convergence in
continuous-time analysis. However, the accuracy of con-
vergence in discrete-time implementation, typically with
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Euler discretization (e.g., [14–16]), depends on the sampling
interval, as pointed out in [11]. In addition, they are prone
to overshoot during the convergence.

The sliding mode filter employing a parabolic-shaped
sliding surface, which will be explained in Section 2, has also
been studied. This filter was independently proposed by Han
and Wang [17] and Emaru and Tsuchiya [18, 19] (see also
[20] for some discussion). After that, some evaluation results
of their filter [21–23] and its applications [24–29] were
reported. The main advantage of their filter is that it realizes
finite time convergence of the output to the input value when
a constant input is provided. Their filter, however, is prone to
overshoot because the state is attracted to the sliding surface
only from one side.

In a previous paper [30], the authors proposed a new
parabolic sliding mode filter, which is an extension of the
filter [17–19]. After that, in another previous paper [31], the
effectiveness of this filter in improving velocity feedback in
position control of a device was demonstrated by the authors.
In [30, 31], however, the performance of this filter is not
quantitatively evaluated, and any guideline for selecting the
parameters is not provided.

In this paper, the performance of the authors’ new
parabolic sliding mode filter is quantitatively evaluated based
on its frequency and time domain characteristics. Based
on these evaluation results, selecting guidelines for two
parameters are presented. In addition, numerical examples
and experimental results are presented.

The rest of this paper is organized as follows. Section 2
gives a brief overview of parabolic sliding mode filters.
Sections 3 and 4 evaluate the performance of the authors’
new filter based on the frequency and time domain char-
acteristics, respectively. Section 5 gives parameter selection
guidelines based on the performance evaluation results.
Sections 6 and 7 validate the effectiveness of the new filter
and the presented guidelines through numerical examples
and experiments. Section 8 provides concluding remarks.

2. Overview of Parabolic Sliding Mode Filters

In a previous paper [30], the authors proposed a sliding
mode filter of which continuous-time representation is given
as follows:

ẋ1 = x2, (1a)

ẋ2 = − Fgsgn
(
gsgn(−α, x2,−1),

σ(F, x1, x2,u), gsgn(1, x2,α)
)
,

(1b)

y = x1, (1c)

where

σ(F, x1, x2,u) � 2F(x1 − u) + |x2|x2. (2)

Here, u ∈ R is the input, y ∈ R is the output, x1 ∈ R and
x2 ∈ R are the states of the filter, and F > 0 and α > 1
are parameters to be selected appropriately. In addition, gsgn
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Figure 1: Relation among x1, x2, ẋ2, and α.
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Figure 2: The parabolic-shaped sliding surface (thick solid curve,
σ = 0) and trajectories of the state (x1, x2) for σ /= 0 in filter (1a)–
(1c) (thin solid curve) and filter (4a)–(4c) (thin dotted curve).

is the set-valued, generalized signum function defined as
follows:

gsgn(A, z,B) �

⎧
⎪⎪⎨

⎪⎪⎩

B if z > 0

[min(A∪ B), max(A∪ B)] if z = 0

A if z < 0,
(3)

where the arguments A ⊂ R and B ⊂ R are arbitrary closed
intervals (which can be scalars as a special case) and the argu-
ment z ∈ R is a scalar. It should be noted that, when z = 0,
gsgn returns the union of A and B and all values in between.
Figure 1 shows the relation among x1, x2, ẋ2, and α in filter
(1a)–(1c). One can see that ẋ2 takes the value of either −αF
or αF when σx2 > 0, as shown by the horizontal surfaces. In
addition, when σx2 = 0, ẋ2 takes a value between the values
of ẋ2 in adjoining regions, as shown by the vertical surfaces.
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Filter (1a)–(1c) is an extension of a previous parabolic
sliding mode filter, which is described as follows:

ẋ1 = x2, (4a)

ẋ2 = − F sgn(σ(F, x1, x2,u)), (4b)

y = x1. (4c)

Here, σ(F, x1, x2,u) is the same as the one defined in (2), and
sgn is the set-valued signum function defined as follows:

sgn(z) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if z > 0

[−1, 1] if z = 0

−1 if z < 0.

(5)

Note that sgn returns an arbitrary value between 1 and −1
when z = 0. Filter (4a)–(4c) was independently proposed
by Han and Wang [17] and Emaru and Tsuchiya [18, 19].
This filter can be viewed as a special case of the authors’ filter
(1a)–(1c) with α = 1 because (3) reduces to (5) when A =
[−1,−1] and B = [1, 1].

Figure 2 shows the sliding surface and trajectories of the
state (x1, x2) in filter (1a)–(1c) and filter (4a)–(4c). As is
shown by the thick solid curve, filter (1a)–(1c) employs a
parabolic-shaped sliding surface, which is designed so that
the state (x1, x2) converges to the state (u, 0) in finite time
when u is constant. The difference of filter (1a)–(1c) from
filter (4a)–(4c) lies in the regions of σx2 > 0, where α > 1
takes effect. This difference makes the state of filter (1a)–
(1c) attracted to the sliding surface from both sides, whereas
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the state of filter (4a)–(4c) is attracted only from one side,
that is, the state of filter (4a)–(4c) moves in parallel to the
sliding surface in the regions of σx2 > 0. Thus, due to the use
of α > 1, filter (1a)–(1c) is less prone to overshoot than the
previous one (4a)–(4c).

The continuous-time representation (1a)–(1c) cannot be
used directly for numerical computation because it involves
the set-valued function gsgn. The authors’ previous paper
[30] has shown that by using the backward Euler discretiza-
tion (i.e., replacing x2 by (x1(k)−x1(k−1))/T), (1a)–(1c) can
be numerically integrated through the following algorithm:

x∗2 (k) := csgn(x1(k − 1)− u(k))

×
(
FT −

√
F2T2 + 2F|x1(k − 1)− u(k)|

)
,

(6a)

x2(k) := x2(k − 1)

− gsat
(
gsat(−αTF, x2(k − 1),−TF), x2(k − 1)

−x∗2 (k), gsat(TF, x2(k − 1),αTF)
)
,

(6b)

x1(k) := Tx2(k) + x1(k − 1), (6c)

y(k) := x1(k), (6d)

where := denotes an assignment of a value, k is the discrete-
time index, and T is the sampling interval. In addition, gsat
is the generalized saturation function [32] defined as follows:

gsat(a, z, b) �

⎧
⎪⎪⎨

⎪⎪⎩

b if z > b

z if z ∈ [a, b]

a if z < a,

(7)

where a ∈ R and b ∈ R are arbitrary arguments that satisfy
a ≤ b. Besides that, csgn is the conventional signum function
defined as follows:

csgn(z) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if z > 0

0 if z = 0

−1 if z < 0.

(8)

The algorithm (6a), (6b), (6c), and (6d), which is the
discrete-time realization of filter (1a)–(1c), does not produce
chattering, which has been one of major problems of con-
ventional implementation of sliding mode techniques. This is
owing to the use of the backward Euler discretization, which
has been recognized to be useful to realize exact reaching to
sliding modes as reported in [32–34].

It should be noted that the algorithm (6a), (6b), (6c), and
(6d) can also provide x2(k) as an estimated differential value
of the input u(k). However, this paper only considers the
output x1(k) because x2(k) is the result of simple numerical
differentiation of x1(k).

3. Frequency Domain Analysis

This section presents the Bode plot of the nonlinear filter
(1a)–(1c) by using the describing function method [35,
Chapter 7]. Specifically, Sections 3.1, 3.2, and 3.3 investigate
Bode plots of filter (1a)–(1c) for different values of Û , α,
and sampling interval T , respectively. Moreover, Sections 3.1
and 3.2 compare the frequency response of filter (1a)–(1c)
to those of the second-order Butterworth low-pass filter (2-
LPF) and filter (4a)–(4c), respectively. In these two sections,
all the three filters are implemented at sampling interval
T = 0.001 s in discrete time.

In the upcoming analysis, the following sinusoidal input
signals are used:

u = U sin(ωt), (9)

where U > 0. For simplicity, filter (1a)–(1c) and the input u
in (9) are, respectively, normalized as

˙̂x1 = x̂2, (10a)

˙̂x2 = − gsgn
(
gsgn(−α, x̂2,−1),

σ(1, x̂1, x̂2, û), gsgn(1, x̂2,α)
)
,

(10b)

ŷ = x̂1 (10c)

and

û � Û sin(ωt), (11)

where

x̂1 � x1

F
, x̂2 � x2

F
, û � u

F
, Û � U

F
. (12)

This normalization allows us to exclude the influence of F
out of consideration without loss of generality. Note that the
units of the normalized input û and output ŷ are s2.
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3.1. Bode Plots for Different Values of Û . Figure 3 shows the
Bode plots of filter (1a)–(1c) for different values of Û . In
filter (1a)–(1c), the frequency response depends on the input
amplitude Û because of the nonlinearity. Specifically, both
the gain and the phase plots shift to the left by maintaining
the same shape as Û increases. For comparison, Bode plots
of some 2-LPFs are also included in Figure 3. Here, the cut-
off frequencies of the 2-LPFs (hereafter, denoted by ωcl) are
chosen so that their gain plots are as close as possible to
those of filter (1a)–(1c). It is shown that, in the gain plot of
filter (1a)–(1c), the slopes of the high frequency asymptotes
are approximately −40 dB/decade, which are the same as
that of 2-LPF. In the rest of this paper, for convenience, the
term “cut-off frequency” is also used to refer the frequency
at which the two asymptotes of filter (1a)–(1c)’s gain plot
intersect to each other, and it is denoted by ωcq.

Figures 3(a) and 3(b) show that the gain of filter (1a)–
(1c) is around −1.7 dB at the cut-off frequency ωcq, while

that of 2-LPF is around −3 dB at the cut-off frequency ωcl.
It is known that Butterworth low-pass filters possess the
flattest gain plot at cutoff frequencies ωcl among all linear
filters. Thus, it can be said that filter (1a)–(1c) has better
gain characteristics than all linear filters. Figure 3(c) shows
that the phase shifts of filter (1a)–(1c) and 2-LPF are around
−52 degree and around −90 degree, respectively, at their
respective cut-off frequencies. In addition, the maximum
phase shift of filter (1a)–(1c) is around−135 degree, whereas
that of 2-LPF is around −180 degree. Thus, it also can be
concluded that filter (1a)–(1c) produces smaller phase lag
than 2-LPF.

Figure 4 shows the relation between Û and the cut-off
frequency ωcq with α = 3. It is observed that the relation can
be approximated as follows:

ωcq =
√

2

Û
. (13)
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ŷ

(s
2
)

0.5 1 1.5 2 2.5

Time (s)

(a) The input and the outputs

1

0.5

0

−0.5

−1

In
pu

t
û
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In Section 5, the relation (13) will be used in a guideline for
selecting the parameter F.

3.2. Bode Plots for Different Values of α. Figure 5 shows the
influence of α on the gain and the phase shift of filter
(1a)–(1c). It is observed that, as the value of α increases,
the phase lag decreases and asymptotically approaches to a
certain value. In particular, one can see that filter (4a)–(4c),
which is a special case of filter (1a)–(1c) with α = 1, has
similar gain characteristics with that of filter (1a)–(1c), but

it produces larger phase lag than filter (1a)–(1c) from the
frequency slightly below the cutoff frequency ωcq. Such phase
characteristics of the filter (4a)–(4c) may cause instability in
closed-loop systems where the frequency range of the input
signal is slightly below that of the noise signal.

Figure 6 shows the comparison between filter (1a)–(1c)
and filter (4a)–(4c) in the case where the normalized input
suddenly changes from û = 0.00067 sin(25t) s2 to û =
0.00067 sin(45t) s2 at t = 1 s. Note that both cut-off frequen-
cies of the two filters are ωcq =

√
2/0.00067 ≈ 55 rad/s. It is
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shown that after the sudden change in the input frequency,
filter (4a)–(4c) produces larger phase lag than filter (1a)–
(1c).

3.3. Bode Plots for Different Values of Sampling Interval T .
Figure 7 shows the Bode plots of filter (1a)–(1c) for different
values of sampling interval T . It is shown that the influence
of sampling interval T on the gain and the phase shift
of filter (1a)–(1c) is insignificant at low frequency range
(i.e., frequencies below ω = 100 rad/s in the case of Û =
0.001 s2). In particular, with different values of T , the gains
and the phase shifts at cut-off frequency ωcq ≈ 43 rad/s
are still around −1.7 dB and −52 degree, respectively. It is
also shown that at high frequency range (i.e., frequencies
above ω = 100 rad/s in the case of Û = 0.001 s2), the
phase shift decreases and converges to a certain value −150
degree with the increase of T . The significant differences of
phase shift appeared with long T values are presumably due

to the fact that a long T cannot provide enough sampling
points to reconstruct a high frequency input signal. Thus, it is
advisable to set the sampling interval T as short as a physical
system permits to avoid undesirable problems caused by
insufficient sampling points, while increasing α to decrease
the phase lag as discussed in Section 3.2.

4. Time Domain Analysis

This section investigates the transient time and the overshoot
magnitude produced by filter (1a)–(1c) according to the
following input:

û(t) = 0.01 + ŝε(t) s2, (14)

where ε ∼ N (0, 1) is the unit white Gaussian noise with zero
mean and ŝ is a normalized noise-scaling constant. Here, the
transient time is defined as the time spent for the output to
reach 90% of the input amplitude with ŝ = 0.
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Figure 8 shows the transient time and the overshoot
magnitude of filter (1a)–(1c) for different values of α and a 2-
LPF with the input (14) for different values of ŝ. In 2-LPF, the
cut-off frequency ωcl is chosen as ωcl = 17.6 rad/s so that the
transient time of 2-LPF is as close as possible to that of filter
(1a)–(1c) with ŝ = 0. The sampling interval T = 0.001 s is
used for the discrete-time implementation of the two filters.

In Figure 8, it is clearly shown that the range of optimum
values for α is around 3 ≤ α ≤ 5. The α values larger than
this range result in long transient time and those smaller than
this range result in large overshoot magnitude. This tendency
becomes stronger as ŝ increases. Within this range of α, filter
(1a)–(1c) produces slightly longer transient time but smaller
overshoot magnitude than 2-LPF.

Figure 9 shows some examples of time responses of filter
(1a)–(1c) with normalized input û(t) = 0.01 + 0.003ε(t) s2.
It is shown that the influence of α starts when the output
ŷ enters the region that the input û can reach (this region
is indicated as a “noise region” in Figure 9). One can see
that a larger α leads to a stronger slowing down of ŷ and
thus leads to a longer transient time and a smaller overshoot
magnitude.

5. Parameter Selection Guidelines

Based on the discussion in Sections 3 and 4, this section pre-
sents selecting guidelines for the two parameters F and α of
filter (1a)–(1c). Let us define the following quantities:

ωs: maximum angular frequency of the signal compo-
nent in the input,

Us: maximum amplitude of the signal component in the
input,

ωn: minimum angular frequency of the noise component
in the input,

Un: maximum amplitude of the noise component in the
input,

Unp: maximum permissible amplitude of the noise com-
ponent in the output, and

Gp: minimum permissible gain of the signal component
in the output.

Here, we assume ωs < ωn, that is, the frequency range of the
noise component is higher than that of the signal compo-
nent, and Gp < 0 dB. By using these notations, requirements
for filter (1a)–(1c) can be described as follows:

(a) the gain G of filter (1a)–(1c) at ωn with Un should be
smaller than Unp/Un, and

(b) the gain G of filter (1a)–(1c) at ωs with Us should be
Gp < G < 0 dB.

Given these requirements, parameter selection guidelines
are now derived. First, Section 3.1 has shown that the gain
plot of filter (1a)–(1c) has a high frequency asymptote of
which the slope is approximately −40 dB/decade, that is, the
gain G at a frequency ω > ωcq can be approximated as
follows:

20 log10G = −40 log10
ω

ωcq

⇐⇒ G = ω2
cq

ω2
.

(15)

By using (13) in (15), one can see that the gain at ωn with Un

is G = 2F/(ω2
nUn). Thus, to achieve G < Unp/Un, F should

satisfy F < ω2
nUnp/2.

Next, when the signal with a frequency ωs and an
amplitude Us is provided, the gain G increases as F increases.
Figure 10 shows the gain G = Γ(κ) as a function of a
parameter κ ≥ 1, with which F is chosen as F = κω2

s Us/2. If
one needs to obtain a gain larger than Gp, one should choose
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F as F > Γ−1(Gp)ω2
s Us/2. As a whole, one can see that, in

order to achieve the requirements (a) and (b), the value of F
should satisfy the following relation:

Γ−1
(
Gp

)
ω2
s Us

2
< F <

ω2
nUnp

2
. (16)

Thus, as a guideline for selecting F, in the case where the
estimates of ωs, Us, ωn, Unp, and Gp are known in advance,
the value of F should be simply set to satisfy (16). With such a
value of F, filter (1a)–(1c) passes the signal component while
attenuating the noise component down to an amplitude
of Unp. Note that if Γ−1(Gp)ω2

s Us ≥ ω2
nUnp, the guideline

cannot be applied and the value of Unp or the value of Gp

must be reconsidered.
As a guideline for selecting α, based on the discussion

in Section 4, α should be set as 3 ≤ α ≤ 4. However, in
applications where the transient time is not a major concern,
it is advisable to set it as large as 4 ≤ α ≤ 5 because
phase lag becomes smaller by making α larger, as indicated
in Section 3.2.

6. Numerical Example

Filter (1a)–(1c) and the guidelines are now validated through
numerical examples. The following signal is used as the input
signal to filter (1a)–(1c):

u = sin(100t) + 0.16 sin(500t), (17)

where the first term and the second term on the right-hand
side are here considered as the signal and noise components,
respectively. Here, we assume that u is a dimensionless
quantity while t is measured in s. The requirements for filter
(1a)–(1c) are set as follows:

(a) the amplitude of the noise component in the output
should be smaller than Unp = 0.075, and

(b) the gain G of the signal component should be Gp =
−0.7 dB < G < 0 dB.

According to the guidelines, the value of α is set as α = 3.
In addition, from Figure 10, one can know that Γ−1(Gp =
−0.7) ≈ 1.7. Thus, the value of F is set as F = 9000 s−2, which
satisfies the relation Γ−1(−0.7)×1002/2 < F < 5002×0.075/2.
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Figure 11 shows the comparison between the outputs of
filter (1a)–(1c) and 2-LPF. Here, the input u starts from u = 0
at t = 0 s, and the initial states of all filters are zeros at t =
0 s. Figure 11 only shows the data after t = 3.01 s, where the
outputs are in the steady state. In 2-LPF, cut-off frequencies
ωcl = 180, 240, 330, and 800 rad/s are used for comparison.
In the rest part of this section, the sampling interval T =
0.001 s is used for the numerical examples.

The figure shows that in filter (1a)–(1c), the output
amplitude is 0.98, which is equivalent to the gain G =
−0.176 dB. This satisfies the requirement (b), that is, G >
Gp = −0.7 dB. Besides that, the amplitude of the output at
ω = 500 rad/s is U = 0.026, which satisfies the requirement
(a), that is, U < Unp = 0.075. Thus, by using the guidelines,
one can see that the two requirements are satisfied.

Figure 11 also shows the advantage of filter (1a)–(1c)
over 2-LPF. Compared to filter (1a)–(1c), 2-LPF produces
smaller phase lag only at ωcl > 330 rad/s and smaller noise
amplitude only at ωcl < 240 rad/s, as shown in Figures 11(b)
and 11(c), respectively. Thus, one can see that 2-LPF cannot
bring the output as close to the signal component in the input
as filter (1a)–(1c) does by adjusting the cutoff frequency ωcl.

Filter (1a)–(1c) is also compared to filter (4a)–(4c) in
Figure 12. The figure shows the output of filter (1a)–(1c)
with F = 9000 s−2 and α = 3 and those of filter (4a)–(4c)
with F = 8000, 9000, and 10000 s−2. It is shown that filter
(4a)–(4c) produces larger phase lag than filter (1a)–(1c) does
with the same F value. This indicates the advantage of the
use of α > 1. It is clear that, in the case of filter (4a)–(4c),
the phase lag can be reduced by using a larger F value, but
it sacrifices the noise removing capability, as also shown in
Figure 12.

7. Experiment

This section reports a set of experimental results for
validating filter (1a)–(1c) and the presented guidelines.
Figure 13 shows the experimental setup, which consisted of
a robot manipulator (MOTOMAN HP3-J, Yaskawa Electric
Corporation) and an aluminum pole with a rubber sheet
attached to it. The manipulator was equipped with a force
sensor (Nitta Corporation) and a bolt installed on the force
sensor. In the experiment, the manipulator was controlled so
that the bolt head maintained contact with the rubber sheet
with a particular contact force. Only the first joint (from
the base) was controlled and the other joints were locked to
fixed angles so that the end effector moves along the circular
arc indicated in Figure 13. In the following descriptions, all
quantities are measured in the translational system along the
arc.

Admittance control [36–38] was used to control the
contact force between the bolt head and the rubber sheet.
Figure 14 shows the block diagram of the whole system. In
admittance control, a virtual object having simple dynamics
is considered in the controller, measured force signal is used
to simulate the object’s motion according to the force, and
the manipulator is position controlled so as to follow the
resultant object’s motion. As long as the position control
is accurate enough, the manipulator’s response to external
forces is close to that of the virtual object. It has been known
that, however, such a control system can be unstable due to
the phase lag resulted from many hardware factors (e.g., the
latency in the controller and the compliance of the joint). The
phase-lead compensator in Figure 14 was intended to atten-
uate this effect, but it also has a side effect of magnifying the
noise. The filter in Figure 14 was for reducing the influence
of the noise in the force sensor measurement. To maintain
the stability, the filter should not produce much phase lag.

The expression of the admittance controller used in the
experiment is given follows:

q̈ = −bq̇ − f f − Tf ḟ f + fd
m

, (18)

τ = KP
(
q − p

)
+ KI

∫
(
q − p

)
dt

+ KD
(
q̇ − ṗ

)
+ Mq̈.

(19)

Here, (18) represents the virtual object dynamics, where fd
is the desired pressing force, f f is the filtered force, Tf is a
constant, and q, m, and b are position, inertia, and viscosity
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Table 1: Parameter values.

Parameter Value

T 0.001 s

Tf 0.0012 s

fd 1 N

m 0.7 kg

b 6 N·s/m

M 10.3 kg

KP 5.17× 104 N/m

KD 5.17× 102 N·s/m

KI 1.03× 105 N/(m·s)

of the object, respectively. In addition, (19) is a proportional-
integral-derivative position controller with inertia compen-
sation, where p is the position of the manipulator, M is
a constant, τ is the output force, and KP , KI , and KD are
proportional, integral, and derivative gains, respectively.

In the measured force signal fs, the maximum amplitude
and frequency of the useful signal component were estimated
as 15 N and 10 Hz (62.8 rad/s), respectively, and the mini-
mum frequency of the noise component was estimated as
200 Hz (1256.6 rad/s). The requirements for filter (1a)–(1c)
were set as follows:

(a) the amplitude of the noise component in the output
should be smaller than 0.1 N, and

(b) the gain G of the useful signal component should be
Gp = −0.7 dB < G < 0 dB.

By applying the guidelines, the value of α was set as α = 3,
and the value of F was set as F = 65000 N/s2, which satisfies
the relation Γ−1(−0.7) × (62.8)2 × 15/2 < F < (1256.6)2 ×
0.1/2. The other parameters for the experiment were set as
shown in Table 1.

The experimental results are shown in Figures 15 and 16.
Figure 15 shows the data of the average magnitude of | ḟs|,
which is defined as

AMFD �
∫ 30

15

∣∣
∣ ḟs(t)

∣∣
∣dt

(30− 15)
(20)
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and the maximum variation of fs, which is defined as

MVF �
∣
∣
∣∣ max

15 s≤t≤30 s
fs(t)− min

15 s≤t≤30 s
fs(t)

∣
∣
∣∣. (21)

A large AMFD value indicates that there is a strong high-
frequency vibration, and a large MVF value indicates that
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there is a strong low-frequency vibration. In addition,
Figure 16 provides typical contact force data obtained
through the three filters. Here, the experiment started from
t = 0 s, and the initial states of the three filters were zeros at
t = 0 s. Figures 15 and 16 only use the data after t = 15 s,
that is, time period after the contact had occurred. In 2-LPF,
cut-off frequency ωcl = 20, 30, and 40 Hz, and in filter (4a)–
(4c), F = 65000 N/s2 were used.

The two figures show that filter (1a)–(1c) reduced both
AMFD and MVF compared to the other filters, and the
manipulator successfully maintained a contact force of 1 N,
which is almost equal to fd. The two figures also show that, in
the case of 2-LPF, AMFD and MVF cannot be simultaneously
reduced as close to the values as filter (1a)–(1c) did by
adjusting the cut-off frequency ωcl. In the case of filter (4a)–
(4c), one can observe that MVF was the largest among the
three filters. These results clearly show the advantage of filter
(1a)–(1c) over 2-LPF and filter (4a)–(4c).

8. Conclusions

This paper has quantitatively evaluated the performance
of filter (1a)–(1c), which is a parabolic sliding mode filter
proposed in [30], based on the frequency and time domain
characteristics. Based on the evaluation results, simple
guidelines for selecting two parameter, F and α, of the filter
have been provided. In addition, filter (1a)–(1c) and the
presented guidelines have been validated through numerical
examples and experiments. The evaluation results show that
filter (1a)–(1c) has better frequency and time responses than
those of the second-order Butterworth low-pass filter (2-
LPF) and filter (4a)–(4c), which is a conventional parabolic
sliding mode filter proposed in [17–19]. Specifically, in the
frequency domain, the noise removing capability of filter
(1a)–(1c) is almost the same as that of 2-LPF, but its
phase lag is smaller (maximum 150 degree) than that of
2-LPF (maximum 180 degree). In addition, the phase lag
caused by filter (1a)–(1c) is smaller than that of filter (4a)–
(4c) with appropriate selection of the parameters. In the
time domain, filter (1a)–(1c) produces smaller overshoot
than 2-LPF and filter (4a)–(4c), while maintaining short
transient time, by using appropriately selected α value. The
guidelines state that F should be set to satisfy (16), which
depends on some estimated characteristics of the input
and some desired characteristics of the output. Moreover,
the guidelines recommend that α should be set as 3 ≤
α ≤ 4. The presented numerical examples and experimental
results confirm the effectiveness of filter (1a)–(1c) and the
parameter selection guidelines.

One limitation of this paper is that the performance of
filter (1a)–(1c) is only evaluated through numerical meth-
ods. Thus, theoretical validation of the guidelines should be
addressed in future study.
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